【高中数学】8.1考点1 空间几何体的结构特征

合集下载

(完整版)高中数学空间几何体知识点总结

(完整版)高中数学空间几何体知识点总结

空间几何体知识点总结一、空间几何体的结构特征1.柱、锥、台、球的结构特征由若干个平面多边形围成的几何体称之为多面体。

围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。

(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。

棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

注:棱锥的性质:①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;②正棱锥各侧棱相等,各侧面是全等的等腰三角形;③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。

高考数学一轮复习第八章立体几何8-1空间几何体的结构特征三视图直观图学案理

高考数学一轮复习第八章立体几何8-1空间几何体的结构特征三视图直观图学案理

【2019最新】精选高考数学一轮复习第八章立体几何8-1空间几何体的结构特征三视图直观图学案理考纲展示► 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.考点1 空间几何体的结构特征空间几何体的结构特征(1)矩形(2)直角边(3)直角腰(4)直径(1)[教材习题改编]一个几何体由5个面围成,其中两个面是互相平行且全等的三角形,其他面都是全等的矩形,则该几何体是________;一个等腰直角三角形绕其斜边所在的直线旋转一周后形成的封闭曲面所围成的几何体是________.答案:三棱柱两个同底的圆锥解析:根据多面体和旋转体的概念知,第一个几何体是三棱柱,第二个几何体是两个同底的圆锥.(2)[教材习题改编]如图所示,图①②③是图④表示的几何体的三视图,若图①是正视图,则图②是________,图③是________.答案:侧视图俯视图解析:根据三视图的概念知,图②是侧视图,图③是俯视图.空间几何体的认识误区.给出下面四种说法:①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有一个面是多边形,其余各面都是三角形的几何体叫棱锥;④棱台各侧棱的延长线交于一点.其中错误说法的序号为________.答案:①②③解析:①如果上、下两个面平行,但不全等,即使其余各面是四边形,那也不可能是棱柱.②如图所示,平面ABC∥平面A1B1C1,但图中的几何体不是棱柱.③棱锥的一个面是多边形,其余各面是有一个公共顶点的三角形.④棱台是由棱锥截得的,故侧棱延长线交于一点.[典题1] (1)给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3[答案] B[解析] ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)下列说法中正确的是________.①有一个面是多边形,其余各面都是三角形,由这些面组成的几何体是棱锥;②四面体的任何一个面都可以作为棱锥的底面;③用一个平面去截棱锥,可得到一个棱锥和一个棱台;④棱锥的各侧棱长相等.[答案] ②[解析] 棱锥的侧面三角形有一个公共顶点,故①错误;三棱锥又叫四面体,其各个面都是三角形,都可以作为棱锥的底面,故②正确;用平行于底面的平面去截棱锥,截面与底面之间的部分叫做棱台,故③错误;④明显错误.[点石成金] 解决与空间几何体结构特征有关问题的技巧(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.考点2 空间几何体的三视图空间几何体的三视图是用________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是________的,三视图包括________、________、________.答案:正投影完全相同正视图侧视图俯视图三视图:注意三个视图之间的长度关系.若某几何体的三视图如图所示,则此几何体的体积是________.答案:48解析:由三视图可知,上面是一个长为4、宽为2、高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是上、下底分别为2,6,高为2的梯形.又长方体的体积为4×2×2=16,四棱柱的体积为4××2=32,所以该几何体的体积为32+16=48.角度一由三视图还原几何体[典题2] [2017·河南郑州模拟]若某几何体的三视图如图所示,则这个几何体的直观图可以是( )A B C D[答案] D [解析] A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.角度二由空间几何体的直观图判断三视图[典题3] 一几何体的直观图如图,下列给出的四个俯视图中正确的是( )A B C D[答案] B [解析] 由直观图可知,该几何体是由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.故选B.角度三由空间几何体的部分视图画出剩余部分视图[典题4] [2017·吉林长春模拟]已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是________.(把你认为正确的图的序号都填上)[答案] ①②③④[解析] 直观图如图①的几何体(上部是一个正四棱锥,下部是一个正四棱柱)的俯视图为题图①;直观图如图②的几何体(上部是一个正四棱锥,下部是一个圆柱)的俯视图为题图②;直观图如图③的几何体(上部是一个圆锥,下部是一个圆柱)的俯视图为题图③;直观图如图④的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图为题图④.①②③④[点石成金] 三视图问题的常见类型及解题策略(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.考点3 空间几何体的直观图空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半. [典题5] 已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )B.a2A.a2D.a2C.a2[答案] D[解析] 图①所示的是△ABC的实际图形,图②是△ABC的直观图.由图①②可知,A′B′=AB=a,O′C′=OC=a,在图②中作C′D′⊥A′B′于D′,则C′D′=O′C′=a.∴S△A′B′C′=A′B′·C′D′=×a×a=a2.[点石成金] 用斜二测画法画直观图的技巧(1)在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行;(2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线;(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑曲线连接而画出.如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a的正三角形,求△ABC的面积.解:建立如图所示的坐标系xOy′,△A′B′C′的顶点C′在y′轴上,边A′B′在x轴上,把y′轴绕原点逆时针旋转45°得y轴,在y轴上取点C使OC=2OC′,A,B点即为A′,B′点,长度不变.已知A′B′=A′C′=a,在△OA′C′中,由正弦定理,得=,所以OC′=a=a,所以原三角形ABC的高OC=a,所以S△ABC=×a×a=a2.真题演练集训1.[2016·天津卷]将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )A B C D答案:B解析:由正视图、俯视图得原几何体的形状如图所示,则该几何体的侧视图为B. 2.[2014·新课标全国卷Ⅰ]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )B. 4A.6C.6D.4答案:C解析:如图,侧面SBC⊥底面ABC.点S在底面ABC的射影点O是BC的中点,△ABC为直角三角形.∵AB=4,BO=2,∴AO=,SO⊥底面ABC,∴SO⊥AO,SO=4,∴最长的棱AS==6. 3.[2015·北京卷]某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )B.A.1D.2C.答案:C解析:根据三视图,可知几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=,在Rt△VBD中,VD==.课外拓展阅读三视图识图中的易误辨析[典例] 在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )B.③和①A.①和②C.④和③D.④和②[错解] 由已知该几何体正视图是一个直角三角形,三个顶点的坐标分别为(0,0,2),(0,2,0),(0,2,2),且内有一实线,故正视图为①,俯视图是一个斜三角形,三个顶点坐标分别为(0,0,0),(2,2,0),(1,2,0),故俯视图为②. [错因分析] (1)不能由点的坐标确定点在空间直角坐标系中的位置.(2)不能借助于正方体,由空间几何体的直观图得到它的三视图.(3)受思维定势的影响,直观感觉正视图为三角形,而无法作出选择.[解析] 在空间直角坐标系中,构建棱长为2的正方体,设A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),则ABCD即为满足条件的四面体,得出正视图和俯视图分别为④和②,故选D.[自我矫正] D答题启示对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,再画其三视图.另外要注意交线的位置,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线,即一定要分清可见轮廓线与不可见轮廓线,避免出现错误.。

