材料力学第七章弯曲剪应力3,4,5
材料力学第20讲 Chapter7-4第七章 强度理论
低碳钢圆截面试件,实验表明: 在单向拉伸时会发生显著的屈服现象。
若在圆试件中部切出一个环形槽(如 图a所示)。 试 验表明:直到拉断都看不到显著的 屈服现象和塑性变形,而是在最弱部 位发生脆断。其断口平齐,与铸铁拉 伸断口相似(b)。 这是因为在最弱截面处,材料处于三向拉伸应力状态,斜截面 上的剪应力较小,不可能出现屈服现象,只可能发生脆断。
只要微元内的最大拉应力 1 达到了单向拉伸
的强度极限 b ,就发生断裂破坏。
脆性断裂的判据(或极限条件) 1 u
强度条件 1
19
《评价》
二向时:当 1 2 0 该理论与实验基本一致
三向时:当 1230同上
当主应力中有压应力时,只要 3 1 同上
当主应力中有压应力时,只要 3 1 误差较大
理论与实验基本符合 比第三理论更接近实际
29
二、相当应力(强度准则的统一形式)
r [ ] r —相当应力(equivalent stress)
r1 1
r21(23)
r3 13
r 4 1 2 [1 22 2 3 2 3 1 2 ]
[]1n{b,0.2,s}
30
强度理论应用于许用拉应力和许用切应力间的换算
m
在平均应力作用下,单元体的形
m
状不变, 仅发生是体积改变
m
7
按迭加原理(应力)
1
m
1-m
m
2
3
m
2-m 3-m
交互项
体积改变能密度
v v
1 2
3
v i
v i
i 1
3 2
mm
形状改变能密度 (畸变比能)
v d
1 2
材料力学课件第七章变曲应力(机械专业)
A ydA M
yC ydA A ቤተ መጻሕፍቲ ባይዱ A
(c)
(a)(b)
A ydA 0
E
中性轴通过横截面形心
(a)(c)
A
y 2dA M
M EI z 1
Iz
A
y2dA-惯性矩
(d)
(d)(a)
( y )
My Iz
max
M Wz
max
Mymax Iz
静力学方面:
( y)
( y)d d y d
y
(a)
物理方面:
( y) E ( y)
dA0 (b) Fx 0, A M z 0, A ydA M (c)
第七章
弯曲应力
正应力分布
第七章
E
y
弯曲应力
(b)
(a)
dA 0 A
A
F
z
1)画弯矩图 跨中截面 C 为危险截面 危险截面上的最大弯矩
M max 1 Fl 280 kN m 4
M /kN m
C 8m
a
B
y
F
A
C
B
8m
280
x
第七章
2)计算正应力
弯曲应力
查型钢表,No. 50a 工字钢的惯性矩 Iz = 46500 cm4 ,抗弯截面 系数 Wz = 1860 cm3 危险截面 C 上的最大正应力
第七章
7.1 概 述
弯曲应力
如图所示简支梁横截面为矩形,两个外力F垂直于轴线,对称地作 用于梁的纵向对称面内。从图中可以看出,在AC和DB两段内,梁各横 截面上既有弯矩又有剪力,这种弯曲称为横力弯曲或剪切弯曲。在CD 段内梁横截面上剪力为零,而弯矩为常数,这种弯曲称为纯弯曲。
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解
得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学第七章 应力状态
主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
弯曲应力(剪应力6月9日)(1)
[1 12
16
283
16
28
(14
13)2 ]
[1 12
8 103
18 10
(19
13)2 ]
26200cm4
Wz
Iz ym a x
26200 (28 13)
1748cm3
(3)正应力校核
max
M Wz
1.2 105 1748 106
1.0 1.04 1.12 1.57 2.30
(四)切应力强度条件
max
(
FQ Sz,max
I z
)max
[
]
对于等宽度截面, m ax发生在中性轴上;对于宽度变化的截面,
m ax不一定发生在中性轴上。
在进行梁的强度计算时,需注意以下问题: (1)对于细长梁的弯曲变形,正应力的强度条件是主要的,剪应
S
* z
:y以外面积对中性轴的静矩
I z :整个截面对中性轴的惯性矩
b:y处的宽度
c
yc
y
z h
b
对于矩形:
S* z
A*
yc
b(h 2
y) [ y
h 2
2
y
]
b (h2 24
y2)
弯曲应力/弯曲时的剪应力
而
Iz
1 bh3 12
6FQ bh3
( h2 4
y2)
力的强度条件是次要的。但对于较粗短的梁,当集中力较大 时,截面上的剪力较大而弯矩较小,或是薄壁截面梁时,也 需要较核剪应力强度。
材料力学梁的弯曲应力
52 y
解:(1)求截面形心
z1
8 0 2 0 1 0 12 20 0 80
z
yc
5m 2 m 8 0 2 0 12 200
(2)求截面对中性轴z的惯性矩
Iz
80 20 3 12
80 20 42 2
20 120 3 20 120 28 2 12
7.64 10 6 m4
28
2.5kN.m 4kN.m
与实验结果相符。
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
(b)
对一定材料, E=C; 对一定截面,
1
C.
