相似三角形的判定定理证明
4.5相似三角形判定定理证明
![4.5相似三角形判定定理证明](https://img.taocdn.com/s3/m/c31dde5d011ca300a6c39060.png)
(AA)判定定理:两角分别相等的两三角形 相似 已知:在△ABC 和△A/B/C/ 中,
A A,B B,C C,
求证:ΔABC∽ △A/B/C/
证明:在ΔABC的边AB、AC上,分别截取 AD=A/B/,AE=A/C/,连结DE。
∵ AD=A/B/,∠A=∠A/,AE=A/C/
∴ A' DE ABC ∴ ABC∽ A' B'C'
如图,判断4×4方格中的两个三角形是否相似,
并说明理由.
D
A
C
E
B
F
热身练习:判断图中的各对三角形是否相似。
A
B
5
6
图
O
一 24
20
D
C
E 30 D
C
36
图
48 72
三F
54
A 45 B
图 二
A 12
B 8D
14
21
P
图 四
A
B 4 D 18
ABC ∽ A' B'C'
已知:在ABC和A' B'C'中,AB AC ,A A'
求证: △ ABC∽△ A' B'C' A' BA' A'C' A'
证明:在线段A' B(' 或它的延长线
上)截取A' D AB,过点D再做
DE∥B'C'交A'C'交于点E,可得B
CD
E
∽ A' B'C'
∠B=180 °-(∠A+∠C)=180 °-(80 °+60 °)=40 °
相似形的判定定理
![相似形的判定定理](https://img.taocdn.com/s3/m/e22f536b773231126edb6f1aff00bed5b8f37315.png)
相似形的判定定理一、相似三角形的判定定理(一)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
1. 证明思路- 例如在△ABC中,DE∥BC,交AB于D,交AC于E。
- 因为DE∥BC,所以∠ADE = ∠ABC,∠AED = ∠ACB(两直线平行,同位角相等),∠A是公共角。
- 根据两角分别相等的两个三角形相似,就可以得出△ADE∽△ABC。
(二)两角分别相等的两个三角形相似。
1. 证明示例- 已知在△ABC和△A'B'C'中,∠A = ∠A',∠B = ∠B'。
- 在△ABC中,∠C=180° - ∠A - ∠B,在△A'B'C'中,∠C' = 180°-∠A' - ∠B'。
- 因为∠A = ∠A',∠B = ∠B',所以∠C = ∠C'。
- 根据三角形内角和定理以及两角相等的条件,可知这两个三角形相似。
(三)两边成比例且夹角相等的两个三角形相似。
1. 举例说明- 若在△ABC和△A'B'C'中,(AB)/(A'B')=(AC)/(A'C'),且∠A = ∠A'。
- 可以通过构造辅助线等方法来证明这两个三角形相似。
- 例如将△A'B'C'平移、旋转、缩放等操作后,使∠A与∠A'重合,然后根据已知的边的比例关系和夹角相等,证明对应边平行,从而得出相似的结论。
(四)三边成比例的两个三角形相似。
1. 证明要点- 设△ABC和△A'B'C'三边满足(AB)/(A'B')=(BC)/(B'C')=(AC)/(A'C')。
- 可以通过在较大的三角形中截取与较小三角形对应边相等的线段,构造出全等三角形,再利用边的比例关系逐步证明其他角相等,最终得出相似的结论。
证明三角形相似判定方法
![证明三角形相似判定方法](https://img.taocdn.com/s3/m/efb48beb81eb6294dd88d0d233d4b14e85243e8e.png)
证明三角形相似判定方法三角形的相似判定方法主要有三种,分别是AAA相似判定法、AA相似判定法和边比值相似判定法。
下面将对这三种判定方法进行详细解释。
首先是AAA相似判定法。
根据AAA相似判定法,如果两个三角形的三个角分别相等,则这两个三角形是相似的。
假设有两个三角形ABC和DEF,如果∠A=∠D,∠B=∠E,∠C=∠F,则可判定三角形ABC和DEF相似。
其次是AA相似判定法。
根据AA相似判定法,如果两个三角形的两个角分别相等,且它们对应的两边成比例,则这两个三角形是相似的。
假设有两个三角形ABC和DEF,如果∠A=∠D,∠B=∠E,并且AB/DE=AC/DF=BC/EF,则可判定三角形ABC和DEF相似。
最后是边比值相似判定法。
根据边比值相似判定法,如果两个三角形的对应边的比值相等,则这两个三角形是相似的。
假设有两个三角形ABC和DEF,如果AB/DE=AC/DF=BC/EF,则可判定三角形ABC和DEF相似。
下面以AAA相似判定法为例进行证明。
假设有两个三角形ABC和DEF,已知∠A=∠D,∠B=∠E,∠C=∠F。
我们需要证明三角形ABC和DEF相似,即证明它们的边比值相等。
由于∠A=∠D,根据角度对应定理,可以得到∠BAC=∠EDF。
又由于∠B=∠E,根据角度对应定理,可以得到∠CBA=∠FED。
首先考察三角形ABC和DEF的边比值AB/DE。
根据正弦定理,可以得到:sin∠BAC/DE = sin∠ABC/AB由于∠BAC = ∠EDF,∠ABC = ∠DEF,所以sin∠BAC = sin∠EDF,sin∠ABC = sin∠DEF。
将其代入上式,可以得到:sin∠EDF/DE = sin∠DEF/AB即AB/DE = sin∠DEF/sin∠EDF同理,可以证明AC/DF = sin∠DEF/sin∠FED和BC/EF =sin∠EDF/sin∠FED。
综上所述,根据AAA相似判定法,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以得知AB/DE=AC/DF=BC/EF,即三角形ABC和DEF相似。
相似三角形判定定理证明
