真空系统抽气时间计算

合集下载

真空系统抽气时间的计算

真空系统抽气时间的计算

真空系统抽气时间的计算1.真空系统的抽气方程真空系统的任务就是抽除被抽容器中的各种气体。

我们可以把被抽容器中所产生的各种气体的流量称为真空系统的气体负荷。

那么真空系统的气体负荷究竟来自哪些方面呢或者说真空室内究竟有哪些气源呢?总起来说,可以归纳为下述几个方面:(1)被抽容器内原有的空间大气,若容器的容积为Vm3,抽气初始压强为P o Pa,则容器内原有的大气量为VP0Pa·m3;(2)被抽容器内一旦被抽空,暴露于真空下的各种材料构件的表面就将把原来在大气压下所吸收和吸附的气体解析出来,这部分气体来源我们称之为放气,单位时间内的放气流量可以用Q f Pa·m3/s来示;实验表明,材料表面单位时间内单位表面积的放气率q可以用式(27)的经验公式来计算。

真空室内暴露于真空下的构件表面,可能有多种材料。

所以总的表面放气流量Q f为式(49)。

(3)大气通过容器壁结构材料向真空室内渗透的气体流量,以Q s Pa·m3/s表示。

渗透的气流量即是大气通过容器壁结构材料扩散到容器中的气体流量。

气体的这种渗透是有选择性的,例如:氢只有分离为原子才能透过钯、铁、镍和铝;氢对钢的渗透将随钢中含碳量的增加而增加。

氦分子能透过玻璃。

氢、氮、氧和氩、氖、氦能透过透明的石英。

一切气体都能透过有机聚合物,如橡胶、塑料等。

但是所有的隋性气体都不能透过金属。

除了有选择性之外,渗透气流量Q s还与温度、气体的分压强有关。

在材料种类、温度和气体分压强确定时,渗透气流量Q s是个微小的定值。

(4)液体或固体蒸发的气体流量Q Z Pa·m3/s。

空气中水分或工艺中的液体在真空状态下蒸发出来,这是在低真空范围内常常发生的现象。

在高真空条件下,特别是在高温装置中,固体和液体都有一定的饱和蒸气压。

当温度一定时,材料的饱和蒸气压是一定的,因而蒸发的气流量也是个常量。

(5)大气通过各种真空密封的连接处,通过各种漏隙通道泄漏进入真空室的漏气流量Q L Pa·m3/s。

不同真空范围内的抽气时间计算

不同真空范围内的抽气时间计算

书山有路勤为径,学海无涯苦作舟
不同真空范围内的抽气时间计算
根据真空系统的使用目的而决定所需的真空度和抽气时间,然后选择
合适的真空泵。

本节介绍不同真空范围内的抽气时间计算。

1、大气压-低真空领域的抽气时间计算这里所指的低真空领域,是指真
空度在100 KPa 至0.2 KPa,低真空领域真空腔体和泵的连接管内,气体分子是黏性流时,抽气时间可以通过初期压强p1、到达压强p2、抽气速度S 和容积
V(含配管)来计算。

式中p1 初期压强(大气压)[Pa];
p2 到达压强[Pa];
t 抽气时间[min];
V 容积[L];
Se 实际抽气速度[L/min]。

考虑到导管和阀门的瓶颈效应,实际抽气速度大致可以估算为理论抽气
速度的80%。

2、中真空领域的抽气时间计算这里所指的高真空至超高真空领域,是指
真空度在200 Pa 至0.2Pa 之间,中真空领域导管内的气体分子,处于黏性流和分子流的中间状态,不能单纯地像低真空或下面第三章节讲解的高真空那样简
单地计算。

通常情况下,通过两种方式分别计算抽气时间,然后取计算值较大
的结果。

真空抽气要考虑的要素:
(1)到达真空度;
(2)抽气速度;。

真空泵的常用参数计算公式介绍

真空泵的常用参数计算公式介绍

真空泵的常用参数计算公式介绍-CAL-FENGHAI.-(YICAI)-Company One1真空泵的常用参数计算公式介绍真空常用公式1、玻义尔定律体积V,压强P,PV=常数一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。