§8.1 空间几何体的结构及其三视图和直观图

§8.1 空间几何体的结构及其三视图和直观图

探究提高
解决该类题目需准确理解几何体的定义,要真正把握几何 体的结构特征,并且学会通过反例对概念进行辨析,即要说明 一个命题是错误的,设法举出一个反例即可. 主页
变式训练 1
下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若过两个相对侧棱的截面都垂直于底面,则该四棱 柱为直四棱柱; ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为 直四棱柱. 其中,真命题的编号是②④ ________.(写出所有真命题 的编号)
主页
变式训练 3
一个平面图形的水平放置的斜二测直观图是一个 等腰梯形,它的底角为45°,两腰和上底边长均为1,则这 2 2 个平面图形的面积是 ______.
y
D
C
D
1
C
2
o
A
E
B x
A
2 1
B
S 1 [1 2 1] 2 2 2. 2
主页
题 型四
几何体的截面问题
对于①,平行六面体的两个相对侧面也可能与 底面垂直且互相平行,故①假; 对于②,两截面的交线平行于侧棱,且垂直于底 面,故②真;
主页
变式训练 1 下面是关于四棱柱的四个命题: ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. ②④ .(写出所有真命题的编号) 其中,真命题的编号是________
对于③,作正四棱柱的两个平行菱形截面,可得满足条件 的斜四棱柱(如图(1)),故③假; 对于④,四棱柱一个对角面的两条对角线,恰为四棱柱 的对角线,故对角面为矩形,于是侧棱垂直于底面的一对角 线,同样侧棱也垂直于底面的另一对角线,故侧棱垂直于底 面,故④真(如图(2)).

高中数学必修二《空间几何体的结构特征》课件

高中数学必修二《空间几何体的结构特征》课件

相交于一点 延长后相交于一点
等腰三角形 等腰梯形
与底面是相 与两底面是相 似的圆面 似的圆面
探究:圆柱、圆锥和圆台都是旋转体,
当底面发生变化时,它们能否互相转化?
上底扩大
上底缩小
四、球
1.球的定义:以半圆的直径所在直线为旋转轴, 半圆面旋转一周形成的几何体.
(1)球的球心——半圆的圆心. (2)球的半径——半圆的半径. (3)球的直径——半圆的直径.
顶点 侧面 下底面
性质:(1)有两个面是互相平行的相似多边形,其余各面都是梯形; (2)侧棱延长后相交于一个公共点.
棱台的分类
由三棱锥、四棱锥、五棱锥...截得 的棱台,分别叫做三棱台,四棱台,五 棱台...
D1
A1
D
C1
B1
C
A
B
棱台的表示:棱台ABCD A1B1C1D1.
判断以下几何体是棱台吗?为什么?
√1
2
√3
4
√5
6
7
棱柱的研究思路








第二种多面体——棱锥
棱锥
ቤተ መጻሕፍቲ ባይዱ
有一个面是多边形;
其余各面都是有一个 公共顶点的三角形;
棱锥
棱锥的结构 S
棱锥的顶点
棱锥的侧棱
D
棱锥的侧面
E A
C 棱锥的底面 B
棱锥的表示: 棱锥S ABCDE
棱锥的分类
按底面多边形的边数分类可分为三棱锥、四棱锥、五 棱锥等等。
日累月积见功勋, 山穷水尽惜寸阴。 。
—— 华罗庚
结构特征
定义
棱柱
棱锥
棱台

8-1 空间几何体的结构特征及三视图和直观图

8-1 空间几何体的结构特征及三视图和直观图

课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
【解析】
命题①符合平行六面体的定义,故命题①是
正确的,底面是矩形的平行六面体的侧棱可能与底面不垂 直,故命题②是错误的,因直四棱柱的底面不一定是平行四 边形,故命题③是错误的,命题④由棱台的定义知是正确 的.
【答案】 ①④
课前自主回顾
课堂互动探究
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
解析:A错误.如图所示,由两个结构相同的三棱锥叠 放在一起构成的几何体,各面都是三角形,但它不一定是棱 锥.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
B错误.如下图,若△ABC不是直角三角形或是直角三角 形,但旋转轴不是直角边,所得的几何体都不是圆锥.
时,其侧视图为D. (2)A图是两个圆柱的组合体的俯视图;B图是一个四棱柱 与一个圆柱的组合体的俯视图;C图是一个底面为等腰直角三 角形的三棱柱与一个四棱柱的组合体的俯视图,采用排除 法,故选D.
【答案】 (1)D (2)D
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
C错误.若六棱锥的所有棱长都相等,则底面多边形是正 六边形.由几何图形知,若以正六边形为底面,侧棱长必然 要大于底面边长. D正确.
答案:D
课前自主回顾
课堂互动探究
课时作业

