大学物理课后作业答案

合集下载

大学物理学(第三版上) 课后习题3答案详解

大学物理学(第三版上)  课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) (B) 02ωmRJ J+02)(ωR m J J +(C) (D) 02ωmRJ0ω[答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a)(b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。

0.15; 1.256[答案:](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理课后习题答案

大学物理课后习题答案

第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。

因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。

AOP ∆是边长为a 的等边三角形。

已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。

大学物理学(第3版)下册课后练习答案

大学物理学(第3版)下册课后练习答案

大学物理学课后习题答案(下册)习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。

[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵lq 4=λ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=',∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

dt dx dt
dx
K
0
v0 K
K
答案 (1)3°36′;(2)0.078
解析 (1)轮胎不受路面左右方向的力,而法向力应在水平方向上.
因而有 Nsin θ=mv21,Ncos θ=mg,所以 tan θ= v21 ,代入数据可得θ=3°36′.
R
Rg
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN′,这里 N′为该时刻地面对车的支
Rcot α. at
(2)S=1att2=1Rcot α. 22
2-4 2-5
答案
R-b cc
解析 v=s′=b+ct,at=c,an=vR2=(b+Rct)2,令 at=an,得 t=
R-b. cc
答案 北偏东 19.4°,170 km/h
解析 设下标 A 指飞机,F 指空气,E 指地面,由题可知:
v0 v
0
作业 2
ABBCF
2-2
(1)gsin θ;gcos θ;(2)-g;2 3v2;(3)v0+bt; 2 3g
b2+(v0+bt)4;(4)1ct3;2ct;c2t4;(5)69.8 m/s
R2
3
R
2-3 答案 (1) Rcot α;(2)1Rcot α
at
2
解析 (1)物体的总加速度 a 为 a=at+an,tan α=aant=(aattt)2=aRtt2,t= R
解析 (1)dx=vdt,dx=vdt=v,adx=vdv, adx = vdv , (-kx)dx = vdv ,-1kx2=1v2+C,因
dv dv a
22
为质点静止于 x=x0,所以 C=-1kx20,所以 v=± k(x20-x2). 2

大学物理上学习指导作业参考答案(1)

大学物理上学习指导作业参考答案(1)