即P1/P2=V2/V12、盖吕萨克定律当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:V1/V2=T1/T2=常数当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。

3、查理定律当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。

4、平均自由程:λ=(5×10-3)/P (cm)5、抽速:S=dv/dt (升/秒)或 S=Q/PQ=流量(托升/秒) P=压强(托)V=体积(升) t=时间(秒)6、通导: C=Q/(P2-P1) (升/秒)7、真空抽气时间:对于从大气压到1托抽气时间计算式:t=8V/S (经验公式)V为体积,S为抽气速率,通常t在5~10分钟内选择。

8、维持泵选择:S维=S前/109、扩散泵抽速估算:S=3D2 (D=直径cm)10、罗茨泵的前级抽速:S=~S罗 (l/s)11、漏率:Q漏=V(P2-P1)/(t2-t1)Q漏-系统漏率(mmHgl/s)V-系统容积(l)P1-真空泵停止时系统中压强(mmHg)P2-真空室经过时间t后达到的压强(mmHg)t-压强从P1升到P2经过的时间(s)12、粗抽泵的抽速选择:S=Q1/P预 (l/s)S=(Pa/P预)/tS-机械泵有效抽速Q1-真空系统漏气率(托升/秒)P预-需要达到的预真空度(托)V-真空系统容积(升)t-达到P预时所需要的时间Pa-大气压值(托)13、前级泵抽速选择:排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:PnSg≥PgS 或Sg≥Pgs/PnSg-前级泵的有效抽速(l/s)Pn-主泵临界前级压强(最大排气压强)(l/s)Pg-真空室最高工作压强(托)S-主泵工作时在Pg时的有效抽速。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式Revised as of 23 November 2020真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=t Log(P1/P2)=30xLog(760/50)=s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

真空计算公式

真空计算公式

真空计算公式集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]真空计算公式1、玻义尔定律体积V,压强P,P·V=常数一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。

即P1/P2=V2/V12、盖·吕萨克定律当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:V 1/V2=T1/T2=常数当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。

3、查理定律当气体的体积V保持不变,一定质量的气体,压强P与其绝对温度T成正比,即:P 1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。

4、平均自由程:λ=(5×10-3)/P (cm)5、抽速:S=dv /dt(升/秒)或 S=Q/PQ=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒)6、通导: C=Q/(P2-P1) (升/秒)7、真空抽气时间:对于从大气压到1托抽气时间计算式:t=8V/S (经验公式)V为体积,S为抽气速率,通常t在5~10分钟内选择。

8、维持泵选择:S维=S前/109、扩散泵抽速估算:S=3D2 (D=直径cm)10、罗茨泵的前级抽速:S=~S罗(l/s)11、漏率:Q漏=V(P2-P1)/(t2-t1)Q漏-系统漏率(mmHg·l/s)V-系统容积(l)P1-真空泵停止时系统中压强(mmHg)P2-真空室经过时间t后达到的压强(mmHg)t-压强从P1升到P2经过的时间(s)12、粗抽泵的抽速选择:S=Q1/P预(l/s) S=·lg(Pa/P预)/tS-机械泵有效抽速Q1-真空系统漏气率(托·升/秒)P预-需要达到的预真空度(托)V-真空系统容积(升)t-达到P预时所需要的时间Pa-大气压值(托)13、前级泵抽速选择:排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:P n Sg≥PgS 或S g ≥Pgs/PnSg-前级泵的有效抽速(l/s)Pn-主泵临界前级压强(最大排气压强)(l/s)Pg-真空室最高工作压强(托)S-主泵工作时在Pg时的有效抽速。