8.1 基本立体图形(第1课时)棱柱、棱锥、棱台的结构特征【优创课堂】2022-2023学年高一数学

8.1 基本立体图形(第1课时)棱柱、棱锥、棱台的结构特征【优创课堂】2022-2023学年高一数学
辨析2:满足如图所示的几何体,以上说法正确的是(
A.该几何体是一个多面体
B.该几何体有9条棱,5个顶点
C.该几何体有7个面
D.该几何体是旋转体
答案:D.
).
例析
例1.将下列各类几何体之间的关系用图表示出来:
多面体,长方体,棱柱,棱锥,棱台,直棱柱,四面体,平行六面体.
解:如图所示:
练习
题型一:棱柱的结构特点
举反例 通过举反例,如与常见几何体或实物模型、图片等不
吻合,给予排除
练习
题型二:棱锥、棱台的结构特点
例2.下面是关于棱锥、棱台的四种说法:
①棱锥的侧面只能是三角形;②棱台的侧面一定不会是平行四边形;③由四
个面围成的封闭图形只能是三棱锥;④棱锥被平面截成的两部分不可能都是
棱锥.
其中说法错误的是(
A.①
形,由这些面所围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面;有公
共顶点的各个三角形面叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;
各侧面的公共顶点叫做棱锥的顶点.
探索新知
棱锥用表示顶点和底面各顶点的字母来表示,如图中的棱锥记作棱锥
− .棱锥的底面可以是三角形、四边形、五边形……,我们把这样的棱
棱、顶点.
棱台用表示底面各顶点的字母来表示,如图中的棱台记作棱台 − ’ ’ ’ ’ .
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱
台……
新知探索
辨析1:判断正误.
(1)一个多面体至少有六条棱.
(
)
(2)封闭的旋转面围成的几何体叫做旋转体.
(
)
答案:√,√.
锥分别叫做三棱锥、四棱锥、五棱锥……,其中三棱锥又叫四面体.底面是正

《空间几何体》基础的知识点

《空间几何体》基础的知识点

《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其 中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。

2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。

4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。

三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。

1空间几何体的结构特征及三视图与直观图、表面积与体积(教师版)

1空间几何体的结构特征及三视图与直观图、表面积与体积(教师版)
答案:A
6.如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a的正三角形,则△ABC的面积为________.
解析:如图所示,△A′B′C′是边长为a的正三角形,作C′D′∥A′B′交y′轴于点D′,则C′,D′到x′轴的距离为a.
∵∠D′A′B′=45°,∴A′D′=a,
由斜二测画法的法则知,
其中正确命题的序号是()
A.①②③B.②③
C.③D.①②③④
解析:对于①,棱柱的侧面不一定全等,故①错;对于②,截面与底面不一定平行,故②错;对于④,棱台的侧棱延长后相交于一点,但侧面不一定是等腰梯形,故④错;由面面垂直的判定及性质知③正确,故选C.
答案:C
2.下列结论中正确的是()
A.各个面都是三角形的几何体是三棱锥
几何体
旋转图形
旋转轴
圆柱
矩形
任一边所在的直线
圆锥
直角三角形
任一直角边所在的直线
圆台
直角梯形
垂直于底边的腰所在的直线

半圆
直径所在的直线
易误提醒(1)棱台可以看成是由棱锥截得的,但截面一定与底面平行.
(2)球的任何截面都是圆.球面被经过球心的平面截得的圆叫作大圆,大圆的半径等于球的半径;被不经过球心的平面截得的圆叫作小圆,小圆的半径小于球的半径.
答案:D
5.(2016·长沙模拟)某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是()
A.①③B.①③④
C.①②③D.①②③④
解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,故选A.

空间几何体的结构特征

空间几何体的结构特征
等于定长(半径)的所有点的集合.
2、圆柱、圆锥、圆台的几何特征
圆柱几何特征:①底面是全等的圆;②母线 与轴平行;③轴与底面圆的半径垂直;④侧 面展开图是一个矩形. 圆锥几何特征:①底面是一个圆;②母线交 于圆锥的顶点;③侧面展开图是一个扇形. 圆台几何特征:①上下底面是两个圆;②侧 面母线交于原圆锥的顶点;③侧面展开图是 一个扇环.
A
S 母 线 轴 侧 面
O
B
底面
圆锥的表示:圆锥so
圆台的结构特征
定义:用一个平行于 圆锥底面的平面去截 圆锥,底面与截面之 间的部分是圆台.
O’ O
圆台的表示:圆台oo’
一、球
1、球体定义:以半圆的直径所在的直线为旋
转轴,将半圆旋转所形成的曲面叫作球面.球 面所围成的几何体叫作球体,简称球。 球面与球体区别:球面指表层;球体含内部 ;
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
一些螺母、带盖螺母又是有什么主要的几何结构特 征呢?
简单组合体
蒙古大草原上遍布蒙古包,那么蒙古包的主要几 何结构特征是什么?
简单组合体
居民的住宅又有什么主要几何结构特征?
简单组合体
下图是著名的中央电视塔和天坛,你能说说 它们的主要几何结构特征吗?
你能从旋转体的概念说说天坛是由什么图形 旋转而成的吗?
旋转体
你能想象这条曲线绕轴旋转而成的几何图形吗?
这顶可爱的草帽又是由什么样的曲线旋转而成的 呢?这个轮胎呢?
生活与数学
数学在生活中无处不在,培养在生活中不断的用 数学的眼光看问题,会逐渐激发学数学的兴趣,增强 数学地分析问题、解决问题的能力.
牛刀小试
练习:充满气的车轮内胎可由下面某个图形绕对 称轴旋转而成,这个图形是( B )