第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v 2分()x x xd 62d 02⎰⎰+=v vv2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解:=a d v /d t 4=t , d v4=t d t⎰⎰=vv 00d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 tt x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ctbt S += 其中b 、c 是大于零的常量,求从0=t开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+= 解得 cb cR t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt=ω (k 为常量).已知st2=时,质点P 的速度值为32 m/s .试求1=ts 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad4//sRttk ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s/32/m R a n ==v1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率20=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度9.4522='=gh v m/s 1分离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gtt t-+=v v v 1分08.420==gt v s 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222shl+=将上式对时间t 求导,得 ts st l ld d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s hslv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船第二章 运动与力课 后 作 业μ1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得θμθμs i n c o s +=Mg F 2分令)s i n (c o s )c o s s i n (d d 2=++--=θμθθμθμθMg F∴ 6.0tg ==μθ,637530'''︒=θ2分且d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)解:人受力如图(1) 图2分am g m N T 112=-+ 1分N底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=-- ∴5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-=1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2 / L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有 rr L M TLr r T d )/(d 2)(⎰⎰-=ω∴)2/()()(222L r L M r T -=ω 3分O第三章 动量与角动量课 后 作 业1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分 设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分将t q m m ∆=∆代入得vm x q f =,v m y q f =∴14922=+=y x f f fN 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分32、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分 即mgt μμ≥-)3(5,s 256.0t t =≥ 1分物体开始运动后,所受冲量为⎰-︒=tt tN F I 0d )30cos(μ)(96.1)(83.30202t t t t---=t = 3 s, I = 28.8 N s 2分 则此时物体的动量的大小为 I m =v 速度的大小为 8.28==m I vm/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2) 解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的. 利用2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分 设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221 ③0==+yy m m m vv v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分 负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为 jt b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F以及当质点从A 点运动到B点的过程中F的分力xF 和yF 分别作的功.解:(1)位矢 j t b i t a rωωs i n c o s += (SI) 可写为 t a x ωc o s = , t b y ωs i n = ta tx xωωs i n d d -==v , tb tyωωc o s d dy -==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m yx=+vv2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m yx=+vv 2分(2) jmai ma F yx+==jt mb i t maωωωωsin cos 22--2分由A →B ⎰⎰-==02d c o s d aax x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==bby y t b m y F W 02dysin d ωω=⎰-=-bmb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kLkxx L F -=+- ② 2分由② 解出kF L x 2-=使小球继续保持静止的条件为Fk F L k x k ≤-=2 ③ 2分所求L 应同时满足①、③式,故其范围为 kF <L kF 3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为gly mf μ= 1分摩擦力的功 ⎰⎰--==0d d al al fygy l m y f Wμ2分=022al ylmg -μ =2)(2a l l mg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v vm m -其中 ∑W = W P +W f ,v 0 = 0 1分 W P =⎰l axP d =la l mg x x lmg la2)(d 22-=⎰2分由上问知 l a l mg Wf2)(2--=μ所以222221)(22)(vm a l lmg la l mg =---μ得 []21222)()(a l a llg ---=μv 2分4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有m g h m fs -=2021v2分ααμαμsin cos sin mghNh fs ==mgh m mgh -==2021ctg v αμ 2分)c t g 1(220αμ+=g h v =4.5 m 2分 (2)根据功能原理有 fsm mgh =-221v1分αμc t g 212m g h m g h m -=v1分[]21)c t g 1(2αμ-=gh v =8.16 m/s 2分第五章刚体的转动课后作业1、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr.将由两个定滑轮以及质量为m和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示.2分2mg-T1=2ma1分T2-mg=ma1分T1 r-T r=β221mr1分T r-T2 r=β221mr1分a=rβ2分解上述5个联立方程得:T=11mg / 82分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M / 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为21M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at, a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分aOAmm 1 ,l1v2v俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131lm J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分 m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为glm x x lm gMlf10121d μμ-=⋅-=⎰② 2分由角动量定理 ω210310l m dt Mtf-=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 2201cx x v -=,0y y=,0z z=.相应体积为2201cV xyz V v -== 3分 观察者A测得立方体的质量2201cm m v -=故相应密度为 V m /=ρ22022011/cV cm v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为aa x 221=,aa y221=面积可表示为:xy a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中 2)/(1c a a x xv -=' =0.6×a221aa a y y 221=='在O '系中测得的图形为菱形,其面积亦可表示为 606.022=='⋅'='a a a S x y cm 2 3分x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vS t年 2分以飞船上的时钟计算:≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆,22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分 那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴)1111(22122220ccc m W v v ---==4.72×10-14 J =2.95×105 eV2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为 4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得 x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分 即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分 2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1 因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25c o s /==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x(SI) 1分 (2) 速率)434s i n (41025d d 2π-π⨯π-==-t t xv (SI) 2分当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t xvm/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动,k = π2. 3分 又 m m k π==ω 4分mT 22=π=ω3分4、一物体同时参与两个同方向的简谐振动:)212c o s (04.01π+π=t x (SI),)2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )c o s (φω+=t A x 则)c o s (2122122212φφ-++=A A A A A① 2分以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211c o s c o s s i n s i n a r c t gφφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=Ts, 可得角频率 Tπ=2ω,2ωm k =∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分 221007.121-⨯==vm E K J 2分2222)/4(2121xT m kxEpπ=== 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分 (2) 总能量221011.12121-⨯===FA kAE J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.O解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分 当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kAJ , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成)/27c o s (1.0φλ+π-π=x t y (SI) 2分t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy 且π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y(SI) 2分 或 ]3112.07cos[1.0π+π-π=x t y(SI)(m ) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时c o s 0==φA y , 0sin 0>-=φωA v所以 π-=21φ2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为]2)4.05(2c o s [04.0π--π=x t y(SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121c o s (5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=,而另一平面简谐波沿Ox 轴负方向传播,波的表达式为)/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν,)212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 AA A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212c o s (π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212s i n (2/d d π+ππ-==vt A t y νν)2c o s (2π+ππ=t A νν 3分5、设入射波的表达式为)(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2c o s [2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2c o s ()21/2c o s (2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21=, n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2c o s [1φλν+-π=x t A y 2分则反射波的表达式是])(2c o s [2ππ++-+-=φλνxOP OP t A y2分合成波表达式(驻波)为 )2c o s ()/2c o s (2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y , 故得 π=21φ2分因此,D 点处的合成振动方程是 )22c o s ()6/4/32c o s (2π+π-π=t A y νλλλt A νπ=2s i n 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000 A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解:223131vvρ==nm p∴ 90.1/32==v p ρkg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w v m/s 3分(2)()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: RR i R i C P +=+=222,∴()5122=⎪⎭⎫ ⎝⎛-=-=R C RR C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt =TiR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kw T 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).233)5解:(1) A →B :))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E νJ .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1))(25)(112212V p V p T T C E V -=-=∆2分(2)))((211221V V p p W -+=,W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分p 1p p12(摩尔热容C =TQ ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105P a)10-3m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCDOVp解: 121Q Q -=ηQ 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C AB DC T T T T T T T T T T Q Q --=--=4分根据绝热过程方程得到:γγγγ----=DD AA T p T p 11,γγγγ----=CC BB T p T p 11∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分 故 %251112=-=-=BC T T Q Q η2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η2111T T T WQ -= 且1212T T Q Q =∴ Q 2 = T 2 Q 1 /T 1 即212122112T T T W T T T T T Q -=⋅-==24000 J 4分由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分(2) ='-='η121T T 425 K 2分。