sy
——横截面上某点处的应力与此点距中性轴的距离y成比例。
当 y0时,s0;
应力为零的点的连线。
s s yyma 时 x, ma.x
M
与实验结果相符。
10
(3)由静力平衡方程确定中性轴的位置及应力计算公式
Iz
即使最大拉、压应力同时达到许用应力值。 y
c
y2
z
y1
压边
39
(二)、合理安排载荷和支承的位置,以降低
M
值。
max
1、载荷尽量靠近支座:
F
F
A
A
B
B
0.8L
0.5L
L
L
0.25FL (+)
M 图
0.16FL (+)
M 图
40
F
F
A
BA
B
0.9L
L
L
0.09FL
(+)
M 图
M 图
41
2、将集中力分解为分力或均布力。
第七章-弯曲应力(1) (2)
M
z
Q
横截面上内力 横截面上切应力
横截面上正应力
Q dA
A
M y dA
A
切应力和正应力的分布函数不知道,2个方程确定不了
切应力无穷个未知数、正应力无穷个未知数,实质是 超静定问题 解决之前,先简化受力状态 —— 理想模型方法
8
横力弯曲与纯弯曲 横力弯曲 ——
剪力Q不为零 ( Bending by transverse force ) 例如AC, DB段
E
A
(-) B
D
(+) 10kN*m
y2
C
拉应力
a
e
压应力
y1
压应力 B截面
b
d
拉应力 D截面
危险点:
a, b, d
33
(3)计算危险点应力 拉应力
a
e
压应力
校核强度
M B y2 a Iz 30 MPa (拉) M B y1 b Iz
70 MPa (压)
压应力 B截面
b
d
强度问题 弯曲问题的整个分析过程: 弯曲内力 弯曲应力 弯曲变形 刚度问题
5
本章主要内容
7.1 弯曲正应力 7.2 弯曲正应力强度条件 7.3 弯曲切应力及强度条件 7.4 弯曲中心 7.5 提高弯曲强度的一些措施
这一堂课先效仿前人,探求出来弯曲正应力
公式,然后解决弯曲正应力强度问题
6
知道公式会用,不知推导,行不行?不行。
2
解:1 画 M 图求有关弯矩
qLx qx M1 ( ) 2 2
2
2
x 1
60kNm
M max qL / 8 67.5kNm
材料力学第七章__应力和应变分析__强度理论(2)
解题思路:寻找已知量ε-45o和未知量m间的联
系。
1.本题已知正应变ε-45o,通过广义胡克定律可将 ε 正应变 -45o和正应力σ-45o (σ45o)联系起来。
2.再通过应力状态分析,找到正应力σ-45o (σ45o)和横截面上的剪应力τ的关系。 3.而τ是由外力偶矩引起的,由此即可求出外力
偶矩m的大小。
例题:图示直径为d的圆截面轴,承受力偶 矩m的作用。设由实验测得轴表面上与轴线
成-45o方向正应变ε-45o,试求力偶矩m之值。
材料的弹性常数E、μ均为已知。
此题有实际意义,传动轴上所受的外力偶矩m的 大小,有时采用实验方法。测得轴上某个方向的 正应变,再由应变值计算出外力偶矩大小。
2021/7/13
作用下,z方向的变形是自由的,所以
2021/7/13
εz 0σ,z 0
铝块在左、右两个面上,由于是刚体,所以 在P力作用下,x方向受到约束力不能变形,故
εx0σ,x0.