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

8.1_空间几何体的结构及其三视图和直观图

8.1_空间几何体的结构及其三视图和直观图

S
D
O C
各侧棱相等,各侧面 是全等 的等腰三角形,各等腰 三角形底 边上的高相等(它叫做正棱锥的 斜高)。
A
B
正棱台
用正棱锥截得的棱台叫作正棱台。
正棱台的侧面是全等的等腰梯形,
它的高叫作正棱台的斜高。
斜高
正四棱台
正棱锥
2.旋转体的结构特征
(1)圆柱可以由矩形绕其一边所在直线旋转得到.
(2)圆锥可以由直角三角形绕其 一条直角边所在 直线 旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等 腰梯形绕上下底中点的连线旋转得到,也可由 平行于圆锥底面 的平面截圆锥得到. (4)球可以由半圆或圆绕其 直径 旋转得到.
画三视图的基本要求:
正 视 图 侧 视 图 正 视 图 反 映 了 物 体 的 高 度 和 长 度 侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
c(高)
c(高)
a(长)
高 平 长对正 齐
b(宽)
b(宽)
俯 视 图
a(长)
宽相等
俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
5.中心投影与平行投影 (1)平行投影的投影线 互相平行 ,而中心投影的 投影线 相交于一点 . (2)从投影的角度看,三视图和用斜二测画法画 出的直观图都是在 平行 投影下画出来的图形.
[尝试解答] 如图①②③的正(主)视图和俯视图都与原题相 同,故选A.
答案 A
思想方法 感悟提高
方法与技巧
1.棱柱主要是理解、掌握基本概念和性质,并能 灵活应用. 2.正棱锥问题常归结到它的高、侧棱、斜高、底
面正多边形、内切圆半径、外接圆半径、底面
边长的一半构成的直角三角形中解决. 3.圆柱、圆锥、圆台、球应抓住它们是旋转体这 一特点,弄清旋转轴、旋转面、轴截面.

高中数学人教A版必修第二册8.1第1课时棱柱、棱锥、棱台的结构特征课件

高中数学人教A版必修第二册8.1第1课时棱柱、棱锥、棱台的结构特征课件

探究二
思维辨析
随堂演练
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,
如图,线段AA1的长为所求△AEF周长的最小值.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.又 VA=VA1=4,∴AA1=4 2,∴△AEF周长的最小值为4 2.
反思感悟 本题是多面体表面上两点间的最短距离问题,常常要
答案:①③④⑤
防范措施 在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.
课堂篇探究学习
探究一
探究二
思维辨析
随堂演练
变式训练如图,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?
解:题图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但 是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形 ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这 个几何体不是一个棱柱.题图乙中的六个三角形没有一个公共点, 故不是棱锥,只是一个多面体;题图丙也不是棱台,因为侧棱的延长 线不能相交于同一点.
①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角 形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰 梯形的六面体是棱台;④四棱锥有4个顶点.
A.0个 B.1个 C.3个D.4个 分析所给命题→联想空间图形→紧扣棱柱、棱锥、棱台的结构 特征→作出判断 答案:A
探究一
探究二
思维辨析
随堂演练
探究一
探究二
思维辨析
随堂演练
课堂篇探究学习
解:作出三棱锥的侧面展开图,如图.A,B两点之间的最短绳长就是 线段AB的长度.OA=4,OB=3,∠AOB=90°,所以AB=5,即此绳在A,B 之间最短的绳长为5.

高中数学 必修2(人教版)8.1.1棱柱、棱锥、棱台的结构特征

高中数学 必修2(人教版)8.1.1棱柱、棱锥、棱台的结构特征

解析:根据各种几何体的概念与结构特征判断命题的真 假.A、B均为真命题;对于C,一个图形要成为空间几何体,则 它至少需有4个顶点,3个顶点只能构成平面图形,当有4个顶点 时,可围成4个面,所以一个多面体至少应有4个面,而且这样的 面必是三角形,故C也是真命题;对于D,只有当截面与底面平行 时才对.
2.下面图形中,为棱锥的是( )
A.①③ B.①③④ C.①②④ D.①② 解析:根据棱锥的定义和结构特征可以判断,①②是棱锥, ③不是棱锥,④是棱锥.故选C. 答案:C
3.下列图形中,是棱台的是( )
解析:由棱台的定义知,A、D的侧棱延长线不交于一点,所 以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定 义,故选C.
跟踪训练2 如图所示,不是正四面体(各棱长都相等的三棱 锥)的展开图的是( )
A.①③ B.②④ C.③④ D.①② 解析:可选择阴影三角形作为底面进行折叠,发现①②可折 成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正 四面体.故选C. 答案:C
轴:形成旋转体所绕的 __定__直__线__
状元随笔
1.任意一个几何体都是由点、线、面构成的. 点、线、面是构 成几何体的基本元素.
我们还可以从运动的观点来理解空间基本图形之间的关 系.在几何中,可以把线看成点运动的轨迹,如果点运动的方向 始终不变,那么它的轨迹就是一条直线或线段;如果点运动的方 向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.同样, 一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分) 可以形成一个几何体.即点动成线,线动成面,面动成体.
解析:这个几何体有8个面,都是全等的正三角形;有6个顶 点;有12条棱.
题型三 多面体的表面展开图——师生共研 例2 (1)某同学制作了一个对面图案均相同的正方体礼品盒, 如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同 的图案)( )

