电阻电路的等效变换习题解答第2章
二章电阻电路等效变换
(1)并联: 所连接的各电流源端为同一电压。
保持端口电流、电 压相同的条件下,图
(a)等效为图(b)。等效 is1
变换式:
i
is2
is
is = is1 - is2
(a)
(b)
(2)串联:只有电流数值、方向完全相同的理想电流 源才可串联。
1
二、实际电源模型:
1、实际电压源模型
(1)伏安关系:
i=1.5A Uab=6(i-1)=3V R=Uab/1=3Ω
13
四、三个电阻的星形、三角形连接及等效变换 1、电阻的星形、三角形连接
(a) 星形连接(T形、Y形)
(b) 三角形连接(形、形)
14
2、从星形连接变换为三角形连接
R1
R3
R2
R31 R12 R23
变换式:R12
R1
R2
R1R2 R3
∴i3=i2/3 KCL: i2+i3=I
∴i3=i/4 ∴u=3i+2i = 5i
- 2i0 +
i0
i1 i2
i3
R= u/I=5Ω
21
二、含受控源简单电路的分析:
基本分析思想:运用等效概念将含受控源电路化简、 变换为只有一个单回路或一个独立节点的最简形式, 然后进行分析计算。 例1:求电压u、电流i。
R23
R2
R3
R2 R3 R1
15
3、从三角形连接变换为星形连接
R1
R3
R2
变换式:R1
R12
R12 R31 R23
R31
R31 R12 R23
R2
R12
R23 R23
R31
电路(第版)第二章习题答案
–
b 图(2)
Uab 4 Rab 4 5 20V
【2-13】图示电路中R1 =R3= R4 ,R2=2 R1, uc=4R1i1 ,利用电源的等效变换求电压 u10 。
【解】 在图(2)中:
ic
uc R2
4i1 R1 2 R1
2i1
R R2 /( / R3 R4) R1
i1 R1 ① R3
+
+
uS
–
u10
–
R2
+
uc
–
R4
0
图(1)
u10 3i1R1
i1 R1 ① 3i1
uS i1R1 3i1R1 4i1R1
所以:
u10
3 4
uS
0.75uS
+
+ ic
uS
–
u10
–
0
R
图(2)
由电压源变换为电流源:
i 1
us
u
R
转换
u /R s
i
Ru
1'
由电流源变换为电压源:
Rab= (R1+ R3) ∥(R2+R4)
3 1.5
2
a
R1
R2
S
R3
b
R5
R4
(c)
桥形连接
惠斯通电桥
R1
I5
R3
R5
若: R1R4 = R2R3 则: I5 = 0
R2
R4
RS +
U_ S
电桥平衡
所以: 可将 R5 开路或短路。
【2-4】 求各电路的等效电阻Rab,其中R1 =R2= 1Ω ,R3= R4 =2Ω, R5=4Ω
第二章 电阻电路的等效变换
等效电阻为
R
=
R1
//
R3
//
R5
=
2
10 Ω +1+1
=
2.5Ω
uab = RiS = 2.5× (−2) = −5V
iS1
R1
iS 2
iS 5
R2 R3
R4
R5
iS 4
iS R
iS1
iS 2
R1
R3
iS 4
iS 5
R5
题解 4 图
5. 利用电源的等效变换,求题 5 图所示电路的电流 i 。
iS R
6Ω I
16Ω 6Ω
5A
3Ω
I
30V
16Ω 6Ω
I
5A
5A
3Ω
6Ω 16Ω
2Ω
I
20V
16Ω
解:采用等效变换,变换过程如图 2(b)、(c)和(d)所示,由此可得电流为 I = 10 A 9
3. 试求图 3(a)所示无源一端口的输入电阻 Ri 。
2I
3Ω
Ri
3Ω
3Ω 3Ω 1Ω
U′
3Ω
3Ω
Ri
3Ω
。这样,原电路可化简为图
3
(b),再进行如图 3(c)和(d)的化简过程后,可得 Ri = 1.5Ω 。
也可采用另一种化简过程,如图 3(e)、(f)和(g)所示。
4. 在题 4 图(a)中,uS1 = 45V ,uS 2 = 20V ,uS 4 = 20V ,uS5 = 50V ; R1 = R3 = 15Ω ,
R1
=
R3
//
R1
//(−
R1 ) μ
=
答案第2章 电阻电路的等效变换(含答案)
第二章 电阻电路的等效变换一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12122R R R R +- [√]解:212122122R R UU R R U R R U U R U I -+=-+=22221-+==R R R R I UR eq.2. 当R11、R2与R3并联时等效电阻为:123123R R R R R R ++ [×].3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。
[×] 解:功率不同的不可以。
.4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。
[×].5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。
[×] 解:对外等效,对内不等效。
可举例说明。
.6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。
[√].7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。