由广义胡克定律及上述可得
εxE 1[σx(σyσz)]0
所以 σx(σyσz)σy18MP
因此2021/7σ /13 10σ ,2 18M σ3 P 6a 0,M
y两方向上分别贴上应变片,然后使其承受外 力矩m的作用,发生扭转变形,如图所示。 已知圆筒材料的弹性模量为E=200GPa, v=0.3。若该圆筒的变形在弹性范围内,且k 点横截面上的剪应力为t =80MPa,试求圆筒 k点处的线应变 x、 y及变形后的筒壁厚度。
2021/7/13
解: (1)求 x、 y
dl x 2021/7/13
y dl
xy dl
xc2o y s s2i n xs y icno
x 2yx 2yc2 o s2 xy si2 n
材料力学第七章知识点总结
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
材料力学习题册答案-第7章-应力状态知识讲解
材料力学习题册答案-第7章-应力状态第七章应力状态强度理论一、判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。
(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。
(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。
(×) 原因:正应力一般不为零。
4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴上的一个点。
(×)原因:单向应力状态的应力圆不为一个点,而是一个圆。
三向等拉或等压倒是为一个点。
5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。
(×)原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。
(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。
(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。
(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。
(×)原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。
(×)原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。
A 最大面积B 最小面积C 最大应力D 最大内力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。
A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。
材料力学——07 梁的弯曲应力与强度计算
(1)矩形截面中性轴附近的材
料未充分利用,工字形截
z
面更合理。
(2)为降低重量,可在中性轴附近开孔。
2、根据截面模量选择:
为了比较各种截面的合理性,以 来W衡z 量。
截面越合理。
A
越W大z, A
截面形状 矩形
Wz
A
0.167h
圆形 槽钢
工字钢
0.125d (0.27~0.31)h (0.27~0.31)h (d=h)
在上述前提下,可由平衡直接确定横截面上的 切应力,而无须应用“平衡,变形协调和物性 关系”。
(一)矩形截面
F mn
A m dx n L
分析方法(截面法):ຫໍສະໝຸດ 1、沿 mm,nn 截面截开,
取微段dx。
B
h
m
n
b
FQ
M
M+dM
FQ
(+)
m
n
(-)
FQ 图
(+)
M 图
1 m
n 2
kl
m
n
弯曲应力/弯曲时的剪应力
纤维伸长,必有一层纵向纤维既不伸长也不缩短,保持原来的长 度,这一纵向纤维层称为中性层。
中性层与横截面的交线称为中性轴 中性轴
中性层
(一)变形几何关系:
建立坐标系
m a b n dx
m
a by n
变形前:l bb dx d
变形后:l1 bb
( y)d
伸长量:ll1l (y)d dx
线应变: l ( y)d dx
第七章 梁的弯曲应力与强度计算
7.1梁横截面上的正应力
aP
Pa
A
B
FS
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
材料力学 第七章弯曲正应力(1,2)解析
M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
材料力学07弯曲应力ppt课件
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述
+
-F
Q
Fa
-
M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化; (2) 由于梁的内、外壁上无切
应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
(3) 根据与y轴的对称关系 可知:
(a) 横截面上与y轴相交的 各点处切应力为零;
(b) y轴两侧各点处的切应 力其大小及指向均与y轴对 称。
薄壁环形截面梁横截面上的最大切应力tmax
例题 4-13
解: 1. 求tmax
梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示,
Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
例题 4-13
tmax
FS
,max
S
* z ,max
Izd
FS,max
75 103 N 940 106 m3 65586 108 m4 12.5 103 m
8.6106 Pa 8.6 MPa
例题 4-13
腹板上切应力沿高度的变化规律如图所示。
tmax
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面
内弯曲时,其横截面上切应力 的特征如图a所示:
(1) 由于d <<r0,故认为切应
规律变化的。
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
FS
S
* z
Izb
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS
h2 (
y2)
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
在中性轴z上,半个环形截面的面积A*=pr0,其
形心离中性轴的距离(图b)为2r0 ,故求tmax时有
S
* z
π
r0
2r0 π
π
2r02
整个环形截面对于中性 轴z的惯性矩Iz可利用整个截 面对于圆心O的极惯性矩得 到,如下:
Ip
2
A
d
A
2π
r0
r02
2π
r03
及
Ip
2d A
A
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
例题 4-13
2. 求ta ta
其中:
FS,maxS来自* zaIzd
S
* za
166
mm
21
mm
560 mm 2
21
mm 2
940 103 mm3
于是有:
ta
面上必有由切d F应S 力 Ft1N*′2构成FN的*1 合力。
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出
t1
FS
S
* z
I z
FS
I z
u
h 2
2
FS uh
2Iz
从而由切应力互等定理可
知,翼缘横截面上距自由边为u
处有平行于翼缘横截面边长的
切应力t1,而且它是随u按线性
§5.7 梁的切应力
2.公式推导 (1) 取微段dx
mn
M
tt
FS
FS
b
h
z
y y
M+dM
FS
s1 m dx n
s2
M
F x
§7-3 弯曲剪应力和强度校核
一.矩形截面截面梁的剪应力
b
s My
Iz
mn
h
Oz y
zM
y
tt
M+dM
FS
FS
y
s1 m dx n
s2
假设
在hb的情况下
1.t的方向都与 FS 平行 2.t 沿宽度均布。
A
y2 z2 d A
y2 d A
A
z2 d A
A
Iz Iy 2Iz
得出:
Iz
1 2
Ip
π
r03
从而有
t max
FS
S
* z
Iz 2
FS 2r02 π r03 2
FS 2 FS
r0 π
A
式中, A=2pr0 为整个环形截面的面积。
(4) 圆截面梁 圆截面梁在竖直平面内弯曲
时,其横截面上切应力的特征
t
t
y
FNⅠ
FNII
z
y
A*
y
y A*
dFS
FNⅠ
y A*
FNII
FNI A* sⅠdA
A*
M y1 dA Iz
M Iz
A*
y1 dA
M Iz
Sz*
FNⅡ A* (s Ⅱ)dA
A*
(M
dM ) y1 dA Iz
M
dM Iz
A*
y1 dA
M
dM Iz
S* z
FN II FN I t bdx
如图a所示:认为离中性轴z为
任意距离y的水平直线kk'上各
点处的切应力均汇交于k点和
k'点处切线的交点O ',且这些
切应力沿y方向的分量ty相等。
因此可先利用公式
ty
FS Sz* I z bkk
求出kk'上各点的切应
力竖向分量ty ,然后求出各点处各自的切应力。
圆截面梁横截面上的
最大切应力tmax在中性轴z
t min
FS Izd
b
2
h
在中性轴处:
t max
FS
S
* z ,max
Izd
FS Izd
b
2
h
d 2
h 2
2
对于轧制的工字钢,上式中的 Iz就是型钢表 中给出的比值 ,此I值x 已把工字钢截S面z*,ma的x 翼缘厚 度变化和圆角等考虑S在x 内。
(3) 翼缘上的切应力
翼缘横截面上平行于 剪力FS的切应力在其上、 下边缘处为零(因为翼缘的 上、下表面无切应力),可 见翼缘横截面上其它各处 平行于FS的切应力不可能 大,故不予考虑。分析表 明,工字形截面梁的腹板 承担了整个横截面上剪力 FS的90%以上。
处,其计算公式为
t max
FS
S
* z
Izd
FS
1 2
Iz
bh3 12
b
F
S
h y t
y
z
t max
t
t max
3 2
FS bh
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
(2) 在腹板与翼缘交界处:
F* N2
自由边 t1 t1
A* F* dx
N1
u
但是,如果从长为dx的梁段 中用铅垂的纵截面在翼缘上截取如 图所示包含翼缘自由边在内的分离 体就会发现,由于横力弯曲情况下 梁的相邻横截面上的弯矩不相等, 故所示分离体前后两个同样大小的 部分横截面上弯曲正应力构成的合 力FN*1 FN*2
和 不相等,因而铅垂的纵截