![相似三角形判定定理证明](https://img.taocdn.com/s3/m/e6843d40a9956bec0975f46527d3240c8447a1d1.png)
如何證明相似三角形判定定理預備知識:圖1中,平行線等分線段定理 已知l 1//l 2//l 3,AB =BC ,則DE =EF由已知條件構造三角形全等,可證得平行線間距離相等,然後以此結論做條件可構造線段DE ,EF 所在三角形全等,結論獲證. 圖2中,平行線分線段成比例定理 已知l 1//l 2//l 3,則DEEFBC AB =,命題可通過添加平行線轉化成平行線等分線段定理.由比例性質還可得DF EF AC AB =,EF ED AB CB =,DF EDAC CB =相似三角形判定定理證明圖3,已知DE//BC ,求證:△AD E ∽△ABC析:欲證兩三角形相似,則需證三對角對應相等,三對邊の比 相等,本題目三對角相等,則證三邊比相等即可. 由DE//BC 得AC EA AB AD =,作EF//AB 得AC EACB BF =,依題意知四邊形DEFB 是平行四邊形,DE=BF . 則CBDEAC AE AB AD ==,命題獲證. 圖4,已知DE//BC ,求證:△AD E ∽△ABC作AG=AD ,GH//BC ,HM//AB ,可證△AD E ≌△AGH 此問題同圖3圖5,在△ABC 與△A`B`C`中,``````C A ACC B BC B A AB == 求證:△ABC ∽△A`B`C`在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴````````C A EA CB DE B A D A == ∵``````C A ACC B BC B A AB ==,AB=A`D ∴DE=BC ,A`E=AC3l3图3B图4B图5图6B∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C` 圖6,````C A ACB A AB =,∠A =∠A`,求證:△ABC ∽△A`B`C` 在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴``````C A EA B A D A =∵````C A ACB A AB =,A`D=AB ∴A`E=AC ∵∠A =∠A`∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C`圖7,∠A=∠A`,∠B=∠B`求證:△ABC ∽△A`B`C`在線段A`B`上截取A`D=AB ,過點D 作DE//B`C`,交A`C`於點E ,根據上面定理得△A`D E ∽△A`B`C` ∴∠A`DE=∠B`∵∠A=∠A`,∠B=∠B`,A`D=AB ∴∠A`DE=∠B∴△A`D E ≌△A`B`C` ∴△ABC ∽△A`B`C`圖8,Rt △ACB 與Rt △A`C`B`中,∠C=∠C`=90°,````C A ACB A AB = 求證:△ABC ∽△A`B`C`設````C A ACB A AB ==k ,則AB=kA`B`,AC=kA`C`則 k ````k ````k ``k ````222222==-=-=C B C B C B C A B A C B AC AB C B BC則三邊成比例,∴△ABC ∽△A`B`C`图7B图8B。
相似三角形的判定定理是什么
![相似三角形的判定定理是什么](https://img.taocdn.com/s3/m/f84e23f3250c844769eae009581b6bd97f19bc1a.png)
相似三角形的判定定理是什么
1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。
2、所有等腰直角三角形相似,所有的等边三角形都相似。
3、一条直角边与斜边成比例的两个直角三角形相似。
4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。
5、三边对应平行的两个三角形相似。
扩展资料
相似三角形的性质
1、相似三角形的'对应角相等
2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;
3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。
4.5.2相似三角形判定定理的证明
![4.5.2相似三角形判定定理的证明](https://img.taocdn.com/s3/m/da70aa7be3bd960590c69ec3d5bbfd0a7956d5a2.png)
4、相似三角形与全等三角形有什么内在的联系呢?
全等三角形是相似比为1的特殊的 相似三角形。
5、相似三角形判定定理: E
D
A
平行于三角形一边的直
线和其他两边(或两边的 B
延长线)相交,所构成的
三角形与原三角形相似.
D
C A
E
DE∥BC ΔABC∽ΔADE
B
C
1、命题:如果一个三角形的两个角与另一个三角形的两个 角对应相等,那么这两个三角形相似。
(提示:图有两种可能) A
A
D
E
D E
B
DE∥BC
B
C
C
∠ADE=∠C或∠AED=∠B
5,已知:如图,在ΔABC中,AD、BE分别是 BC、AC上的高,AD、BE相交于点F。
(1)求证:ΔAEF∽ΔADC; (2)图中还有与ΔAEF相似的三角形吗?请一一写出 。
答:有ΔAEF∽ΔADC∽ΔBEC∽ΔBDF.
已知:在△ABC 和△A/B/C/ 中,
A
A A/ , B B/
A/
求证:ΔABC∽ △A/B/C/
分析:要证两个三角形相似,
目前只有两个途径。一个是
B
C B/
C/
三角形相似的定义,(显然条件不具备);二是学过的利用平 行线来判定三角形相似的定理。为了使用它,就必须创造具备 定理的基本图形的条件。怎样创造呢?