第一讲空间几何和结构特征以及三视图和直观图讲解

第一讲空间几何和结构特征以及三视图和直观图讲解
三视图分为:正视图、侧视图、俯视图 (1)正俯一样长;俯侧一样宽;正侧一样高 注 意 (2)摆放位置 (3)看不到的线划成虚线
各棱长都为2的正三棱锥的三视图如图所示:
2 2
3
3
2 2
2
2 3 体高h 2 3
三、斜二测画法:
平行于x轴长度不变平行于 x轴 平行于y轴长度减半平行于 y轴 平行于z轴长度不变平行于 z轴
是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫
正四面体. (3)平行六面体:指的是底面为平行四边形的四棱柱.
平面内的一个四边形为平行四边形的充要条件有 多个,如两组对边分别平行,类似地,写出空间中的一个
四棱柱为平行六面体的两个充要条件:
充要条件① ;
充要条件②
(写出你认为正确的两个充要条件)
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形 成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能 是正六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:A错误.如图(1)所示,由两个结构相同的三棱锥叠放在
一起构成的几何体,各面都是三角形,但它不是棱锥.
解析:由三视图知,由4块木 块组成.
答案:4
5.如图,矩形O′A′B′C′是水平放置的一个平面图形的直 观图,其中O′A′=6 cm,O′C′=2 cm,则原图形的形 状是 .
解析:将直观图还原得▱OABC,
则∵O′D′=
OD=2O′D′=4 OC=
O ′ C′ = 2
cm,
cm,
C′D′=O′C′=2 cm,∴CD=2 cm, =2 cm, OA=O′A′=6 cm=OC,故原图形为菱形.
答案:菱形