真空常用计算公式

真空常用计算公式

真空概念及真空计算公式1、真空的定义真空系统指低于该地区大气压的稀簿气体状态2、真空度处于真空状态下的气体稀簿程度,通常用“真空度高”和“真空度低”来表示。

真空度高表示真空度“好”的意思,真空度低表示真空度“差”的意思。

3、真空度单位通常用托(Torr)为单位,近年国际上取用帕(Pa)作为单位。

1托=1/760大气压=1毫米汞柱4、托与帕的转换1托=133.322帕或1帕=7.5×10-3托5、平均自由程作无规则热运动的气体粒子,相继两次碰撞所飞越的平均距离,用符号“λ”表示。

6、流量单位时间流过任意截面的气体量,符号用“Q”表示,单位为帕·升/秒(Pa·L/s)或托·升/秒(Torr·L/s)。

7、流导表示真空管道通过气体的能力。

单位为升/秒(L/s),在稳定状态下,管道流导等于管道流量除以管道两端压强差。

符号记作“U”。

U=Q/(P2- P1)8、压力或压强气体分子作用于容器壁的单位面积上的力,用“P”表示。

9、标准大气压压强为每平方厘米101325达因的气压,符号:(Atm)。

10、极限真空真空容器经充分抽气后,稳定在某一真空度,此真空度称为极限真空。

通常真空容器须经12小时炼气,再经12小时抽真空,最后一个小时每隔10分钟测量一次,取其10次的平均值为极限真空值。

11、抽气速率在一定的压强和温度下,单位时间由泵进气口处抽走的气体称为抽气速率,简称抽速。

即Sp=Q/(P-P0)12、热偶真空计利用热电偶的电势与加热元件的温度有关,元件的温度又与气体的热传导有关的原理来测量真空度的真空计。

13、电离真空计(又收热阴极电离计)由筒状收集极,栅网和位于栅网中心的灯丝构成,筒状收集极在栅网外面。

热阴极发射电子电离气体分子,离子被收集极收集,根据收集的离子流大小来测量气体压强的真空计。

14、复合真空计由热偶真空计与热阴极电离真空计组成,测量围从大气~10-5Pa。

真空泵的常用参数计算公式介绍

真空泵的常用参数计算公式介绍

真空泵的常用参数计算公式介绍真空常用公式1、玻义尔定律体积V,压强P, PV=常数一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。

即P1/P2=V2/V12、盖吕萨克定律当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:V1/V2 =T1/T2=常数当压强不变时,一定质量的气体,温度每升高(或P降低)1°C,则它的体积比原来增加(或缩小)1/273。

3、查理定律当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P古T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1 C,它的压强比原来增加(或减少)1/273。

4、平均自由程:A (5 X0-3)/P (cm)5、抽速:S=dv/dt 升/秒)或 S=Q/PQ =流量(托升/秒)P=压强(托)V =体积(升)t=时间(秒)6、通导:C=Q/(P2-P1)升/秒)7、真空抽气时间:对于从大气压到 1 托抽气时间计算式:t = 8V/S经验公式)V为体积,S为抽气速率,通常t在5~10分钟内选择。

8、维持泵选择:S维=S前/109、扩散泵抽速估算:S=3D2 (D=直径 cm)10、罗茨泵的前级抽速:S=(0.1~0.2)S罗(l/s)11、漏率:Q 漏=V(P2-P1)/(t2-t1)Q漏—系统漏率(mmHgl/s)V —系统容积(I)P1 —真空泵停止时系统中压强(mmHg)P2—真空室经过时间t后达到的压强(mmHg)t —压强从P1升到P2经过的时间(s)12、粗抽泵的抽速选择:S=Q1/P预(l/s)S=2.3Vlg(Pa/P预)/tS-机械泵有效抽速Q1-真空系统漏气率(托升/秒)P预—需要达到的预真空度(托)V —真空系统容积(升)t—达到P预时所需要的时间Pa-大气压值(托)13、前级泵抽速选择:排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:PnSg> Pg或Sg> Pgs/P nSg-前级泵的有效抽速(l/s)Pn-主泵临界前级压强(最大排气压强)(l/s)Pg—真空室最高工作压强(托)S—主泵工作时在Pg时的有效抽速。

真空计算公式

真空计算公式

真空计算公式1、玻义尔定律体积V,压强P,P·V=常数一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。