A
A
FE
B
DC
E F
D
C
例5:找出图中所有的相似三角形。
“双垂直”三角形 C
有三对相似三角形: △ACD∽ △CBD △CBD∽ △ABC △ACD∽ △ABC
A
D
B
相似三角形的判定定理
![相似三角形的判定定理](https://img.taocdn.com/s3/m/da467e2731126edb6f1a1066.png)
相似三角形的判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.).直角三角形相似的判定定理:[1](1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.性质定理编辑(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.[2]判定方法编辑预备定理平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)定义对应角相等,对应边成比例的两个三角形叫做相似三角形。
判定定理常用的判定定理有以下6条:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
相似三角形判定定理的证明
![相似三角形判定定理的证明](https://img.taocdn.com/s3/m/1272212ec5da50e2524d7f51.png)
(1)三个对应的角分别相等 (2)三条对应的边成比例。
相似三角形对应边的比叫做 相似三角形的相似比。
相似三角形判定定理的证明
三角形相似的3个判定条件
AAA SAS SSS
AAA
两个角分别相等
三个对应的角都相等
(三角形内角和定理)
(三边成比例)
(三角相等) (相似三角形的定义) (全等三角形 ASA)
又AE=BF=CD
∴AD=CF=BE
∴△ADE≌△BEF≌△ CFD(SAS)
∴ED=EF=DF
即△ABC与△DEF相似(AAA)
证明:
AD DE AE 由 有 AC AB BC
△DEA∽△ABC ∴∠B=∠AED ∴ △ABE是等腰三角形
∴AB=AE
证明:由AE=AB知 ∠ABD=∠AEB 又AE平分∠DBC ∴∠DBE=∠CBE 又∠C+ ∠CBE =∠AEB ∠ABD +∠DBE= ∠ABE
(AAA)
(全等三角形 ASA)
证明思路:
①利用三角形相似性质(SAS),证明三角形 ADE相似于三角形ABC。 ②利用全等三角形的性质(SSS),证明三角 形ADE全等于三角形A′B′C′。
(SAS)
(SSS)
①三角形DEF像正三角形吗?
②图中有哪些全等三角形吗?
解:△ABC与△DEF相似。 证明过程如下: 在等边三角形ABC中有:AB=AC=BC, ∠A=∠B =∠C=60°
∴ ∠C = ∠ABD
∴△ABD∽ACB
AB AD AC AB
∴
即AB2 AD AC
又AE AB AE2 AD AC
解:设t 秒后△QBP与△ABC相似 则此时BP=(8﹣2t)cm,BQ=4t cm (1)若t 秒后△QBP∽△ABC 则 4t 8 2t 解得t=0.8 8 16 (2)若t 秒后△QBP∽△BCA 则 4t 8 2t 解得t=2 16 8
三角形相似的判定方法
![三角形相似的判定方法](https://img.taocdn.com/s3/m/54e93458f4335a8102d276a20029bd64793e6255.png)
三角形相似的判定方法
判断两个三角形是否相似,可以使用以下方法:
1. AA相似定理:如果两个三角形的两个角相等,则这两个三角形相似。
2. SSS相似定理:如果两个三角形的对应边的比值相等,则这两个三角形相似。
3. SAS相似定理:如果两个三角形的一个角相等,并且一个对应边的比值相等,则这两个三角形相似。
4. SAA相似定理:如果两个三角形的一个角相等,并且两个对应边的比值相等,则这两个三角形相似。
要注意的是,相似三角形的顶点顺序可以是任意的,只要相应的对应边和角是相等的即可。
相似三角形判定定理的证明核心知识
![相似三角形判定定理的证明核心知识](https://img.taocdn.com/s3/m/667af440854769eae009581b6bd97f192279bfa7.png)
相似三角形判定定理的证明核心知识首先,我们来看一下相似三角形的定义。
两个三角形ABC和DEF是相似的,当且仅当它们的对应角度相等,并且对应边的比值相等。
数学符号表示为:∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=BC/EF=AC/DF。
现在,我们来证明相似三角形的判定定理。
相似三角形判定定理分为三种情况,即AAA(角-角-角)判定定理、AA(角-角)判定定理和SSS(边-边-边)判定定理。
接下来,我们将分别对这三种情况进行证明。
首先,我们证明AAA判定定理。
假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。
我们假设∠A=∠D,∠B=∠E,∠C=∠F,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。
根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。
通过计算可以得到AB/DE=BC/EF=AC/DF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AAA判定定理。
接下来,我们证明AA判定定理。
假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。
我们假设∠A=∠D,∠B=∠E,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。
首先,我们可以得到∠C=180°-∠A-∠B,∠F=180°-∠D-∠E。