[√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。
[×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5R E I BA =.9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×]解:A I AB 195459424=⨯+-⨯+=4Ω2ΩIAB9AA B.10. 理想电压源不能与任何理想电流源等效。
[√] 二、选择题(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 图示电路 AB间的等效电阻为_C_AB20Ω20Ω20Ω10Ω6Ω12Ω12Ω2Ω解:二个电阻并联等效成一个电阻,另一电阻断开。
第2章电阻电路的等效变换习题及答案
第2章习题与解答2-1试求题2-1图所示各电路血端的等效电阻心,。
解:(a)心,=1 + 4//(2 + 6//3) = 30(b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻IQ 5G_| ------ [ ----- 1.5Q 4G(a)(b)题2—2图解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G(b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ・5 = 10C2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血oIQ 4Q3G(b)(a)题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。
开关闭合时^,=4/74 = 20(b)开关打开时 R ah =(6 + 12)/7(6+12) = 90开关闭合时心=6//12 + 6//12 = 8。
2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。
解:(a)从左往右流过1G 电阻的电流为I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA12 + 6 所以1 =【3叫2 = 1 A⑹从下往上流过6V 电压源的电流为"击莎1Q + O1V3Q 6Q(a)12Q6Q题2—4图从上往下流过两条并联支路的电流分别为2A所以U = 2x2-lx2=2V2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。
2Q题2-5图解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥所以心,=(*+*)//(1 + 1)= *°(b)将图中的两个Y形变成△形,如图所示2.5Q5Q 白804Q 4QT50T T2Q即得所以陰=L269G2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。
电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习
第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。
若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻84R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA u i s 10100212===V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。
因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
复件 第二章电阻电路的等效习题
+
6
i1 4 6 3 i1
Rin
4
_
3i1
3i1/2 2
2 2
+ 或: _ R=2/3() 则电阻值为: Rin=2/3+2=8/3()
i1
i1 4 4
i1
+
0.5i1
4
_1
2i
R=-8()
则电阻值为:
Rin=4//4//(-8)=8/3()
例:求如图所示电路的输入电阻Rin 。
CFH
F D
C B
A
G
A
解: □ACGE, □ADGF都是传递对称面。
故B和D等电位,B和E等电位(B,D,E等电位)。 同理:(C,F,H等电位)。 电阻为: RAG=1/3+1/6+1/3=5/6()
第二章 电阻电路的等效变换
• 重点:
• • • • (1)电路等效的概念; (2)电阻的串、并联; (3) Y— 变换; (4)电压源和电流源的等效变换;
3.电阻的串并联 计算举例: 例:
2 4
弄清楚串、并联的概念。
解:
3
R 6 40 40 40
R = 4∥(2+3∥6) = 2
1 1 1 1 1
解:
3 7
1
+ 10V _
1
1
1
+ U _0
+ 10V _
1
1
1
+ U _0
U0=5V
四、传递对称电路
如图(a),整个电路对于OO‘(或AB)对称,则这个电路对端口 AB而言,就是传递对称电路。