大学物理教程上课后习题答案

大学物理教程上课后习题答案

物理部分课后习题答案标有红色记号的为老师让看的题27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度;解:1由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=2将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=3 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量;求1质点的速度;2速率的变化率;解 1质点的速度为sin cos d rv R ti R t j dtωωωω==-+ 2质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+;求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小;解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量;解 由冲量的定义,有2.02.02.02(63)(33)18I Fdt t dt t t N s ==+=+=⎰⎰2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力空气阻力和摩擦力f kv =-k 为常数作用;设撤除牵引力时为0t =,初速度为0v ,求1滑行中速度v 与时间t 的关系;20到t 时间内飞机所滑行的路程;3飞机停止前所滑行的路程;解 1飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有dvf mkv dt ==- 即 dv k dt v m=- 两边积分,速度v 与时间t 的关系为2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半径的2倍即2R ,试以,m R 和引力恒量G 及地球的质量M 表示出:(1) 卫星的动能;(2) 卫星在地球引力场中的引力势能.解 1 人造卫星绕地球做圆周运动,地球引力作为向心力,有22(3)3Mm v G m R R= 卫星的动能为 2126k GMmE mv R ==2卫星的引力势能为3p GMmE R=-00v t v dv k dt v m =-⎰⎰2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止;求:(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少;解 子弹与木块组成的系统沿水平方向动量守恒12mv mv Mu =+对木块用动能定理2102Mgs Mu μ-=-得 1 2212()2m v v Mgsμ-==322(210)(500100)0.16219.80.2-⨯⨯-=⨯⨯⨯ 2 子弹动能减少2212121()2402k k E E m v v J -=-= 114页3-11,3-9,例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径为R ,不计摩擦力,物体B 由静止下落,求1物体A 、B 的加速度; 2绳的张力;3物体B 下落距离L 后的速度; 分析: 1本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了;滑轮在作定轴转动,视为圆盘,转动惯量为例3-2图212J mR =; 2角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=; 3由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠; 分析三个物体,列出三个物体的运动方程:物体A 1A T m a = 物体B 2B B m g T m a -= 物体C ''22111()22C C T T R J m R m Ra ββ-=== 解 112B A B Cm g a m m m =++;2112A B A B C m m g T m m m =++, 21()212A C AB Cm m g T m m m +=++;3对B 来说有,2202v v aLv -===例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止 已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为r r r RmgM d 2d 2⋅π⋅π=μ总摩擦力矩为mgR M M Rμ32d 0==⎰ 故平板的角加速度为M Jβ=222 可见圆形平板在作匀减速转动,又末角速度0ω=,因此有2022M Jθωβθ==设平板停止前转数为n,则转角2n θπ=,可得22003416J R n M ωωμ==πgπ3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2;二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动;今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体;求在重力作用下,定滑轮的角加速度;解: m 1:1111a m g m T=-m 2:2222a m T g m=-转动定律:βJ T R T R =-1122其中:2222112121R M R M J += 运动学关系:2211R a R a ==β 解得:222221111122)2/()2/()(R m M R m M gR m R m +++-=β3-6 一质量为m 的质点位于11,y x 处,速度为j v i v v y x+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r11+=作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L⨯=0)()(11j v i v m i y i x y x +⨯+=k mv y mv x x y )(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:1初始时刻的角加速度; 2杆转过θ角时的角速度. 解: 1由转动定律,有2123()=l mgml β 则 lg23=β 2由机械能守恒定律,有22110232()-=lml ωmg sin θ题3-11图所以有 lg θωsin 3=3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 可看作匀质圆盘,在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. 1问它能升高多少2求余下部分的角速度、角动量和转动动能.解: 1碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有 题3-13图gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==2圆盘的转动惯量212=J MR ,碎片抛出后圆盘的转动惯量2212'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即'=+'0J ωJ ωmv R式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωωωω'-=-)21()21(2222mR MR mR MR 得ωω=' 角速度不变圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=258页8-2,8-12,8-178-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线过环心垂直于圆环所在平面的直线上任一点P 处的场强P 点到圆环中心的距离取为x .解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 ()2204Rx dqdE +=πε方向沿dq 与P 点的连线.将其分解为平行于轴线的分量和垂直于轴线的分量,由电荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:E =E ∥=()()()23220212222044cos R x qxR x x R x dq dE q +=+⋅+=⎰⎰πεπεθ 方向:q >0时,自环心沿轴线向外;q <0时,指向环心.8-12 两个均匀带电的同心球面半径分别为R 1和R 2R 2>R 1,带电量分别为q 1和q 2,求以下三种情况下距离球心为r 的点的场强:1r <R 1;2R 1<r <R 23r >R 2.