然后,根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。
通过计算可以得到AB/DE=BC/EF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AA判定定理。
最后,我们证明SSS判定定理。
假设有两个三角形ABC和DEF,它们的对应边分别为AB、BC、AC和DE、EF、DF。
我们假设AB/DE=BC/EF=AC/DF,要证明这两个三角形是相似的,我们需要证明它们的对应角度相等。
根据余弦定理和正弦定理,我们可以得到三角形的角度与边长的关系。
相似三角形判定定理的证明
![相似三角形判定定理的证明](https://img.taocdn.com/s3/m/2b4f6d09e87101f69e31951c.png)
又AE=BF=CD
∴AD=CF=BE
∴△ADE≌△BEF≌△ CFD(SAS)
∴ED=EF=DF
即△ABC与△DEF相似(AAA)
证明:
AD DE AE 由 有 AC AB BC
△DEA∽△ABC ∴∠B=∠AED ∴ △ABE是等腰三角形
∴AB=AE
证明:由AE=AB知 ∠ABD=∠AEB 又AE平分∠DBC ∴∠DBE=∠CBE 又∠C+ ∠CBE =∠AEB ∠ABD +∠DBE= ∠ABE
证明思路:
①做平行线,平行四边形的性质,利用三角形相似定义, 证明三角形ADE相似于三角形ABC。
②利用全等三角形的性质,证明三角形ADE全等于三 角形A′B′C′。
证明思路:
①做平行线性质,利用三角形相似性质(AAA), 证明三角形ADE相似于三角形ABC。 ②利用全等三角形的性质,证明三角形ADE全等于 三角形A′B′C′。
∴ ∠C = ∠ABD
∴△ABD∽ACB
AB AD AC AB
∴
即AB2 AD AC
又AE AB AE2 AD AC
解:设t 秒后△QBP与△ABC相似 则此时BP=(8﹣2t)cm,BQ=4t cm (1)若t 秒后△QBP∽△ABC 则 4t 8 2t 解得t=0.8 8 16 (2)若t 秒后△QBP∽△BCA 则 4t 8 2t 解得t=2 16 8
相似三角形定义
(1)三个对应的角分别相等 (2)三条对应的边成比例。
相似三角形对应边的比叫做 相似三角形的相似比。
相似三角形判定定理的证明
三角形相似的3个判定条件
AAA SAS SSS
AAA
两个角分别相等
证明相似的四种判定
![证明相似的四种判定](https://img.taocdn.com/s3/m/2dda76fe32d4b14e852458fb770bf78a65293a2e.png)
一.证明相似的四种判定1、两角对应相等,两三角形相似。
2、两边对应成比例且夹角相等,两三角形相似。
3、三边对应成比例,两三角形相似。
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例。
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明。
)扩展资料:常用的判定定理有以下6条:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)(SSS)判定定理4:两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)(HL)判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。
相似的判定定理与全等三角形基本相等,因为全等三角形是特殊的相似三角形。
证明相似三角形判定方法
![证明相似三角形判定方法](https://img.taocdn.com/s3/m/7e3000cf690203d8ce2f0066f5335a8103d2664c.png)
证明相似三角形判定方法证明相似三角形的判定方法有多种,以下是其中的50种方法,并对每种方法进行详细描述:1. 相似角对应相等:如果两个三角形的对应角相等,则这两个三角形相似。
2. 辅助角相等:如果两个三角形的一个角等于另一个角的辅助角,则这两个三角形相似。
3. 边长比例相等:如果两个三角形的对应边的比例相等,则这两个三角形相似。
4. 三边比例相等:如果两个三角形的三条边的比例相等,则这两个三角形相似。
5. 比较周长:如果两个三角形的周长比例相等,则这两个三角形相似。
6. 比较面积:如果两个三角形的面积比例相等,则这两个三角形相似。
7. 角平分线所成的相似三角形:如果两个三角形的一个角被其相对边的平分线所平分,且两个角相等,则这两个三角形相似。
8. 内切圆和外切圆:如果两个三角形的内切圆和外切圆的半径比例相等,则这两个三角形相似。
9. 三角形的高比较:如果两个三角形的高的比例相等,则这两个三角形相似。
10. 图中的角平分线构成相似三角形:如果两个三角形的一个角被图中一条直线平分,且划分的相邻两边的比例相等,则这两个三角形相似。
11. 内接三角形相似性:如果一个三角形内部有另一个相似的三角形,则这两个三角形相似。
12. 应用正弦定理:如果两个三角形中包含的两个角的正弦比相等,则这两个三角形相似。
13. 应用余弦定理:如果两个三角形中包含的两个角的余弦比相等,则这两个三角形相似。
14. 应用正切定理:如果两个三角形中包含的两个角的正切比相等,则这两个三角形相似。
15. 利用半角公式:如果两个三角形中包含的两个角的半角正弦比相等,则这两个三角形相似。
16. 利用角平分定理:如果平分一个三角形的一个角,并且用两条角平分线切分其对边,则所得的小三角形相似。
17. 边角边:如果两个三角形的一对对应边和夹角相等,则这两个三角形相似。
18. 角边角:如果两个三角形的一对对应角和夹边相等,则这两个三角形相似。
19. 边边边:如果两个三角形的三条边相等,则这两个三角形相似。
相似三角形判定
![相似三角形判定](https://img.taocdn.com/s3/m/5e6ae041be23482fb4da4cc8.png)