O A c N e f d N
第二章电阻电路的等效变换习题
R12
R23
R1 R2
R3
解:等效电路如图(b)
R12 R23 R31 R
R12 R31 R 9 R1 3 R12 R23 R31 3 3
同理
R2 R3 3
第五版题2-5题解(△-Y变换)
R13
R1
R3
R41
R4
R34
解:等效电路如图(b)
(a)
(b)
同理
R1 R3 R4 R R1 R3 R13 R1 R3 3 R 27 R4
R34 R41 27
第五版题2-6
第五版题2-7图;第四版2-5
2-5 题 解
uS 1 uS 2 24 6 iS 3 mA R1 R2 12k 6k
等效变换条件
电压源模型
实际电源的两种电路模型
电流源模型 两种模型的相互等效变换
外加电压源法
单口电路的输入电阻及求法
外加电流源法 开路短路法
控制量为1法
用等效变换法分析计算电路
第四、五版题2-2图题解
(a) 解(1):等效电路如图(a)所示
R3 i2 iS R3 R2
(2)因u2不变,R1的增大, 仅对uR1、uiS产生影响。 使uR1增大,uiS减小。
2-14 求输入电阻Rab
第五版题2-15;第四版2-13
u1
u1
R2
求图(a)的输入电阻Ri (题解)
解:外加电压u,如图(b),有
Ri
R3
R1
u R1i1 u1 R1i1 u
u i1 i R3 u u R1 ( i ) u R3
(a)
电路-第2章习题-电阻电路的等效变换
2-1、求电路的入端电阻R AB 。
R= 2//2+4//6AB答案 3.4Ω2-2、求各电路的入端电阻R AB。
(6//6+9)//102-3、求各电路的入端电阻R AB。
→解:(a)(3//6+1)//6=2Ω(b) 等效电路如图所示:即2-4、试求下图所示电路中的电流I。
答案-1.1A2-5、求图示电路中的电流i。
答案:- 0.1A2-6、电路如图所示,求B点的电位V B。
解:该电路图可以改变成如下图所示的形式2-7、电路如图所示,求电流I和电压U AB。
解:原电路可以等效变换为如下电路152-8、电路如图所示,求AB端的等效电阻R AB。
解:在AB端外加电源,使u、i对二端电路来说是关联参考方向。
由图可得:得到2-9、求图 (a) 和 (b) 所示两电路的输入电阻。
2-10、用电源等效变换法求图示电路中负载R L 上的电压U 。
12A5ΩR L+ -14V +-4Ω14-2Ω 2Ω2Ω2-11、化简为一个等效的电压源支路。
(a) (b) (c) (d)其中111R U I S S =,222R U I S S =,21S S S I I I +=,)(2121R R R R R S +=,S S S I R U =。
恒流源与恒压源的串联和并联两种情况(1) (2)2-12、化简图示电路。
(a) (b) (c) (d)2-13、在图(a )所示电路中,已知V 12=S U ,Ω=31R ,A 5=S I ,Ω=62R ,试求2R 支路中的电流2I 。
(a) (b) (c)解: 3)5312(633)(12112=++=++=S S I R U R R R I A10;2-14、在图示电路中,N为一个实际的直流电源。
当开关S断开时,电压表读数为V1。
试求该直流电源N的电压源模型与电流源模型。
当开关S闭合时,电流表读数为A解:等效电路如图:,2-15、电路如图所示。
已知Ω=61R ,Ω=1.02R ,98.0=α,Ω=53R ,V U 9.4=。
第2章电阻电路的等效变换习题及参考答案
精心整理第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
(a) (b)题2-1图解:(a )14//(26//3)3ab R =++=Ω(b 2-2解:(a (b 2-3(a)(b)解:(a (b 2-4(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以312I I -I =1A =(b )从下往上流过6V 电压源的电流为66I 4A 1.5===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A所以U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
(a) (b)题2-5图解:(a(b 即得所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图解:将图中的Y 形变成△形,如图所示所以(32.5//526//2)//2655510ab R =++=+=Ω回到原图已知128I I +=348I I +=1310840I I +=245240I I +=联立解得1 2.4I A =2 5.6I A =32I A =46I A =所以121054U I I V =-+=2-8试求题2-8图所示电路的输入电阻in R 。
(a)(b)题2-8图解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R Iμ==+- (b )如图所示,在电路端口加电压源U ,求I12R R U 2-(b 2-62-题2-11图解:先化简电路,如图所示43Ω所以有41(2933i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。