并定性地画出场强随r 的变化曲线解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,0,04cos 2=∴=⋅==Φ⎰E r E dS E e πθ(2) 当R 1<r <R 2时,2010124,4cos rq E q r E dS E e πεπθ=∴=⋅==Φ⎰(3) 当r >R 2 时,()()2021021244cos rq q E q q r E dS E e πεεπθ+=∴+=⋅==Φ⎰8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量即电荷线密度为λ. 求解8-7图E12解8-12图 场强随r 的变化曲线圆柱面内外的场强.解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外设λ>0,且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直与侧面任一面积元的法线方向平行.设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=⋅=++==Φ⎰⎰E rl E dS E dS E e πθ;当r >R 即所求场点在带电圆柱面外时,rE l rl E e 002,2πελελπ=∴=⋅=Φ . 8-15 将q=×10-8C 的点电荷从电场中的A 点移到B 点,外力作功×10-6J .问电势能的增量是多少 A 、B 两点间的电势差是多少哪一点的电势较高若设B 点的电势为零,则A 点的电势是多少解 电势能的增量:J 100.56-⨯==-=∆外A W W W A B ;A 、B 两点间的电势差:V 100.2105.2100.5286⨯-=⨯⨯-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;若设B 点的电势为零,则 V 100.22⨯-=A U .8-17 求习题8-12中空间各点的电势.解 已知均匀带电球面内任一点的电势等于球面上的电势Rq 04πε,其中R 是球面的半径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:(1) 当r <R 1即所求场点在两个球面内时:20210144R q R q U πεπε+=;(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2020144R q rq U πεπε+=;当r >R 2即所求场点在两个球面外时:r q q r q r q U 0210201444πεπεπε+=+=当r >R 2即所求场点在两个球面外时:rq q rq rq U 0210201444πεπεπε+=+=285页9-3,9-49-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内有一点B 位于AO 的延长线上,OB = r ,求:1导体上的感应电荷在B 点产生的场强的大小和方向;2B 点的电势.解:1由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即04130=+'=r rE E p B πε r r a E B30)(41+-=πε 2由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即rq V V BB 04πε+'=由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等aq V V V B 0004πε+'==因球面上的感应电荷与球心o 的距离均为球的半径R,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此aq V V B 004πε==所以, B 点的电势 aq V B 04πε=9-4.如图所示,在一半径为R 1 = cm 的金属球A 外面罩有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2 = cm,R 3 = cm,A 球带有总电量Q A = ×10-8 C,球壳B 带有总电量Q B = ×10-8 C.求:1球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;2将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.习题图解:1在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷B A Q Q +;由场的分布具有对称性,可用高斯定理求得各区域的场强分布)(4),(02120211R r R r Q E R r E A<<=<=πε)(4),(03204323R r rQ Q E R r R E BA >+=<<=πε E 的方向眼径向外.导体为有限带电体,选无限远处为电势零点;由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为)(4144321020204321321332211R Q Q R Q R Q rd r Q Q r d r Q rd E r d E r d E r d E V BA A A RB A R R A R R R R R R rA ++-=++=⋅+⋅+⋅+⋅=⎰⎰⎰⎰⎰⎰∞∞πεπεπεB 球壳内任一点的电势B V 为30204344333R Q Q dr r Q Q rd E r d E V B A R B A R R rB πεπε+=+=⋅+⋅=⎰⎰⎰∞∞9-5.两块无限大带电平板导体如图排列,试证明:1相向的两面上图中的2和3,其电荷面密度大小相等而符号相反;2背向的两面上图中的1和4,其电荷面密度大小相等且符号相同. 解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面;导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面;作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得习题图320320σσεσσ-=∴+=; 再由导体板内的场强为零,可知P 点合场强0)2()2()2(204030201=-++-+εσεσεσεσ 由 32σσ-= 得41σσ-=9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = ×10-5 C . m -2,现将两极板与电源断开,然后再把相对电容率为εr = 的电介质充满两极板之间.求此时电介质中的D 、E 和P . 解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1-'=r r εσεσ ∴极化电荷面密度rr )(εεσσ1-='对于平行板电容器σ'=P 0r E εεσ)1(-'=∴1-'=r r D εσε 且E D P ,,的方向均沿径向.9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:1两极的电势差;2电介质中的电场强度、电位移、极化强度; 3电介质表面的极化电荷面密度.解:1 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强110R ,rE <=习题图10-6ByOlllzx12022R r ,R rE r >>=επελ23,0R r E >= ∴两极的电位差1201202ln 2ln 221R R R R r l d E u r r R R επελεπελ==⋅=⎰2 由第1问知,电介质中的电场强度 rE r επελ02=电位移rr r E D πλεε20== 极化强度 0)1(εε-=r P rr r πελε2)1(-=329页10-9,10-1010-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(2)总通量0B ds Φ=•=⎰⎰10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度; 2通过图中矩形面积的磁通量 ()31r r =解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()r d Ir I B P -+=πμπμ22 (1) 在导线等距的点有 2d r =, dI B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d -10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方习题图10-10习题图10-6By