A
P
Q C B C
Q
Q
P
B
C
B
五、独立作业
1、课本P237 ,3
2、练习册,相似三角形的判定4
柏林娱乐 / 柏林娱乐
回话//壹番话/说得水清满脸通红又恍然大悟/继而羞愧地埋怨道:/爷啊/您/您怎么那样啊//还别待他回答/只听门外秦顺儿の声音响起:/启禀爷/十三爷来咯//秦顺儿话音刚落/紧接着就听到咯十三小格那洪亮の嗓音在门外响起:/ 给四哥请安//王爷还在回程の路上就差小太监给十三小格传咯口信/约他到府上谈事情/结果王爷壹进府里就被排字琦堵咯各正着儿/然后又急急地找水清问话/现在听到十三小格の请安声/才想起来还有那档子事情/十三小格没什么料 到水清竟然在王爷の书房里/所以当他壹边请安壹边进屋の时候/赫然发现那两各人满脸飞红/又满脸尴尬/登时令十三小格如坠五里云雾般别知所措起来/还是王爷迅速地反应过来/赶快将十三小格叫起/然后水清也赶快和十三小格见咯 礼/并朝王爷说道:/既然两位爷还有事情相商/妾身那就告退//得到王爷の点头应允之后/水清赶快退咯下去/而他与十三小格之间の谈话则是半天都没能进入状态/第二天/他单独将排字琦叫到书院/对她说道:/那各/将珊瑚嫁与大哥 の事情/是爷早早就定下来の事情/有段时间/皇阿玛壹直很关心大哥の情况/爷想着/送大哥壹各诸人/也算是咱们对大哥の关照/至于人选/爷想来想去/总觉得别管是选哪各院子の奴才/您们都别愿意/爷倒是认为紫玉挺适合/可是您正 用着顺手呢/后来想那珊瑚反正也别是咱们府里の奴才/水清也同意咯/谁想到……唉/那珊瑚/其实别同意完全可以直接说出来/没想到竟然悄没声儿地吊咯脖子/早晓得那样/……//啊?原来是那么壹回事儿啊/妾身还以为因为她吊脖子 有功/才被嫁与咯大伯呢/唉/那各丫头也真是の/怎么那么想别开呢/能嫁给大伯可是她上辈子修来の福份/那别/嫁过去日子过得别是挺好の嘛//第壹卷//第1171章/邀请日子过得飞快/转眼间就进入咯腊月/前些日子出京办差期间正值 王爷の生辰/而且因为珊瑚の事情/他与水清之间の关系壹直客气而生分/所以去年の生辰礼之约在今年也别咯咯之/水清按部就班地挑咯各投其所好の沈周山水画/当他回到府里见到水清の生辰礼夹在各院诸人送来の各式礼物之中/又 想起咯去年两各人の赌约/心中难免壹阵阵の惆怅/腊月の日子过得也是飞快/眨眼就进入咯新年前の官府封印期/今天朝堂上没什么啥啊事情/才过咯响午/王爷就回到咯府中/此时此刻/天空中の乌云正在壹点、壹点地聚积/原本应当是 艳阳高照の时辰/此刻竟因为乌云压境而将整各世界都蒙上咯壹层灰蒙蒙の色彩/仿佛自然界中の万物都跟着忧郁咯起来/也许是为即将到来の康熙六十壹年冬季の第壹场瑞雪做着前期准备/虽然此时の天空是阴郁の/但是壹想到即将到 来の那第壹场瑞雪/他の心中就禁别住地喜悦而期待/壹年四季/风光各异/春有百花/夏有桐荫/秋有落英/冬有瑞雪/四季风景美别胜收/而他们唯壹の壹次雪中行/就是四年前瑞雪纷飞の香山/他们爆发咯有史以来最为剧烈の壹场冲突/ 可是他们彼此收获の/是对方の壹颗真心/转眼间/四年の时间过去咯/那壹场史无前例の冲突/既别是开始/也别是结束/四年来/他们在爱情の那条道路上依然走得磕磕绊绊/依然摔得鼻青脸肿/可是每壹次の跌倒/却是在本质上都起到咯 适得其反の效果/令他们の爱情更加坚固、更加牢靠、更加珍惜彼此/更加爱恋对方/特别是现在/经历咯珊瑚の事情/两各人开始咯相敬如宾、客气而生分の关系/可是他别想就那么永远地客气下去/既然是他做咯错事/既然他还想与她 在爱情の那条道路上携手同行/那么就应当由他先有所表示/以前他只是苦于没什么找到合适の机会/给自己壹各冠冕堂皇の借口和理由/而此时此刻/即将到来の那壹场瑞雪给咯他壹各极好の契机/雪/在历朝历代文人骚客の思想里/都 意味着意境深远、志向高洁/傲雪迎霜、威武别屈/而那些/别也正是他与她の人生理想与做人原则の真实写照吗?两各情趣相投、质本高洁之人/总是会引起惺惺相惜の共鸣/他要以雪为媒/邀她共同分享即将到来の雪中美景/以期有效 地缓和他们之间の关系/于是赶快吩咐秦顺儿:/去怡然居将侧福晋请过来/就说爷找她有点儿事情//接到那各吩咐/秦顺儿壹边别折别扣地去传达他の口信/壹边暗暗思忖那壹回又发生咯啥啊事情/由于他根本别晓得王爷与水清之间发 生咯啥啊事情/令两各主子客气而生分咯起来/生怕壹会儿又有啥啊事情发生/只是还没什么待他理出头绪来/就到咯怡然居/第壹卷//第1172章/应邀接到他の吩咐/别要说秦顺儿糊涂/就是水清也是糊里糊涂/如坠五里云雾:/秦公公/爷 说是啥啊事情咯吗?//回侧福晋/爷没说啥啊事情/只是请您过去//那可真是破天荒地头壹遭/她只去过书院四次/壹次撞破咯他与婉然の私情/壹次她去讨婉然の嫁妆/壹次是轮值去侍疾/再壹次就是为咯给珊瑚讨名分/哪壹次都别是他 主动邀请/而现在那各破天荒の头壹遭/真是让她越想越是觉得奇怪/思前想后/由于想别明白是因为啥啊事情/怕又是跟珊瑚有关/于是她连月影都没什么带/只壹各人随秦顺儿去咯书院/水清与秦顺儿两人刚进咯朗吟阁の院门口/就只见 秦顺儿の替班奴才高福正守在门口迎接她/高福壹见年侧福晋/赶快上前请安:/给侧福晋请安/爷刚刚吩咐奴才/请侧福晋到无逸斋回话//无逸斋?秦顺儿壹听别由得壹愣/无逸斋可是王府女眷の禁地/也是朗吟阁绝大部分奴才の禁地/ 除咯他秦顺儿那各贴身奴才能够自由出入/其它也就是负责清理打扫の两各奴才在秦顺儿の监督下才能前来做整理の差事/那年侧福晋可是朗吟阁建成十几年来第壹各有幸踏入其中の女主子/爷今天那葫芦里卖の是啥啊药?水清虽然没 什么秦顺儿清楚无逸斋如此の与众别同/但是她也听蒋嬷嬷特意提示过/那里是女眷禁地/所以对于高福の传话/水清很是将信将疑/上次私闯书院铸成咯王爷与婉然抱恨终生の大错/今天再私闯无逸斋禁地/她又要成为啥啊事件の罪魁祸 首?秦顺儿看出来水清の犹豫和猜忌/虽然他也觉得那件事情有点儿匪夷所思/但是高福是壹各值得信赖之人/而且他自己刚刚确实是受咯王爷の吩咐去请の侧福晋/于是他上前壹步对水清说道:/侧福晋/奴才那就送您过去吧//结果还 别等水清发话呢/高福又说道:/秦公公/刚刚爷吩咐咯/您也别用过去咯/所有の奴才没什么爷の吩咐/都别得去无逸斋//事到如此/水清没什么任何退路/无论是虎穴还是龙潭/她唯有依言前行/可是她从来没什么去过那里/只是听闻那里 是禁地而已/具体该走哪条路呢?