专题8.1 空间几何体的结构特征及表面积体积(练习)【必考点专练】2023届高考数学二轮复习专题

专题8.1 空间几何体的结构特征及表面积体积(练习)【必考点专练】2023届高考数学二轮复习专题

专专8.1空间几何体的结构特征及表面积体积一、单选题1. 给出下列命题中正确的是( )A. 棱柱被平面分成的两部分可以都是棱柱B. 底面是矩形的平行六面体是长方体C. 棱柱的底面一定是平行四边形D. 棱锥的底面一定是三角形2. 已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC 的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π3. 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为D ABC -体积的最大值为( )A. B. C. D.4. 已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒,若SAB 的面积为,则该圆锥的侧面积为(( )A. B. C. D.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.14B.12C.14+ D.12+ 6. 已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC 折成直二面角B AD C --,则过A ,B ,C ,D 四点的球的表面积为( )A. 3πB. 4πC. 5πD. 6π7. 已知三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.328. 沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部,其高度为圆锥高度的2(3细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥沙堆.以下结论正确的是( )A. 沙漏的侧面积是2165cm πB. 沙漏中的细沙体积为31024cm πC. 细沙全部漏入下部后此锥形沙堆的高度约为1.2cmD. 该沙漏的一个沙时大约是1985秒( 3.14)π≈9. 如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==,1cos 3ABC ∠=, P 是1A B 上的一动点,则1AP PC +的最小值为( )A. 5B. 7C. 13+D. 310. 在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记以E ,F ,P , Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 时,V 与x 满足的函数解析式的图象应为( )A.B.C.D.二、多选题11. 将边长为2的正方形沿对角线BD 折成直二面角BD A C --,如图所示,点E ,F 分别为线段BC,AD 的中点,则( )A. EF BC ⊥B. 四面体BCD A -的表面积为4+23C. 四面体BCD A -的外接球的体积为823π D. 过EF 且与BD 平行的平面截四面体BCD A -所得截面的面积为212. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段11B D 上一动点(包括端点),则以下结论正确的有( )A. 三棱锥1P A BD -的体积为定值13B. 过点P 平行于平面1A BD 的平面被正方体1111ABCD A B C D -截得的多边形的面积为32C. 直线1PA 与平面1A BD 所成角的正弦值的范围为D. 当点P 与1B 重合时,三棱锥1P A BD -的外接球的体积为32π13. 如图,在三棱锥P ABC -中,D 、E 、F 分别为棱PC 、AC 、AB 的中点,PA ⊥平面ABC ,90ABC ∠=︒,6,8,AB PA BC ===则( )A. 三棱锥D BEF -的体积为6B. 直线PB 与直线DF 垂直C. 平面DEF 截三棱锥P ABC -所得的截面面积为12D. 点P 与点A 到平面BDE 的距离相等三、填空题14. 正方体1111ABCD A B C D -的棱长为2,则平面11AC D 与平面ABCD 所成角为__________;设P 为1CC 的中点,过点A ,P ,1D 的平面截该正方体所得截面的面积为__________.15. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有__________个面,其棱长为__________.16. 学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,==6AB BC cm ,1=4AA cm ,3D 打印所用的材料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为__________.g17. 如图,在平面四边形PQRS 中,2QPS π∠=,2QSR π∠=, 2.PQ PS SR ===将该平面图形沿线QS 折成一个直二面角P QS R --,三棱锥P QRS -的体积为__________ ,三棱锥P QRS -的外接球的体积为__________ .18. 如图,在一个底面边长为2,侧棱长为10的正四棱锥-P ABCD 中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为__________.四、解答题19. 如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面.ABCD(1)证明:平面AEC ⊥平面BED ;(2)若120ABC ︒∠=,AE EC ⊥,三棱锥E ACD -,求该三棱锥的侧面积.答案和解析1.【答案】A解:平行于棱柱底面的平面可以把棱柱分成两个棱柱,故A 正确; 三棱柱的底面是三角形,故C 错误;底面是矩形的平行六面体的侧面不一定是矩形,故它也不一定是长方体,故B 错误; 四棱锥的底面是四边形,故D 错误. 故选:.A2.【答案】A解:由题意可知图形如图:1O 的面积为4π,可得12O A =,由题知ABC 是等边三角形,根据等边三角形性质, 得13sin 602AO AB ︒=,13322AO AB =, 123AB BC AC OO ∴====,外接球的半径为:22114R AO OO =+=,球O 的表面积:24464.ππ⨯⨯=故选:.A3.【答案】B解:ABC 为等边三角形且面积为2AB =6AB =, 设球心为O ,三角形ABC 的外心为O ',显然D 为O O '的延长线与球的交点时,三棱锥的体积最大.如图:2362332O C '=⨯⨯=,224(23)2OO '=-=,则三棱锥D ABC -高的最大值为:6, 则三棱锥D ABC -体积的最大值为:2136618 3.34⨯⨯⨯= 故选:.B4.【答案】A解:因为2211sin 22SAB Sl ASB l =∠==,所以l =l =,所以r =,则12.2S rl rl πππ=⨯==⋅=侧 故选:.A5.【答案】C解:设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ',则依题意有:因此有222151()4()2()10(224a h h h h ah a a a '''+'-='⇒--=⇒=负值舍去); 故选:.C6.【答案】C解:如图所示:边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕, 将ABC 折成直二面角B AD C --,则AD ,BD ,DC 两两垂直, 将四面体ABCD 扩展为以D 为顶点的长方体,其中 3AD =,1BD CD ==,设过A ,B ,C ,D 四点的球的半径为r , 故:2(2)1135r =++=, 所以:254r =, 所以254454S r πππ==⋅=, 故过A ,B ,C ,D 四点的球的表面积为5.π 故选:.C7.【答案】C解:三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,且体对角线为球O 的直径,球O 的半径为1,设正方体的边长为a 2=,解得a =,∴PA PB PC ===, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离, 设P 到截面ABC 的距离为h ,则正三棱锥P ABC -的体积13ABCV Sh =⨯13PABS PC =⨯31132=⨯⨯,由勾股定理易知ABC 的正三角形,2ABCS==,则3111332h =⨯⨯,23h ∴=, 由正方体的几何形状可知,直线PO 经过三菱锥P ABC -以P 为顶点的高线, 所以球心到平面ABC 的距离为113h -=, ∴球心(即正方体中心)O 到截面ABC 的距离为1.3故选:.C8.【答案】D解:对于A ,沙漏的侧面积为,故A 错误;对于B ,设细沙在上部时,细沙的底面半径为r ,则28433r cm =⨯=, 所以细沙的体积为23118161024()33381V cm ππ=⨯⨯=,故B 错误; 对于C ,设细沙流入下部后的高度为1h ,根据细沙体积不变可知:,解得1642.427h cm =≈,故C 错误; 对于D ,该沙漏的一个沙时为:10241024 3.140.025*********π⨯÷=⨯≈秒,故D 正确. 故选:.D9.【答案】B解:连接1BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为1AP PC +的最小值, 由题意知11AA =,3AB BC ==,1cos 3ABC ∠=,得112A B BC AC ='='=,1160AA B BAC ∠=∠'=︒, 所以在1AAC '中,114212()7.2AC '=+-⨯⨯⨯-= 故选.B10.