Olllzx向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(3)总通量0B ds Φ=•=⎰⎰ 10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度;通过图中矩形面积的磁通量 ()31r r =2解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()rd Ir I B P -+=πμπμ22(3) 在导线等距的点有002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aI a I a μμθθππμπμπ=-=-=--=2d r =, dI B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d - 10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则00123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性习题图10-10002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aIa I aμμθθππμπμπ=-=-=--=习题图10-1401231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯.方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则习题图10-1400123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性01231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯. 367页11-1,11-511-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面;已知AB 长为L ,与导线间距为a ;CD 边与导线间距为bb ›a;线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小;解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场;当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生;取坐标系如图a 所示;设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图b 所示;取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =xπμ20I 通过该面积元的磁通量为 ldx xIBdS d πμ20==Φ 于是通过线圈的磁通量为 ()⎰⎰⎰++++==Φ=Φvt b vt a vtb vt a xldxI ldx x I d t πμπμ2200 =πμ20Il ㏑vta vtb ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为()()()⎥⎦⎤⎢⎣⎡++-+++-=Φ-=202vt a v vt b v vt a vt b vt a lIN dt d N E πμ ()()()()vt a vt b vvt b v vt a lIN +++-+-=πμ20令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势()ab a b NlIv b a lIvN dtd NE t πμπμ2112000-=⎪⎭⎫ ⎝⎛-=Φ-== 按楞次定律可知,E 感应电动势的方向沿顺时针方向;11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B t;设B 以速率dtdB=К变化К为大于零的常量;现在其中放置一直角形导线 abc;若已知螺线管截面半径为R,l ab =,求:1螺线管中的感生电场EV;2bc ab ,两段导线中的感生电动势;解 1由于系统具有轴对称性,如图所示,可求出感生电场;在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系m V LS d BE dl d S dtt Φ∂=-=-∂⎰⎰可得222V dBE r r r dtπππκ=-=- 有2V rE κ=-()R r < 由楞次定律可以判断感生电场为逆时针方向;2解法一 用法拉第电磁感应定律求解;连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为1222124l BS Bl R ⎛⎫Φ=-=-- ⎪⎝⎭则11222221112424d l dB l E l R l R dt dt κ⎛⎫⎛⎫Φ=-=--=- ⎪ ⎪⎝⎭⎝⎭而ab oa bo ab E E E E E =++=1 所以12221124ab l E E lk R ⎛⎫==- ⎪⎝⎭方向由a 指向b同理可得 1222124bc l E lk R ⎛⎫=- ⎪⎝⎭方向由b 指向c解法二 也可由感生电场力做功求解;由于1中已求出EV;则122224bab V ak l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰122224cbc V bk l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰11-1.解: 1由电磁感应定律812)1(--=Φ-t dtd i ε2)2(102.3-⨯-=i ε2 2106.1-⨯==RI iε由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是由左向右11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起t BgL L Bgt l d B V )cos sin (cos sin )(θθθθε==⋅⨯=⎰11-5解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感应电动势产生.取坐标系如图;设矩形线圈以速度V 从图示位置开始运动,经过时间t 之后,线圈位置如图b 所示,取面积元ds=ldx,距长直导线的距离为x,按无限长直载流导体的磁感应强度公式知,该面积元外B的大小为x I B πμ20= 通过该面积元的磁通量为ldx x I Bds d ⋅==Φπμ20 于是通过线圈的磁通量为⎰⎰⎰++++⋅=⋅=Φ=Φvt b vt a vt b vt a xldx x I ldx x I d t πμπμ22)(00 va vtb IL ++=ln 20πμ 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为])()()([220vt a v vt b v vt a vt b vt a ILN dt d N E ++-+++-=Φ-=πμ -=))(()()(20vt b vt a v vt b v vt a IN +++-+πμ 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势)11(200ba LIVN dt d N E t -=Φ-==πμ )(100.32.01.02)1.02.0(0.30.52.010104737V --⨯=⨯⨯-⨯⨯⨯⨯⨯⨯=ππ 按楞次定律E 的方向为图b 中的顺时针方向1、 一质点作匀速率圆周运动,其质量为m,线速度为v,半径为R;求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量;4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否 守恒 近日点与远日点的速度哪个大答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有引力对太阳不产生力矩,系统角动量守恒;近日点 r 小 v 大,远日点 r 大 v 小;这就是为什么彗星运转周期为几十年,而经过太阳时只有很短的几周时间;彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成势能;8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程;答:对这一力学现象可根据角动量守衡定律来解释;例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加;3-5题图。