即P1/P2=V2/V12、盖·吕萨克定律当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:V1/V2=T1/T2=常数当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。

3、查理定律当气体的体积V保持不变,一定质量的气体,压强P与其绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。

4、平均自由程:λ=(5×10-3)/P (cm)5、抽速:S=d v/d t (升/秒)或 S=Q/PQ=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒)6、通导: C=Q/(P2-P1) (升/秒)7、真空抽气时间:对于从大气压到1托抽气时间计算式:t=8V/S (经验公式)V为体积,S为抽气速率,通常t在5~10分钟内选择。

8、维持泵选择:S维=S前/109、扩散泵抽速估算:S=3D2 (D=直径cm)10、罗茨泵的前级抽速:S=(0.1~0.2)S罗 (l/s)11、漏率:Q漏=V(P2-P1)/(t2-t1)Q漏-系统漏率(mmHg·l/s)V-系统容积(l)P1-真空泵停止时系统中压强(mmHg)P2-真空室经过时间t后达到的压强(mmHg)t-压强从P1升到P2经过的时间(s)12、粗抽泵的抽速选择:S=Q1/P预 (l/s) S=2.3V·lg(P a/P预)/tS-机械泵有效抽速Q1-真空系统漏气率(托·升/秒)P预-需要达到的预真空度(托)V-真空系统容积(升)t-达到P预时所需要的时间P a-大气压值(托)13、前级泵抽速选择:排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:P n S g≥P g S 或S g≥P gs/P nS g-前级泵的有效抽速(l/s)P n-主泵临界前级压强(最大排气压强)(l/s)P g-真空室最高工作压强(托)S-主泵工作时在P g时的有效抽速。

真空系统的抽气

真空系统的抽气

1.真空系统的抽气方程真空系统的任务就是抽除被抽容器中的各种气体。

我们可以把被抽容器中所产生的各种气体的流量称为真空系统的气体负荷。

那么真空系统的气体负荷究竟来自哪些方面呢?或者说真空室内究竟有哪些气源呢?总起来说,可以归纳为下述几个方面:(1)被抽容器内原有的空间大气,若容器的容积为Vm3,抽气初始压强为PoPa,则容器内原有的大气量为VPPa·m3;(2)被抽容器内一旦被抽空,暴露于真空下的各种材料构件的表面就将把原来在大气压下所吸收和吸附的气体解析出来,这部分气体来源我们称之为放气,单位时间内的放气流量可以用QfPa·m3/s来示;实验表明,材料表面单位时间内单位表面积的放气率q可以用式(27)的经验公式来计算。