水清将疑惑の目光望向秦顺儿/秦顺儿见状/赶快说道:/无逸斋就在后院の后头/堂屋の左侧有壹各月亮门/穿过月亮门就是//水清那才恍然大悟/原来朗吟阁别只是两进院子/而是三进/只是那第三进院 子隐藏得竟然是那么深/她只是久闻大名、如雷贯耳/却是别见庐山真面目/可是/如此禁忌の地方/他怎么可能找自己过去那里回话?到底是真の回话/还是被人构陷?别管她如何警惕/现在也没什么任何办法/由于见别到王爷/得别到证 实/水清陷入咯两难の境地/好在秦顺儿在场/万壹出咯啥啊问题/有那各奴才当各旁证/别管将来有用没什么/此刻也总算是稍微得到些心理安慰/第壹卷//第1173章/禁地无奈之下/水清唯有硬着头皮朝后院走去/秦顺儿则是壹脸茫然地 望着水清の背影/待见她走得远咯/才转过头来/用压得极低の声音向高福问道:/给我说实话/刚刚那些吩咐是爷让传の口信儿吗?//秦公公/确实是爷吩咐の/小の可是壹各字都没什么传错///传没传错/壹会儿自有分晓/到时候/您若是 将我也拖进那浑水里/我可也会让您吃别咯兜着走///您放心/绝对别会/绝对别会//那是水清第壹次来到无逸斋/她壹边朝里走/壹边暗自思忖:别管是福是祸/先将院子の格局搞清楚咯再说/穿过前后院相连の那各月亮门/第三进院就霍 然出现在眼前/院落没什么前院大/小小の壹各空场只有前院の二分之壹/却是同样质朴而别失精巧の风格/翠竹仍是当仁别让の重要角色/只是品种与前院别同/那里栽种の竹子是金镶玉/将那萧煞の冬日点缀得生机盎然/壹株腊梅已经 含苞待放/饱满の花朵挺立在光秃の枝丫上/甚是喜人/更让她有似曾相识感觉の/是左侧厢房前の游廊/由于现在正值冬季/只有藤蔓别见绿叶/所以水清别晓得种の是啥啊/藤萝?凌宵?葡萄?此时在她正前方の就是堂屋/门楣上挂着壹 张大匾//无逸斋/三各大字直入眼帘/水清壹眼就看出来那是出自他の手笔/房门虚掩着/假设刚才高福传の真是他の吩咐/那么他应该就是在那间房里等她/别管是别是他の吩咐/是福别是祸/是祸躲别过/于是水清拾阶而上/走到房门口/ 隔着房门/恭恭敬敬地禀报道:/给爷请安///赶快进来吧/外面天冷/别冻着咯身子//壹听到他の那番回复/水清终于晓得刚刚她和秦顺儿都是壹场虚惊/随着房门吱呀の壹声响/映入他眼帘の/正是刚刚差秦顺儿前去怡然居请来の水清/ 今天の她/身上穿咯壹件浅紫色の羽纱披风/脖子上系壹条纯白色の狐狸毛围领/戴壹顶雪白兔毛雪帽/头上只插咯壹支镶咯珍珠の银簪子/耳朵上是壹副珍珠耳环/令那阴暗の冬日也跟着瞬间亮咯起来/然而与那身夺人眼目の装扮别相称 の/是她那冻得有些微微泛红脸颊/完全失去咯平时肤若凝脂、吹弹可破の娇俏模样/心疼得他赶快说道:/怎么也别带各暖炉?//就那么几步路/妾身别觉得冷呢//见她还是壹如既往の嘴硬/他只能是无奈地摇咯摇头/继而直接放弃咯在 那各问题上与她纠缠の心思/毕竟今天他只是邀请她来赏雪、品茗/他别想两各人因为壹些旁枝末节の小事情而破坏咯那么好の气氛/在秦顺儿去请水清の那段时间里/他早早将所有の奴才们都远远地打发到咯前院/让小丫环点好炉子/ 放好小茶壶/留下上好茶叶/就让她们也壹并全都到咯前院/连秦顺儿都被他下咯禁令/那么美轮美奂の景致/堪称琼林仙境の世界/只有他の仙子才配得上/其它の人/实在别想被硬生生地破坏咯他の兴致/第壹卷//第1174章/草书此时/听 着水清口别对心地硬说别冷/他既没什么揭穿她の谎言/也没什么像往常那样/直接上前用他那双温暖の大手捂热她冰冷の双手、双脸/而是淡淡地朝她说:/您若真是别冷の话/就赶快把披风脱咯/喝口热茶吧//水清哪里晓得他今天找她 只是希望壹同赏雪品茗/根本就别是刚刚秦顺儿在怡然居请她前来时所说の那各他有事情吩咐她/所以壹见他没什么直接吩咐正经差事/只说要她喝茶/生怕有啥啊事情被她耽搁咯/于是讪
两个三角形相似判定定理
![两个三角形相似判定定理](https://img.taocdn.com/s3/m/85087babe109581b6bd97f19227916888486b9c1.png)
两个三角形相似判定定理
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
4.两三角形三边对应平行,则两三角形相似。
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
6.如果两个三角形全等,那么这两个三角形相似。
三角形相似的判定方法6种
![三角形相似的判定方法6种](https://img.taocdn.com/s3/m/ca8b38969f3143323968011ca300a6c30d22f10b.png)
三角形相似的判定方法6种三角形相似是几何学中的一个重要概念,它描述了两个三角形形状相同,大小可能不同的关系。
判断两个三角形是否相似,主要依靠六种判定方法,它们分别是:AA相似、SSS相似、SAS相似、ASA相似、AAS相似以及HL相似(仅限于直角三角形)。
本文将详细阐述这六种判定方法,并辅以例题和图形说明,力求全面、深入地讲解三角形相似的判定。
一、 AA相似(角角相似)如果两个三角形的两个角对应相等,那么这两个三角形相似。
这是最常用的相似判定方法,其简洁性使其在解题中应用广泛。
原理:两个角对应相等,则第三个角也必然相等(因为三角形内角和为180°)。
三个角对应相等,保证了两个三角形的形状完全一致,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果∠A = ∠A’ 且∠B = ∠B’,则△ABC ∽△A’B’C’。
例题1:已知△ABC中,∠A = 60°,∠B = 80°;△DEF中,∠D = 60°,∠E = 80°。
判断△ABC与△DEF是否相似,并说明理由。
解答:因为∠A = ∠D = 60°,∠B = ∠E = 80°,根据AA相似判定定理,△ABC ∽△DEF。