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

大学物理上课后习题答案

大学物理上课后习题答案

第1章 质点运动学 P21一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计;⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;5计算t =0s 到t =4s 内质点的平均加速度;6求出质点加速度矢量的表示式,计算t =4s 时质点的加速度请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式;解:1j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ 5 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v 6 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量; 质点沿x 轴运动,其加速度和位置的关系为226a x=+,a 的单位为m/s 2,x 的单位为m;质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值;解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 一质点在半径为的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度;解:s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则0.40.40.16R ω==⨯=v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅0.40.20.08a R τα==⨯=2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n与切向夹角arctan()0.06443n a a τϕ==≈︒第2章 质点动力学质点在流体中作直线运动,受与速度成正比的阻力kv k 为常数作用,t =0时质点的速度为0v ,证明:⑴t 时刻的速度为()0=k t me-v v ;⑵ 由0到t 的时间内经过的距离为x =0m k v 1-t m ke )(-;⑶停止运动前经过的距离为0()mkv ;⑷当m t k =时速度减至0v 的e1,式中m 为质点的质量;解:f k =-v ,a f m k m ==-v⑴ 由d d a t =v 得:d d d k a t t m==-vv分离变量得:d d kt m =-v v ,即00d d t k t m-=⎰⎰v v v v , 因此有:0ln ln kt m e -=v v , ∴ 0k m te -=v v ⑵ 由d d x t =v 得:0d d d k m t x t e t -==v v ,两边积分得:000d d k mx t t x e t-=⎰⎰v∴ 0(1)k m tm x e k-=-v ⑶ 质点停止运动时速度为零,00k mt e -=→v v ,即t →∞,故有:000d k mt x et m k ∞-'==⎰v v⑷ t m k =时,其速度为:1000k m m kv e e e -⋅-===v v v ,即速度减至0v 的1e .作用在质量为10 kg 的物体上的力为(102)F t i =+N,式中t 的单位是s,⑴ 求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;⑵ 为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m/s 的物体,回答这两个问题; 解: ⑴ 若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,1111115.6m s 56kg m s p m i I p i --∆=∆=⋅=∆=⋅⋅;v若物体原来具有6-1s m -⋅初速,则000000, (d )d t tp m p m F m t m F t=-=-+⋅=-+⎰⎰v v v 于是:⎰∆==-=∆t p t F p p p 0102d, 同理有:21∆=∆v v ,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理;⑵ 同上理,两种情况中的作用时间相同,即:⎰+=+=tt t t t I 0210d )210(亦即:0200102=-+t t , 解得s 10=t ,s 20='t 舍去设N 67j i F -=合;⑴ 当一质点从原点运动到m 1643k j i r++-=时,求F所作的功;⑵ 如果质点到r 处时需,试求平均功率;⑶ 如果质点的质量为1kg,试求动能的变化;解: ⑴ 由题知,合F为恒力,且00r =∴ (76)(3416)212445J A F r i j i j k =⋅∆=-⋅-++=--=-合⑵ w 756.045==∆=t A P ⑶ 由动能定理,J 45-==∆A E k一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如图;求这一系统静止时两弹簧的伸长量之比和弹性势能之比;解: 弹簧B A 、及重物C 受力如题图所示平衡时,有: Mg F F B A == ,又 11x k F A ∆=,22x k F B ∆=所以静止时两弹簧伸长量之比为:1221x x k k ∆∆= 弹性势能之比为:22111222211212p p E k x k E k x k ⋅∆==⋅∆第3章 刚体力学基础一质量为m 的质点位于11,y x 处,速度为x y i j =+v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩;解: 由题知,质点的位矢为:j y i x r11+=作用在质点上的力为:i f f-=所以,质点对原点的角动量为:01111()()()x y y x L r m x i y j m i j x m y m k =⨯=+⨯+=-v v v v v作用在质点上的力的力矩为:k f y i f j y i x f r M1110)()(=-⨯+=⨯=哈雷彗星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为1r =×1010m 时的速率是1v =×104m/s,它离太阳最远时的速率是2v =×102 m/s,这时它离太阳的距离2r 是多少太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力,即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有:1122r m r m =v v ∴ 10412112228.7510 5.4610 5.2610m 9.0810r r ⨯⨯⨯===⨯⨯v v 物体质量为3kg,t =0时位于m 4i r=,6i j =+v m/s,如一恒力N 5j f =作用在物体上,求3秒后,⑴ 物体动量的变化;⑵ 相对z 轴角动量的变化; 解:⑴ ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p⑵ 解法一 由53 N a f m j ==得:0034437m x t x x t t ==+=+=+=v222031515663325.52623y t y t at t t j ==+=+=⨯+⨯⨯=v即有:i r41=,j i r 5.2572+=01x x ==v v ;0653311y y at =+=+⨯=v v即有:216i j =+v ,211i j =+v∴ 11143(6)72L r mi i j k =⨯=⨯+=v 222(725.5)3(11)154.5L r m i j i j k =⨯=+⨯+=v∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解法二 ∵d LM dt =, ∴ 2032031d ()d 15 (4)(6))5d 23 5(4)d 82.5kg m s t tL M t r f tt i t t j j t t k t k -∆=⋅=⨯⎡⎤=+++⨯⨯⎢⎥⎣⎦=+=⋅⋅⎰⎰⎰⎰平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少解:只挂重物1M 时,小球作圆周运动,向心力为g M 1,即:2001ωmr g M = ①挂上2M 后,则有:221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒;即:00r m r m ''=v v ωω''=⇒2020r r ③联立①、②、③得:100M g mr ω=,2112301()M g M M mr M ω+'=, 112130212()M M M r g