真空室内暴露于真空下的构件表面,可能有多种材料。

所以总的表面放气流量Qf为式(49)。

(3)大气通过容器壁结构材料向真空室内渗透的气体流量,以QsPa·m3/s表示。

渗透的气流量即是大气通过容器壁结构材料扩散到容器中的气体流量。

气体的这种渗透是有选择性的,例如:氢只有分离为原子才能透过钯、铁、镍和铝;氢对钢的渗透将随钢中含碳量的增加而增加。

氦分子能透过玻璃。

氢、氮、氧和氩、氖、氦能透过透明的石英。

一切气体都能透过有机聚合物,如橡胶、塑料等。

但是所有的隋性气体都不能透过金属。

除了有选择性之外,渗透气流量Qs还与温度、气体的分压强有关。

在材料种类、温度和气体分压强确定时,渗透气流量Qs是个微小的定值。

(4)液体或固体蒸发的气体流量QZPa·m3/s。

空气中水分或工艺中的液体在真空状态下蒸发出来,这是在低真空范围内常常发生的现象。

在高真空条件下,特别是在高温装置中,固体和液体都有一定的饱和蒸气压。

当温度一定时,材料的饱和蒸气压是一定的,因而蒸发的气流量也是个常量。

(5)大气通过各种真空密封的连接处,通过各种漏隙通道泄漏进入真空室的漏气流量QL Pa·m3/s。

真空常见计算公式

真空常见计算公式

书山有路勤为径,学海无涯苦作舟
真空常见计算公式
1、玻义尔定律体积V,压强P,P-V=常数一定质量的气体,当温度不变时,气体的压强与气体的体积成反比即P1/P2=V2/V1;
2、盖-吕萨克定律当压强P 不变时,一定质量的气体,其体积V 与绝对温度T 成正比:V1/V2=T1/T2=常数当压强不变时,一定质量的气体,温度每升高(或P 降低)1℃,则它的体积比原来增加(或缩小)1/273;
3、查理定律当气体的体积V 保持不变,一定质量的气体,压强P 与其绝对温度T 成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273;
4、平均自由程:λ=(5 乘以10-3)/P(cm) ;
5、抽速:S=dv/dt (升/秒)或S=Q/P Q=流量(托-升/秒) P=压强(托)V =体积(升) t=时间(秒) ;
6、通导:C=Q/(P2-P1) (升/秒) ;
7、真空抽气时间:对于从大气压到1 托抽气时间计算式:t=8V/S (经验公式) V 为体积,S 为抽气速率,通常t 在5~10 分钟内选择;
8、维持泵选择:S 维=S 前/10;
9、扩散泵抽速估算:S=3D2 (D=直径cm);
10、罗茨泵的前级抽速:S=(0.1~0.2)S 罗(l/s) ;
11、漏率:Q 漏=V(P2-P1)/(t2-t1) Q 漏-系统漏率(mmHg-l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t 后达到的压强(mmHg) t-压强从P1 升到P2 经过的时间(s) ;
12、粗抽泵的抽速选择:S=Q1/P 预(l/s) S=2.3V-lg(Pa/P 预)/t S-机械泵。

抽气时间与压强的计算

抽气时间与压强的计算

THANKS
VS
压强单位对关系的影响
在不同的压强单位下,压强与抽气时间的 关系也会有所不同。例如,在绝对压强单 位下,抽气时间与绝对压强呈线性关系; 而在相对压强单位下,抽气时间与相对压 强可能呈非线性关系。
不同压强下的抽气时间变化
低压强下抽气时间显著增加
在接近真空的低压强环境下,气体分子间的平均距离变得非常大,扩散作用变得极为缓慢,导致抽气 时间显著增加。
压强的定义与单位
压强
表示气体压力的物理量,单位为帕斯卡(Pa)。
单位换算
1大气压(atm)= 101325 Pa。
压强的计算公式
理想气体状态方程
PV=nRT,其中P表压强计算公式
P=F/A,其中F表示作用在单位面积上 的力,A表示受力面积。
温度和压力
温度和压力也是影响压强的因素。在高温或高压条件下,气体分子热运动速度加快,容器内压强相应升高。而随 着温度的降低或压力的减小,压强逐渐降低。
03 压强对抽气时间的影响
压强与抽气时间的关系
压强与抽气时间呈负相关
随着压强的减小,抽气时间会相应增加 。这是因为压强降低会导致气体分子间 的平均距离变大,气体分子通过扩散作 用进入真空系统的速度变慢,从而延长 了抽气时间。
和气体流动分析中具有重要意义。
实际应用中的注意事项
01
02
03
系统泄漏检测
在应用抽气系统时,需要 定期检测系统的泄漏情况, 以避免影响抽气时间和压 强。
泵的选择
根据实际需求选择合适的 真空泵,以确保达到所需 的抽气速率和压强。
安全操作
在操作真空系统时,需要 遵守安全操作规程,避免 因操作不当导致设备损坏 或人员伤亡。
高压强下抽气时间显著减小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空系统抽气时间的计算
1.真空系统的抽气方程
真空系统的任务就是抽除被抽容器中的各种气体。