二、 SSS相似(边边边相似)如果两个三角形的对应边成比例,那么这两个三角形相似。
这是基于比例关系的相似判定方法。
原理:对应边成比例意味着两个三角形形状相同,只是大小不同。
比例关系保证了三角形的形状不变,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果AB/A’B’ = BC/B’C’ = AC/A’C’,则△ABC ∽△A’B’C’。
例题2:已知△ABC的三边长分别为6cm、8cm、10cm;△DEF的三边长分别为3cm、4cm、5cm。
相似三角形的判定定理1
![相似三角形的判定定理1](https://img.taocdn.com/s3/m/7d5048a4a1116c175f0e7cd184254b35eefd1ae5.png)
相似三角形的判定定理1
正式版判定定理
假设ABC和PQR是具有相似三角形的两个三角形,设四边分别为a、b、c、p、q、r,则可以推出以下判定定理:
定理:如果ABC和PQR是相似三角形,则有:
1. 对任意sidesABC,sidePQR之比为常数:
a/p=b/q=c/r=k (其中k是一定的常数)
2. 对任意angles ABC,angles PQR都相等:
∠A=∠P、∠B=∠Q、∠C=∠R。
证明:
证明:可以先根据side ratio 定理告诉我们,如果两个三角形的三边的比值定值,那么这两个三角形就是相似的。
因此,先假设ABC和PQR是相似的三角形,则有:
a/p=b/q=c/r=k (其中k是一定的常数)
这个等式表明了这两个三角形的三边长的比值是一定的,即使任意一边ABC乘以相同的常数,也会得到PQR,这符合side ratio 定理的要求。
接着我们考虑角度。
因为ABC和PQR是相似的三角形,所以有:
∠C =∠A+∠B =∠R+∠Q
将式子同时除以pqr 则可以得到:
∠C/∠R=∠A/∠P=∠B/∠Q
这表明的是在两个相似的三角形中,对应角的比值也是一定的,而且乘以相同的常数也会得到一致的结果。
经过上述证明,可以得出相似三角形的判定定理:
定理:如果ABC和PQR是相似三角形,则有:
1. 对任意sidesABC,sidePQR之比为常数:
a/p=b/q=c/r=k (其中k是一定的常数)
2. 对任意angles ABC,angles PQR都相等:
∠A=∠P、∠B=∠Q、∠C=∠R。
相似三角形判定定理的证明课件(共18张PPT)
![相似三角形判定定理的证明课件(共18张PPT)](https://img.taocdn.com/s3/m/f17f293276232f60ddccda38376baf1ffc4fe32b.png)
课时导入知识讲解随堂小测1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似.(3)三边成比例的两个三角形相似.你能对它们进行证明吗?两角分别相等的两个三角形相似.数学表达:在△ABC与△A′B′C′中,∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′.知识点1 证明相似三角形的判定定理1已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,∠B =∠B′,求证 :△ABC ∽△A'B'C'.A BCA′B′C′D E证明:在△ABC 的边AB (或它的延长线)上截取AD =A′B′,过点D 作BC 的平行线,交AC 于点E ,则∠ADE =∠B ,∠AED =∠C ,.AD AE AB AC (平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)F过点D 作AC 的平行线,交BC 于点F ,已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,∠B =∠B′,求证 :△ABC ∽△A'B'C'..AB AD CF CB =则(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).AE CFAC CB∴=∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形.∴DE =CF ..AE DE AC CB ∴=.AD AE DE AB AC BC∴==而∠ADE =∠B ,∠DAE =∠BAC ,∠AED =∠C ∴△ADE ∽△ABC∵∠A =∠A′,∠ADE =∠B =∠B′,AD =A′B′.∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'A BCA′B′C′DEF两边成比例且夹角相等的两个三角形相似.数学表达:在△ABC 与△A′B′C′中,∵ ,∠A =∠A′,∴△ABC ∽△A′B′C′.==''''AB ACk A B A C知识点2 证明相似三角形的判定定理2ABCA′B′C′D E证明 :在△ABC 的边AB (或它的延长线)上截取AD =A′B′,过点D 作BC 的平行线,交AC 于点E ,则∠B =∠ADE ,∠C =∠AED ,已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,求证 :△ABC ∽△A'B'C'.AB ACA B A C =''''∴△ABC ∽△ADE.(两角分别相等的两个三角形相似).AB AC AD AE∴=,,AB AC AD A B A B A C ''==''''.AB ACAD A C ∴=''.AC AC AE A C ∴=''AE A C ''∴=而∠A =∠A′,∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'知识点3 证明相似三角形的判定定理3三边成比例的两个三角形相似.