【答案】C解:(1)当102x时,点P 与点Q 运动的速度相等根据下图得出:面OEF 把几何体PEFQ 分割为相等的几何体,111122OEFS=⨯⨯=,P 到面OEF 的距离为x , 112223263PEFQ P OEF x xV V x -==⨯⨯=⋅=四面体三棱锥,(2)当1322x <<时,P 在BC 上,Q 在AD 上, P 到平面OEF 的距离为12,111122OEFS =⨯⨯=, 1111223226PEFQ P OEF V V -==⨯⨯⨯==四面体三棱锥定值.(3)当322x 时,111122OEFS =⨯⨯=,P 到面OEF 的距离为2x -, 112122(2)3233PEFQ P OEF V V x x -==⨯⨯⨯-=-四面体三棱锥,,故选:.C11.【答案】BCD解:选项A ,如图,取BD 中点为原点,建立空间直角坐标系,坐标如下:(0,-2,0)B ,(2,0,0)C ,22(,-,0)22E ,22(0,,)22F ,(0,0,2)A ,22EF=(,2,)22∴-,BC=(2,2,0),22EF BC=-2+22+0=1022∴⋅⨯⨯⨯≠,EF ∴与BC 不垂直,故A 错误;选项B ,22|AC |+=2+2=2AO CO =,∴四面体的表面积131131=+++=22+22+22+22=23+4222222ABC ABD ACD BCD S S S S S ∆∆∆∆⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯,故B 正确;选项C ,BCD ∆外接圆半径=2r ,锥高=2h ,外接球半径R 满足222()+=R h r R -,解得=2R ,∴四面体外接球体积为3482=33R ππ⋅⋅,故C 正确;选项D ,如图,分别取AB ,CD 中点M ,N ,MF//BD ,EN//BD ,1MF=EN=BD=22,∴四边形ENFM 为平行四边形,EN//BD ,EN ⊂平面ENFM ,BD/⊂平面ENFM ,BD//∴平面ENFM ,由选项A 可知22(,,0)22N ,22(0,-,)22M ,EN=(0,2,0),22EM=(,0,)22-,EN EM=0∴⋅,EN EM ∴⊥,ENFM ∴是矩形,面积=EN ME=21=2S ⨯⨯,故D 正确.12.【答案】BCD解:A 选项:111211213226P A BD A PBD V V --==⨯⨯⨯⨯=,A 不正确; B 选项:此平面为平面11B D C ,故三角形11B D C 的面积为233(2)42⨯=,B 选项正确; C 选项:设点P 到平面1A BD 的距离为h , 由1116P A BD A PBD V V --==知,点P 到平面1A BD 的距离为33h =,当点P 在线段11B D 上运动时,1max ||1(PA P =为端点时),1min 2||2PA =, 设直线1PA 与平面1A BD 所成角为θ,,则,C 正确;D 选项:11190B BD B A D ︒∠=∠=,所以三棱锥1P A BD -的外接球的球心为1B D 的中点, 故外接球半径为32,三棱锥1P A BD -的外接球的体积为32π,D 正确. 故选.BCD13.【答案】ACD解:D ,E 分别为棱PC ,AC 的中点,则//DE PA , 又PA ⊥平面ABC ,则DE ⊥平面ABC ,即DE ⊥平面FBE , 90ABC ︒∠=,6AB PA ==,8BC =,所以13462EFB S ∆=⨯⨯=,132DE PA ==,所以三棱锥D BEF -的体积为16363⨯⨯=,故A 正确;假设PB DF ⊥,PA ⊥平面ABC ,BC ⊂平面ABC ,BC PA ∴⊥,又BC AB ⊥,PA AB A ⋂=,PA ,AB ⊂平面PAB ,BC ∴⊥平面PAB ,E ,F 分别为AC ,AB 的中点,//EF BC ∴,EF ∴⊥平面PAB , AB ⊂平面PAB ,EF AB ∴⊥,DE ⊥平面ABC ,AB ⊂平面ABC ,AB DE ∴⊥,EF DE E ⋂=,EF ,DE ⊂平面DEF ,AB ∴⊥平面DEF ,DF ⊂平面DEF ,AB DF ∴⊥,又假设PB DF ⊥,AB PB B ⋂=,AB ,PB ⊂平面PAB ,DF ∴⊥平面PAB , 显然不成立,不符合题意,故假设不成立,故B 错误;取PB 的中点Q ,连DQ ,FQ ,则//DQ EF ,DQ EF =,四边形DQFE 为平行四边形,DE ⊥平面EFB ,EF ⊂平面EFB ,DE EF ⊥, 所以平行四边形DEFQ 为矩形,3DE =,4EF =,所以截面面积为12,故C 正确;因为//DE PA ,PA ⊂/平面BDE ,DE ⊂平面BDE ,所以//PA 平面.BDE 所以点P 与点A 到平面BDE 的距离相等,故D 正确; 故选.ACD14.【答案】4π 92解:连接1BC ,在正方体1111ABCD A B C D -中,易知11//AB C D 且11AB C D =,则四边形11ABC D 为平行四边形,即B ∈平面11AC D ,因为正方体中,AB BC ⊥,1AB BB ⊥,且1,BC BB ⊂平面11BB C C , 则AB ⊥侧面11BB C C ,所以1AB BC ⊥, 又平面11AC D ⋂平面ABCD AB =,则1C BC ∠即等于平面11AC D 与平面ABCD 所成的角,所以11tan 1CC C BC BC∠==, 即14C BC π∠=;取BC 中点为Q ,连接PQ ,AQ ,因为P 为1CC 的中点,则1//PQ BC , 又11//AD BC ,则1//PQ AD ,即A ,1D ,P ,Q 四点共面, 即梯形1AD PQ 即为过点A ,P ,1D 的平面截该正方体所得截面,因为正方体棱长为2,则11AD BC ===,11PC BQ ==,所以112PQ BC ==,AQ ==1PD == 即梯形1AD PQ 为等腰梯形,分别作1PM AD ⊥于点M ,1PN AD ⊥于点N ,则11122AD NM AD PQ D M AN --====,所以2PM ===, 因此梯形1AD PQ 的面积为故答案为:4π;9.215.【答案】261-解:该半正多面体中间层是一个正八棱柱,有8个侧面, 故该半正多面体共有888226+++=个面;设其棱长为x ,因为每个顶点都在棱长为1的正方体上,则122x x x ++=,解得 1.x =故答案为26 1.-16.【答案】118.8解:该模型为长方体1111ABCD A B C D -,挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,6AB BC cm ==,14AA cm =,∴该模型体积为:1111ABCD A B C D O EFGH V V ---11664(46432)332=⨯⨯-⨯⨯-⨯⨯⨯⨯314412132()cm =-=,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,∴制作该模型所需原料的质量为:1320.9118.8().g ⨯=故答案为118.8.17.【答案】43解:如图,平面PQS ⊥平面QRS ,且平面PQS ⋂平面QRS QS =,QS SR ⊥, SR ∴⊥平面PQS ,PQ ⊂平面PQS ,从而SR PQ ⊥,PQ PS ⊥,且PS SR S ⋂=,PQ ∴⊥平面PRS ,PR ⊂平面PRS ,得PQ PR ⊥,QR ∴是三棱锥P QRS -的外接球的直径,在Rt QSR 中,2223QR QS SR =+=,则球的半径3R =,则外接球的体积为34433R ππ=; 三棱锥P QRS -的体积为1114222.3323PQSSSR ⨯=⨯⨯⨯⨯=故答案为:43;43.π18.【答案】24解:设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO , 则=1OM ,22=-=10-1=3PM PA AM ,=9-1=22PO ,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1=O N R , 因为1sin ==3OM MPO PM ∠,所以111=3NO PO ,则1=3PO R , 11=+=4=22PO PO OO R ,所以2=2R , 设球1O 与球2O 相切于点Q ,则=-2=2PQ PO R R ,设球2O 的半径为r , 同理可得=4PQ r ,所以2==24R r , 故小球2O 的体积342V=r =324ππ, 故答案为2.24π19.【答案】证明:(1)四边形ABCD 为菱形,AC BD ∴⊥,BE ⊥平面ABCD ,AC ⊂平面ABCD ,AC BE ∴⊥,BD ,BE ⊂平面BED ,BD BE B ⋂=, 则AC ⊥平面BED ,AC ⊂平面AEC ,∴平面AEC ⊥平面BED ;解:(2)设AB x =,在菱形ABCD 中,由120ABC ︒∠=, 得2AG GC x ==,2x GB GD ==,BE ⊥平面ABCD ,BG ⊂平面ABCD ,BE BG ∴⊥,则EBG 为直角三角形,1322EG AC AG x ∴===, 则2222BE EG BG x =-=, 三棱锥E ACD -的体积3116632243V AC GD BE x =⨯⋅⋅==, 解得2x =,即2AB =,120ABC ︒∠=,22212cos 44222()122AC AB BC AB BC ABC ∴=+-⋅∠=+-⨯⨯⨯-=,即1223AC ==,在三个直角三角形EBA ,EBD ,EBC 中,斜边AE EC ED ==,AE EC ⊥,EAC ∴为等腰三角形,则22212AE EC AC +==, 即2212AE =,26AE ∴=,则6AE =,∴从而得6AE EC ED ===,EAC ∴的面积1166322S EA EC =⨯⋅=⨯⨯=,在等腰三角形EAD 中,过E 作EF AD ⊥于F , 则6AE =,112122AF AD ==⨯=, 则22(6)15EF =-=,EAD ∴的面积和ECD 的面积均为12552S =⨯⨯=,故该三棱锥的侧面积为32 5.+。