我们可以把被抽容器中所产生的各种气体的流量称为真空系统的气体负荷。

那么真空系统的气体负荷究竟来自哪些方面呢?或者说真空室内究竟有哪些气源呢?总起来说,可以归纳为下述几个方面:
(1)被抽容器内原有的空间大气,若容器的容积为Vm 3,抽气初始压强为P o Pa ,则容器内原有的大气量为VP 0Pa·m 3;
(2)被抽容器内一旦被抽空,暴露于真空下的各种材料构件的表面就将把原来在大气压下所吸收和吸附的气体解析出来,这部分气体来源我们称之为放气,单位时间内的放气流量可以用Q f Pa·m 3/s 来示;
实验表明,材料表面单位时间内单位表面积的放气率q 可以用式(27)的经验公式来计算。

真空室内暴露于真空下的构件表面,可能有多种材料。

所以总的表面放气流量Q f 为式
(49)。

(3)大气通过容器壁结构材料向真空室内渗透的气体流量,以Q s Pa·m 3/s 表示。

渗透的气流量即是大气通过容器壁结构材料扩散到容器中的气体流量。

气体的这种渗透是有选择性的,例如:氢只有分离为原子才能透过钯、铁、镍和铝;氢对钢的渗透将随钢中含碳量的增加而增加。

氦分子能透过玻璃。

氢、氮、氧和氩、氖、氦能透过透明的石英。

一切气体都能透过有机聚合物,如橡胶、塑料等。

但是所有的隋性气体都不能透过金属。

除了有选择性之外,渗透气流量Q s 还与温度、气体的分压强有关。

在材料种类、温度和气体分压强确定时,渗透气流量Q s 是个微小的定值。

(4)液体或固体蒸发的气体流量Q Z Pa·m 3/s 。

空气中水分或工艺中的液体在真空状态下蒸发出来,这是在低真空范围内常常发生的现象。

在高真空条件下,特别是在高温装置中,固体和液体都有一定的饱和蒸气压。

当温度一定时,材料的饱和蒸气压是一定的,因而蒸发的气流量也是个常量。

(5)大气通过各种真空密封的连接处,通过各种漏隙通道泄漏进入真空室的漏气流量Q L Pa·m 3/s 。

对于确定的真空装置,漏气流量Q L 是个常数。

漏气流量通常可通过所说的压升率,即单位时间内容器中的压强增长率P x 来计算式(28)。

当真空泵启动之后,真空系统即对被抽容器抽气。

此时,真空系统对容器的有效抽速若以S e 表示,容器中的压力以P 表示,则单位时间内系统所排出的气体流量即是S e P 。

容器中的压强变化率为dP/dt ,容器内的气体减少量即是V dP/dt 。

根据动态平衡,可列出如下方程
(29)。

这个方程称为真空系统抽气方程。

式中V 是被抽容器的容积,由于随着抽气时间t 的增长,容器内的压力P 降低,所以容器内的压强变化率dP/dt 是个负值。

因而V dP/dt 是个负值,这表示容器内的气体减少量。

放气流量Q f ,渗透气流量Q s ,蒸发的气流量Q z 和漏气流量Q L 都是使容器内气体量增多的气流量。

S e P 则是真空系统将容器内气体抽出的气流量,所以方程中记为一S e P 。

对于一个设计、加工制造良好的真空系统,抽气方程(29)中的放气Q f渗气Q s、漏气Q L 和蒸气Q
z
的气流量都是微小的。

因此抽气初期(粗真空和低真空阶段)真空系统的气体负荷主要是容器内原有的空间大气。

随着容器中压强的降低,原有的大气迅速减少,当抽空至1~10-1Pa时,容器中残存的气体主要是漏放气,而且主要的气体成分是水蒸汽。

如果用油封式机械泵抽气,则试验表明,在几十~几Pa时,还将出现泵油大量返流的现象。

2.低真空抽气时间的计算
从大气压开始到0.5Pa范围的抽气,我们统称为低真空抽气阶段。

这一阶段的抽气通常用油封式机械真空泵或分子筛吸附泵来完成。

一般来说,油封机械泵的特性是在大气压到102Pa时抽速近似为常数,在102~O.5Pa时抽速变化较大,而对于吸附泵,5A分子筛在室温下由大气压到O.5Pa时对氮气的吸附速率近于常数;在液氮温度下,由大气压到1Pa时,对氮气的吸附量近似于常数。