数学表达:在△ABC 与△A′B′C′中,∵ ,∴△ABC ∽△A′B′C′.''===''''AB BC ACk A B B C ACA BCA′B′C′DE证明 :在△ABC 的边AB (或它的延长线)上截取AD =A′B′,AE =A′C′,连接DE .已知:如图,△ABC 和△ A′B′C′中,求证 :△ABC ∽△A'B'C'=.AB BC ACA B B C A C ='''''',,,AB AC AD A B AE A C A B A C ''''==='''' .AB AC AD AE∴=而∠BAC =∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似).AB BC AD DE ∴=,,AB BCAD AB A B BC ''==''''又.AB BC AD B C ∴=''.BC BCDE B C ∴=''.DE B C ''∴=∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'1.判断(1)所有的等边三角形都相似. ( )(2)所有的直角三角形都相似. ( )(3)所有的等腰三角形都相似. ( )(4)所有的等腰直角三角形都相似. ( )×√×√2. 如图4,AD ⊥BC 于点D , CE ⊥AB 于点 E ,且交AD 于点F , 你能从中找出几对相似三角形?BC A ED FB CA E D FBC ED FB AE DF B C A E DF D CF EA3.已知:如图,在四边形ABCD 中,∠B =∠ACD , AB =6,BC =4,AC =5,CD = ,求AD 的长. 172A B CD 解: ∵ AB =6,BC =4,AC =5,CD = ∴ 又∠B =∠ACD ,∴△ABC ∽△DCA ,∴ ∴AD =17.2.AB CD BC AC =.BC AC AC AD =.254定理2:两边成比例且夹角相等的两个三角形相似.定理1:两角分别相等的两个三角形相似.定理3:三边成比例的两个三角形相似.定理证明相似三角形判定定理的证明定理的运用1.从课后习题中选取;2.完成练习册本课时的习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾与复习
相似三角形的判定方法:
两角对应相等,两三角形相似. 三边对应成比例,两三角形相似. 两边对应成比例且夹角相等,两三角形
相似.
探究1
知识要点
角 A 角 A
√
两角对应相等,两三角形相似.
如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△ A′B′C′. A
两边对应成比例,且夹 角相等,两三角形相似.
AB BC k, 如果∠B =∠B1 , A1B1 B1C1
边S 角A 边S A1
√
C1
B1
那么,△ABC∽△A1B1C1. 你能证明吗? 可要仔细哟!
B
ห้องสมุดไป่ตู้
A
C
AB AC , 如果 对于ABC和A' B' C ', A' B ' A' C '
解: AB=6,BC=4,AC=5,CD= 7 ,
1 2
已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6, 1 7 BC=4,AC=5,CD= ,求AD 2 的长.
AB CD . BC AC
又∠B=∠ACD,
△ABC∽△DCA,
BC AC AC AD ,
25 . AD= 4
思考
这两个三角形一定会相似吗? B B ',
不会
应用
解:(1)
AB 7 AC 14 7 , , A' B' 3 A' C ' 6 3
两个三角形的相似比是多少?
AB AC . A' B ' A'C '
又A A ',
ABC
∽A ' B ' C '.
应用
∴ A ' DE
C'
ABC.
∴
ABC ∽ A ' B ' C '.
新知应用
例1.弦AB和CD相交于⊙O内一点P. 求证:PA· PB=PC· PD.
A P B 证明:连接AC、BD. ⌒ ∵∠A、∠D都是CB所对的圆周角, O ∴ ∠A=∠D. 同理: ∠C=∠B. C ∴△PAC∽△PDB.
A′
你能证明吗? 可要仔细哟!
B
C
B′
C′
应用
已知:如图,∠ABD=∠C,AD=2, AC=8,求AB.
解: ∵ ∠ A= ∠ A,∠ABD=∠C, ∴ △ABD ∽ △ACB ,
∴ AB : AC=AD : AB,
∴ AB2 = AD ·AC.
∵ AD=2, AC=8,
∴ AB =4.
探究2
知识要点
PA PC . PD PB
D
即PA· PB=PC· PD.
小结
一、相似三角形判定定理的证明
1.两角对应相等,两三角形相似. 2.三边对应成比例,两三角形相似. 3.两边对应成比例且夹角相等,两三角形相似. 二、相似三角形判定定理的应用
作业布置 习题 知识技能
C D
E
A' DE ∽A ' B ' C '.
A' D DE A' E . ∴ A ' B ' B 'C ' A 'C '
B'
A' E AC AB BC AC 又 . , A ' D AB, ∴ A 'C ' A 'C ' A ' B ' B 'C ' A 'C ' 同理 DE BC. ∴ A ' E AC.
探究3
知识要点
边S 边S 边S A′
√
三边对应成比例,两三角形相似. 如果
AB BC AC , A B BC AC
那么,△ABC∽△A′B′C′. B′
A
C′
B
C
画一画
任意画一个三角形,再画一个三 角形,使它的各边长都是原来三角 形各边长的k倍,度量这两个三角 形的对应角,它们相等吗?这两个 三角形相似吗?与同桌交流一下, 看看是否有同样的结论.
证明:在线段A ' B(或它的延长线 ' 上)截取A ' D AB,过点D再作 DE ∥B' C ' 交A' C ' 交于点E,可得 B
AB BC AC . 已知:在ABC和A' B' C'中, 'C ' 求证: △ ABC ∽△ A' B ' C ' . A ' B ' B ' C ' AA ' A