题2-12图解:先求电路右边电阻块的等效电阻ab R ,如图所示将中间的Y 形化成△形。
第二章部分习题解答
第二章 习题2.1.13 在图中R 1= R 2 = R 3 = R 4 = 300Ω,R 5 = 600Ω, 试求开关 S 断开和闭合时a 、b 之间的等效电阻。
【解】开关 S 断开时:Ω=++=++=200600//)300300//()300300(//)//()(54231R R R R R R开关 S 闭合时:Ω=+=+=+=200600//)150150(600//]300//300300//300[//)]//()//[(54321R R R R R R2.3.5 在图示的电路中,求各理想电流源的端电压、功率及各电阻上消耗的功率。
【解】由KCL ,电阻R 1上电流: A I I I 11212=-=-=左边电流源:端电压(其与R1并联,电压相等): V IR U 2020111=⨯== 功率 W U I P S 20201111=⨯==右边电流源:由KVL 可得端电压 V R I IR U 401022012212=⨯+⨯=+= 功率 W U I P S 40202222=⨯==电阻上消耗的功率:W R I P R 2020121211=⨯==,W R I P R 4010222222=⨯==2.3.9 试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流。
【解】对电路作等效变换,有:1Ω2A1Ω3Ω6Ω6V 12V 2ΩIR 1R 4R 5R 2R 3S3Ω6Ω2Ω I2A2V2A 2Ω-+ 1A10Ω20ΩR 1 R 2I 1I 2 2AU 1U 2I3Ω6Ω 2Ω I2A 2V 1Ω- + 6V + - 1Ω计算电流:A I 122228=++-=2.4.2 试用支路电流法求图示电路中的各支路电流,并求三个电源的输出功率和负载电阻R L 取用的功率。
0.8Ω和0.4Ω分别为两个电压源的内阻。
【解】对节点A ,由KCL 有:I I I =++1021 对回路,由KVL : I I 48.01201+=I I 44.01162+=联立求解得:I 1=9.38A ,I 2= 8.75A ,I =28.13A , 三个电源的输出功率:W I I E P E 10558.021111=⨯-⨯=, W I I E P E 9844.022222=⨯-⨯=,W I IR I U P S L S AB IS 11251013.284=⨯⨯=⨯=⨯=负载电阻R L 取用的功率:W R I P L IS 316413.281613.28422=⨯=⨯== P L =3164W 。
第二章 电阻电路的等效变换
一.串联电路
1.串联电路:各电阻依次连接且流过同 一电流的一段电路称为电阻串联电路.如 图2-1所示
返回本章开头
2.串联电路的特点
⑴电流关系
I I1 I 2 I n
⑵电压关系
U U1 U 2 U n
R R R R Rk
K k 1 U I G
当两个电阻并联时, ②此时分流公式
R2 I I 1 R1 R2 R1 I 2 I R1 R2
R1 R2 ①总电阻 R R1 R2
三.串并联电路
1.电阻串并联电路:既有串联又有并联的电阻 电路称为电阻串并联电路。 2.举例说明电阻串并联电路的简化过程。 例2-1 如图所示电路,求ab两端口的等效电 阻。
n n k 1 k 1
2
P Pk Rk I Rk I
2
2
⑸各电阻分压关系
Rk U k Rk I U R
k 1.2. n
二.并联电路
1.并联电路:各电阻元件接在同一对节 点之间,且各电阻元件两端电压相同, 称为电阻并联电路。 如图2-2所示
2.并联电路的特点 ⑴电压关系
由图(b)可求得
2 28 8 Rab 3.2 2 2 8 8
28 Rab 2 3.2 28
2-2 2-3
由图(c)可求得
作业: 习题二
返回本章开头
解从端口看,先将能直观看出串联或 并联的电阻进行等效,剩余的部分就 会显示出明朗的串并联关系,按这样 思路做下去,可将电路进行简化。 如例2-1 的a图简化成b图
则得
Rcd Rab
4 6 2.4 46 4 3.6 1.84 4 3.6
第2章电阻电路的等效变换习题及答案解析
第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。
6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
电阻电路的等效变换习题解答第2章
第二章(电阻电路的等效变换)习题解答一、选择题1.在图2—1所示电路中,电压源发出的功率为 B 。
A .4W ;B .3-W ;C .3W ;D .4-W2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。
A .增加;B .减小;C .不变;D .不能确定3.在图2—3所示电路中,1I = D 。
A .5.0A ;B .1-A ;C .5.1A ;D .2A4.对于图2—4所示电路,就外特性而言,则 D 。