r m M M ω+'==⋅'+ 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900 rev/min;现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速;已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算;试求:⑴ 设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 ⑵ 如果在2s 内飞轮转速减少一半,需加多大的力F解:⑴ 先作闸杆和飞轮的受力分析图如图b;图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力;杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有:121()0F l l N l '+-=, 121)N l l F l '=+(对飞轮,按转动定律有r F RIβ=-,式中负号表示β与角速度ω方向相反; ∵ N F r μ= ,N N '=∴ F l l l N F r 121+='=μμ 又∵ 212I mR =,∴1212()r F R l l F I mRl μβ+=-=-① 以N 100=F 等代入上式,得:2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为:s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为:2201900291409()53.12rad 2604234t t πφωβπππ⨯=+=⨯-⨯⨯=⨯可知在这段时间里,飞轮转了1.53转; ⑵10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 200215rad s 22ttωωωπβ--==-=-⋅ 用上面式⑴所示的关系,可求出所需的制动力为:112600.250.50151772()20.40(0.500.75)2mRl F N l l βπμ⨯⨯⨯=-==+⨯⨯+⨯计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m 1=50kg,m 2=200 kg,M =15 kg,r = m解:分别以m 1、m 2滑轮为研究对象,受力图如图b 所示.对m 1、m 2运用牛顿定律,有:a m T g m 222=- ;a m T 11=对滑轮运用转动定律,有:β)21(212Mr r T r T =- 又βr a = 由以上4个方程解得:22122009.87.6 m s 25200152m g a m m M -⨯===⋅++++题a 图 题b 图如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下;求:⑴ 初始时刻的角加速度;⑵ 杆转过θ角时的角速度. 解:⑴ 由转动定律有:211()23mg l ml β=, ∴ lg23=β⑵ 由机械能守恒定律有:22)31(21sin 2ωθml l mg = ∴ lg θωsin 3= 如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上;现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞;相撞后,使棒从平衡位置处摆动到最大角度=θ30°处;⑴设这碰撞为弹性碰撞,试计算小球初速0v 的值; ⑵相撞时小球受到多大的冲量解:⑴ 设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:0m l I m l ω=+v v ①2220111222m I m ω=+v v②上两式中23I Ml =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得:2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式得:0I mlω=-v v ④ 由②式得:2220I m ω=-v v ⑤所以:22200()I I ml mωω-=-v v求得:026(23)13(1)(1)22312gl l I l Mm M ml m mωω-+=+=+=v ⑵相碰时小球受到的冲量为:0d ()F t m m m =∆=-⎰v v v由①式求得:06(23)1d 36gl I F t m m Ml M l ωω-=-=-=-=-⎰v v 负号说明所受冲量的方向与初速度方向相反;一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动;另一质量为0m 的子弹以速度0v 射入轮缘如题图所示方向; ⑴开始时轮是静止的,在质点打入后的角速度为何值⑵用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比;解:⑴ 射入的过程对O 轴的角动量守恒: ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω⑵ 022*******000sin 1[()][]2()sin 2k k m m m R E m m R m E m m m θθ++==+v v 弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;解:以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有:222111222mgh m I kh ω=++v 又/R ω=v ,故有:2222221(2)(2 6.09.80.4 2.00.4)0.36.00.30.5 2.0m s mgh kh R mR I --⨯⨯⨯-⨯⨯==+⨯+=⋅v第5章 机械振动质量为kg 10103-⨯的小球与轻弹簧组成的系统,按0.1cos(82x t ππ=+的规律作谐振动,求:⑴ 振动的周期、振幅和初位相及速度与加速度的最大值; ⑵ 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等⑶ s 52=t 与s 11=t 两个时刻的位相差;解:⑴设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又0.8m A ωπ==v 1s m -⋅ 51.2=1s m -⋅,2.632==A a m ω2s m -⋅⑵ 0.63N m m F ma ==,J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即:)21(212122kA kx ⋅=∴ m 20222±=±=A x ⑶ ππωφ32)15(8)(12=-=-=∆t t一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示;如果0=t 时质点的状态分别是:⑴A x -=0; ⑵ 过平衡位置向正向运动; ⑶过2Ax =处向负向运动; ⑷过2A x -=处向正向运动; 试求出相应的初位相,并写出振动方程;解:因为000cos sin x A A φωφ=⎧⎨=-⎩v将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相;故有:)2cos(1πππφ+==t T A x , )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x , )452cos(454πππφ+==t T A x一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+;求:⑴s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; ⑵由起始位置运动到cm 12=x 处所需的最短时间; ⑶在cm 12=x 处物体的总能量;解:由题已知s 0.4,m 10242=⨯=-T A ,∴ -120.5 rad s ωππ==⋅ 又,0=t 时,00 , 0x A φ=+∴= 故振动方程为:m )5.0cos(10242t x π-⨯=⑴ 将s 5.0=t 代入得:0.17m m )5.0cos(102425.0=⨯=-t x π23231010(2)0.17 4.210N F ma m x ωπ--=-=-=-⨯⨯⨯=-⨯方向指向坐标原点,即沿x 轴负向;⑵ 由题知,0=t 时,00=φ;t t =时,02,0,3t x A φπ=+<=且故v ∴ s 322/3==∆=ππωφt ⑶ 由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:22232241111010()(0.24)7.110J 2222E kA m A πω--===⨯⨯⨯=⨯ 