新人教A版高中数学必修2课件:8.1 第一课时 棱柱、棱锥、棱台的结构特征

新人教A版高中数学必修2课件:8.1 第一课时   棱柱、棱锥、棱台的结构特征

分类 由几棱锥截得,如三棱台、四棱台……
[微思考] (1)棱柱的侧面一定是平行四边形吗? 提示:根据棱柱的概念可知,棱柱的侧面一定是平行四边形. (2)棱台的上、下底面互相平行,各侧棱延长线一定相交于一点吗? 提示:根据棱台的定义可知其侧棱延长线一定交于一点.
(二)基本知能小试 1.判断正误:
(1)棱柱的底面互相平行. (2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥. (3)长方体是四棱柱,直四棱柱是长方体. 2.下面多面体中,是棱柱的有
第八章|立体几何初步
8.1 基本立体图形
第一课时 棱柱、棱锥、棱台的结构特征
明确目标
发展素养
1.利用实物模型、计算机软件等 1.通过对棱柱、棱锥、棱台的结构特征的
观察空间图形,认识棱柱、 理解,培养直观想象、数学抽象素养.
棱锥、棱台的结构特征. 2.通过认识棱柱、棱锥、棱台的关系,及
2.能运用这些结构特征描述现实 利用它们的结构特征描述简单物体的结构,
[解] (1)平面展开图如图所示:
(2)沿长方体的一条棱剪开,使 A 和 C1 展在同一平面上, 求线段 AC1 的长即可,有如图所示的三种剪法:
①若将 C1D1 剪开,使面 AB1 与面 A1C1 共面,可求得 AC1 = 42+5+32= 80=4 5.
②若将 AD 剪开,使面 AC 与面 BC1 共面,可求得 AC1= 32+5+42= 90=3 10.
(2)A 中的几何体不是由棱锥截来的,且上、下底面不是相似的图形,所以 A 不 是棱台;B 不是棱台;C 中的几何体是棱锥;D 中的几何体前、后两个面平行,其他 面是平行四边形,且每相邻两个平行四边形的公共边平行,所以 D 是棱柱.判断正 确的是 C、D.

高中数学空间几何体知识点归纳

高中数学空间几何体知识点归纳

高中数学空间几何体知识点归纳高中数学空间几何体知识点归纳在平平淡淡的学习中,说起知识点,应该没有人不熟悉吧?知识点在教育实践中,是指对某一个知识的泛称。

掌握知识点是我们提高成绩的关键!以下是小编精心整理的高中数学空间几何体知识点归纳,欢迎大家分享。

1、空间几何体的结构特征多面体①棱柱的侧棱都互相平行,上下底面是互相平行且全等的多边形②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相互平行且相似的多边形旋转体①圆柱可以由矩形绕其任一边旋转得到②圆锥可以由直角三角形绕其一条直角边所在直线旋转得到③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到④球可以由半圆或圆绕直径所在直线旋转得到[探究] 1有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?提示:不一定。

如图所示,尽管几何体满足了两个平面平行且其余各面都是平行四边形,但不能保证每相邻两个侧面的公共边互相平行。

2、中心投影与平行投影平行投影的投影线是平行的,而中心投影的投影线相交于一点。

在平行投影中投影线垂直于投影面的投影称为正投影。

3、三视图与直观图三视图空间几何体的三视图是用平行投影得到的,它包括正视图、侧视图、俯视图,其画法规则是:长对正,高平齐,宽相等直观图空间几何体的直观图常用斜二测画法规则来画,基本步骤是:①画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),已知图形中平行x轴、y轴的线段在直观图中分别画成平行于x′轴、y′轴的线段。

已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

②画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变[探究] 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考真题
(2019•全国II 卷(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.
如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,

. 18826+=x AB BE x ==BC FE G BC H BGE ∆,21)122
BG GE CH x GH x x x ∴===∴=⨯+==1x ∴==1
【答案】共26个面. .1。

相关文档
最新文档