A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。
A .S S I U 、都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定二、填空题1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路中,6=S U V ,Ω=2R 。
2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中,1=S I A ,Ω=2R 。
3.在图2—8所示电路中,输入电阻Ω=2ab R 。
4.在图2—9所示电路中,受控源发出的功率是30-W 。
5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。
三、计算题1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是吸收还是发出。
解:21=U V , 3132-=-⨯=)(U V 621122=⨯+=)(V P W (发出),11221-=⨯+=)(U P A W (吸收1-W ,发出1W) 2.计算图2—12所示电路中的电流I 。
解:将图2—12所示电路中Ω1电阻和Ω2电阻的串联用Ω3的电阻等效,将4A 电流源和Ω3电阻的并联用12V 电压源和Ω3电阻的串联等效,可得图2—12所示电路的等效电路如图2—12(a )。
第二章 电阻电路的等效变换
4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )
第二章电阻电路的等效变换作业纸答案2009
2-3求图示电路中a、b两端的等效电阻。
解:(a)
Rab=(1/3+1/6)//2+1=1.4Ω
(b)
Rab=6//((8//8)+(3//6+1)//4)=120/41Ω
2-6将图示各电路分别等效变换为最简形式。
解:(a)
(b)
(c)(d)ຫໍສະໝຸດ (e)(f)2-9如图所示电路,求电流I。
解:根据电源等效原理,可将原电路等效成:
则:I=6*(3/(3+6))=2A
2-11求图示电路的ab端口的特性方程,并计算等效电阻。
解:
可将原电路等效成以下电路形式:
应用外加电压源的方法如图:
在节点A处应用KCL有:
(4/3)I+(4/3)U=U
Rab=U/I=-4Ω
2-12求图示电路的ab端口等效电阻。
解:采用外加电源的方法。在A节点应用KCL得:
I=I1+I2(1)
在环路1应用KVL有:
6I1=5I1+4I2(2)
所以,I1=4I2(3)
将(3)代入到(1)得:I=5I2
在环路2应用KVL有:
U=6I1+2I=34I2
Rab=U/I=34/5Ω=6.8Ω
2-13利用等效变换方法计算如图所示电路的电流I。
解:原电路可等效变换成:
因电流I为被求量,所以,3U的受控电压源与2Ω电阻的等效化简就不要进行下去了。在A点应用KCL有:
U/2+U/2=2.5+3U
所以:U=-1.25V
I=U/2=-0.625A
2-14,求图示电路中10Ω电阻的电流i。
解:根据电源等效方法,可将原电路等效成:
电路理论基础课后习题解析 第二章
US
R I2
R I3
R
I1
3U S R
I2
I3
2U S R
I1 _
+ US
I1: I2 : I3=3:2:2
3.求电流I=?
I 10A
2 6 2
10A
4
2 6
图(a)
Rab= 3
I
10
3 34
30 2
4.286
a 6
I
6
4 6
6
b 6
Rab
a
10A I 4 3
U 1
3I1
U 2I
Rab=2
4.求输入电阻Rab=?
2I
1 3 6
a
I
Rab
3
2I
b
8I
4
图(b)
U (1 3 2)I 4I 8I 10I
Rab=10
a I 1 +
U
2I
_
b
8I
I 3 2I 2 4 I
b
3.求电流I=?2A
1
3 6 1
6V 12V
I
4A 2
2A 1
I
2 1 2
图(b) 2A
1
1
3
I
8V
2V 1 I
6 1
2A
2A
2
2
2
I= 1A
4.求输入电阻Rab=? a I
U 1
Uo
I1
3I1
2U o 4
U 3U0
b
图(a)
2U0 4I1
I
天津理工电路习题及答案 第二章电阻电路的等效变换
求图2.8所示含T形的电路中电压源中的电流,其中E=13V,R=2kΩ。
图2.8
解法1:利用电阻电路的Δ-Y变换,把图2.8中虚线框内的Δ联接的三个1kΩ电阻变换成Y联接,如图2.8(a)所示,
图2.8(a)
求得等效电阻为:
所以:
解法2:本题也可以把图2.8(b)中虚线框内Y联接的三个1kΩ电阻变换成Δ联接,如图2.8(c)所示。
I2=90V/18Ω=5A;U3=610=60V;
I3=15-5=10A;U4=90V-60V=30V;
I4=30V/4Ω=7.5A;I5=10-7.5=2.5A。
【例题2】:电阻元件的组合,即电阻元件的串、并联;分流和分压的计算。
求图2.6所示电路的I1,I4,U4
图2.6
解:①用分流方法做:
I4=-0.5I3= -0.25I2= -0.125I1= -3/2R;
(4)三角形与星形连接的等效变换
2、典型例题分析