因此,对于低真空阶段抽气可分为近似常抽速和变抽速两种情况来分别考虑。

(1)近似常抽速时,抽气时间的计算
油封机械泵在大气压到102Pa范围内抽速近似为常抽速。

在这一阶段抽气过程中,系统内的压强较高,排气量较大,即使系统内有些微小的漏气和放气,影响也不大,可以忽略漏气、放气、蒸发和渗透的气流量。

忽略这些微小的气流量之后,抽气方程(29)变为(30)。

①不考虑管道影响和漏放气时抽气时间的计算
通常,被抽容器的出口到真空泵入口之间有连接管路。

连接管路的影响是使得系统对真
空容器的有效抽速S
e 低于真空泵的抽速S
p
这说明管路对于气体流动具有阻力,这种影响从
真空技术基本方程(2a)即可看出。

我们先从最简单的情况来研究,假定真空泵的入口直接连到容器出口上进行抽空,如图8所示,此时没有连接管路或是连接管路很短,其影响可以忽略不计。

微小的漏、放气流量等也忽略不计,则求解抽气方程(31)。

由式(32)可得出容器内压强P随抽空时间t的变化关系式(33)。

式中各符号的意义同式(32),式(32)是抽气时间计算的最基本的公式。

②不考虑管道影响而考虑漏放气时抽气时间的计算
对于任何一个被抽容器不可能没有漏气和放气,当被抽容器内的压强较低,真空系统的排气流量不是很大时,就必须考虑漏、放气等气流量对抽气过程的影响,此时抽气时间的计算式为(34)。

③考虑管道影响和漏放气时,抽气时间的计算
实际上真空泵对容器的抽气都是通过连接管路进行的。

由于管路的影响,泵对容器的有效抽速降低了,延长了抽气时间。

因此在这种情况下需要考虑管道的影响。

此时抽气时间的计算式为(35)。

真空泵对容器的有效抽速s可以利用真空技术基本方程(2)求出。

计算时需先求出真空泵入口到容器出口之间连接管路的流导C,而流导C又与气流状态有关,所以要根据不同的气体流动状态,选择适宜的流导计算公式计算连接管路的流导C。

计算出连接管路的流导C,由泵的实际抽速S p,即可通过真空技术基本方程(2)求出泵对容器的有效抽速S e。

再利
用式(35)即可求出对于容积为Vm 3的容器,从压强P 0降低到P 的抽气时间t 。

(2)变抽速时抽气时间的计算
大多数真空泵的抽速都随其入口压强的变化而变化,
尤其是机械真空泵,当其入口压强低于10Pa 时,泵的抽速随其入口压强的变化更为显著。

图9是某些真空泵的抽速特性曲线示意图。


分段计算法 在一般情况下,计算变抽速时的抽气时间需要首先知道泵的抽速与其入口压强的关系。

如图10所示。

假定需要求容器内的压力由P 0降低到P 的抽气时间,则可以将P 0到P 这个压强区段分成n 段。

段效愈多,计算的抽气时间愈接近变抽速的实际。

设相应每段的抽气时间为t 1,t 2…t i …t n 取每段的平均抽蘧为s 1,S 2,…S i …S n ,用相应的公式(36)进行各个压力区段的抽气时间计算,然后求其代数和即得总的抽气时间t 。


经验系数计算法 油封机械真空泵的实际抽速S 随其入口压强的降低而降低。

研究其抽速特性曲线发现,其实际抽速S 与其名义抽速S p 的近似关系是(46)。

式中系数K 在不同压力区间的取值如表2。

因此抽气时间的计算可用式(37)。

应用该式计算抽气时间时,实际上相当于把从大气压到1Pa 的抽气时间计算分成为五个区强区段,对应每一个压强区段,根据表2所给出的K 值分别计算各压强区段的抽气时间,然后将五个压强区段的抽气时间相加即得从大气压到1Pa 的总的抽气时间。

相关文档
最新文档