【例题1】:电阻元件的组合,即电阻元件的串、并联;分流和分压的计算。
电路如图2.5所示,计算各支路的电压和电流。
图2.5
解:这是一个电阻串、并联电路,首先求出等效电阻Reg=11Ω,
则各支路电流和电压为:
I1=165V/11Ω=15A;U2=615=90V;
第二章电阻电路的等效变换
1、重点和难点
(1)等效与近似概念的认识
①等效:同一物体在不同的场合(情况)下,其作用效果相同,称之为等效。在电路分析中有两种形式的等效:其一:站在电源立场,等效负载(电阻)。即求等效电阻。如图2.1所示。其二:站在负载(电阻)立场,等效电源。即求等效电源。如图2.2所示。图2.3所示的电路不是等效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章(电阻电路的等效变换)习题解答
一、选择题
1.在图2—1所示电路中,电压源发出的功率为 B 。
A .4W ;
B .3-W ;
C .3W ;
D .4-W
2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。
A .增加;
B .减小;
C .不变;
D .不能确定
3.在图2—3所示电路中,1I = D 。
A .5.0A ;
B .1-A ;
C .5.1A ;
D .2A
4.对于图2—4所示电路,就外特性而言,则 D 。
A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效
5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。
A .S S I U 、
都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定
二、填空题
1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路
中,6=S U V ,Ω=2R 。
2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中,1=S I A ,Ω=2R 。
3.在图2—8所示电路中,输入电阻Ω=2ab R 。
4.在图2—9所示电路中,受控源发出的功率是30-W 。
5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。
三、计算题
1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是吸收还是发出。
解:21=U V , 3132-=-⨯=)(U V 621122=⨯+=)(V P W (发出),
11221-=⨯+=)(U P A W (吸收1-W ,发出1W) 2.计算图2—12所示电路中的电流I 。
解:将图2—12所示电路中Ω1电阻和Ω2电阻的串联用Ω3的电阻等效,将4A 电流源和Ω3电阻的并联用12V 电压源和Ω3电阻的串联等效,可得图2—12所示电路的等效电路如图2—12(a )。
再将图2—12(a )所示电路做如下的等效变换:
在图2—12(f )所示的电路中,虚线框内的部分为一电桥。
此电桥各条臂上的电阻相等,电桥处于平衡状态,Ω5电阻两端的电压为0,其中的电流也为0,此时与Ω5电阻相连的两个节点可视为开路,因此图2—12(f )所示的电路可等效成图2—12(g )所示的电路。
根据图2—12(g ),有 50
21
15
1515155210..=⨯+⨯+
=
I A
3.计算图2—13所示电路的等效电阻R 。
解:将图2—13中Y 连接的三个Ω2的电阻等效变换为图2—13(a )中△连接的三个Ω6的电阻,则 Ω==+⨯++⨯=1.27//6//6)6
126
126666//(6//6R
4.在图2—14所示电路中,已知100V 电压源发出的功率为100W ,试求电路图中的电流I 及电压U 。
解: 1100
100===
U P I A , 2060120100=-⨯-=U V 5.求图2—15所示电路中的电流I 。
解:336444241=++=
////I A , 512
3
2.==I A
13
63
33=+⨯=I A , 5032.=-=I I I A
6.求图2—16所示电路中的电流I 和电压U 。
解: 21023201031-=⨯+-=)(I mA , 1102020
3
2
=⨯=I mA 321-=-=I I I mA , 162010213=+⨯⨯=I U V 7.求图2—17所示电路中电流I 。
解:对图2—17所示电路左边的网孔列基尔霍夫电压方程,得 I I I 4321=+ 由KCL 得 51=+I I
联立以上两式解得 3=I A
8.试求图2—18所示10A 电流源的端电压U 及其发出的功率。
解:对右边的网孔应用KVL ,得 18101102-=⨯--=U V 而 1801010=⨯-=U P A W
9.求图2—19中所示的电压2U 。
解:由KVL 得 )(122312I U -⨯+=,此外 12
2
1==I A ,因此 32=U V 10.在图2—20所示电路中,求受控源发出的功率。
解:由KVL 得 333
69
1=⨯+=U V ,而30521=⨯=U U V , 18030211
2=⨯=U P U W。