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4;用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度0 5.0cm /s =v ,求振动周期和振动表达式; 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x 设向上为正又 30.225 , 1.26s 810k T m πωω-=====⨯即 222222205.010 ()(1.010)()210m 5v A x ω---⨯∴=+=⨯+=⨯200020 5.0105tan 1 , 1.01054x πφφω--⨯=-===⨯⨯即v ∴ m )455cos(1022π+⨯=-t x题图为两个谐振动的t x -曲线,试分别写出其谐振动方程;解:由题图a,∵0=t 时,0000 , 0 , 32 , 10cm , 2s x A T φπ=>∴===又v即:1s rad 2-⋅==ππωT,故 m )23cos(1.0ππ+=t x a由题图b ∵0=t 时,0005,0,23A x πφ=>∴=v01=t 时,0005,0,23A x πφ=>∴=v又ππωφ253511=+⨯=,∴ πω65=故m t x b )3565cos(1.0ππ+=一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子;现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动;⑴ 此时的振动周期与空盘子作振动时的周期有何不同⑵ 此时的振动振幅多大⑶ 取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程; 解:⑴ 空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大;⑵按⑶所设坐标原点及计时起点,0=t 时,则0x mg k =-;碰撞时,以M m ,为一系统动量守恒,即:02()m gh m M =+v则有:02m gh m M=+v ,于是22220022()()1()()v mg m gh mg kh A x k k m M k m M gω=+=+=+++3gm M khx v )(2tan 000+=-=ωφ 第三象限,所以振动方程为 221cos arctan ()()mg khk kh x t k m M gm MM m g ⎡⎤=++⎢⎥+++⎣⎦有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量41.010kg m s F t -∆=⨯⋅,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程; 解:由动量定理,有:0F t m ⋅∆=-v∴ 4-131.0100.01 m s 1.010F t m --⋅∆⨯===⋅⨯v 按题设计时起点,并设向右为x 轴正向,则知0=t 时,1000 , 0.01m s x -==⋅v >0,∴ 2/30πφ=又1s rad 13.30.18.9-⋅===l g ω ∴ 2230000.01() 3.210m 3.13A x ωω-=+===⨯v v故其角振幅:33.210rad A l θ-==⨯小球的振动方程为:rad )2313.3cos(102.33πθ+⨯=-t有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动π/6的位相差为,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差;解:由题意可做出旋转矢量题图;由图知222211222cos30(0.173)(0.2)20.1730.23/20.01A A A A A =+-︒=+-⨯⨯⨯=,∴ m 1.02=A 设角θ为O AA 1,则:θcos 22122212A A A A A -+=即:2222221212(0.173)(0.1)(0.02)cos 0220.1730.1A A A A A θ+-+-===⨯⨯即2θπ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π; 一质点同时参与两个在同一直线上的简谐振动,振动方程为:⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程;解:∵ πππφ=--=∆)65(6, ∴ m 1.021=-=A A A 合 1122112250.4sin 0.3sinsin sin 366tan 5cos cos 30.4cos 0.3cos 66A A A A ππφφφππφφ⨯-+===++ ∴ 6φπ=其振动方程为:0.1cos(26)m x t π=+作图法略第6章 机械波已知波源在原点的一列平面简谐波,波动方程为y =A cos Cx Bt -,其中A ,B ,C 为正值恒量;求:⑴ 波的振幅、波速、频率、周期与波长;⑵ 写出传播方向上距离波源为l 处一点的振动方程; ⑶ 任一时刻,在波的传播方向上相距为d 的两点的位相差;解:⑴ 已知平面简谐波的波动方程:)cos(Cx Bt A y -= 0≥x 将上式与波动方程的标准形式:)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =,波长C πλ2=,波速B u C λν==, 波动周期12T Bπν==;⑵ 将l x =代入波动方程即可得到该点的振动方程:)cos(Cl Bt A y -=⑶ 因任一时刻t 同一波线上两点之间的位相差为:)(212x x -=∆λπφ将d x x =-12,及2Cπλ=代入上式,即得:Cd =∆φ; 沿绳子传播的平面简谐波的波动方程为y =10x t ππ4-,式中x ,y 以米计,t 以秒计;求:⑴ 绳子上各质点振动时的最大速度和最大加速度;⑵ 求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =时刻到达哪一点 解:⑴ 将题给方程与标准式2cos()y A t x πωλ=-相比,得:振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速 2.5m s 2u ωλνλπ===;绳上各点的最大振速,最大加速度分别为:ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅⑵2.0=x m 处的振动比原点落后的时间为:08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点0=x ,在92.008.010=-=t s 时的位相,即:2.9=φπ;设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则,825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m一列平面余弦波沿x 轴正向传播,波速为5 m/s,波长为2m,原点处质点的振动曲线如题图所示;⑴ 写出波动方程;⑵作出t =0时的波形图及距离波源0.5m 处质点的振动曲线;解: ⑴ 由题a 图知,1.0=A m,且0=t 时,000 , 0y =>v ,∴230πφ=, 又52.52uνλ===Hz ,则ππυω52== 取])(cos[0φω+-=u x t A y ,则波动方程为:30.1cos[5()]52x y t ππ=-+m⑵ 0=t 时的波形如题b 图5.0=x m 代入波动方程,得该点处的振动方程为:50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=-+=+m如题c 图所示;如题图所示,已知t =0时和t =时的波形曲线分别为图中曲线a 和b,周期T>,波沿x 轴正向传播,试根据图中绘出的条件求: ⑴ 波动方程;⑵P 点的振动方程; 解:⑴ 由题图可知,1.0=A m ,4=λm ,又,0=t 时,000,0y =<v , ∴20πφ=,而-11 2 m s 0.5x u t ∆===⋅∆,20.5Hz 4u νλ===,∴ππυω==2故波动方程为:]2)2(cos[1.0ππ+-=x t y m⑵ 将1=P x m 代入上式,即得P 点振动方程为:t t y ππππcos 1.0)]22cos[(1.0=+-= m一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m/s 1,波长为2m,求: ⑴波动方程;⑵ P 点的振动方程及振动曲线; ⑶ P 点的坐标;⑷ P 点回到平衡位置所需的最短时间;解:由题图可知1.0=A m ,0=t 时,00,02A y =<v ,∴30πφ=,由题知2=λm ,-110m s u =⋅,则5210===λυuHz ,∴ππυω102==⑴ 波动方程为:0.1cos[10()]103x y t ππ=-+m⑵ 由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P P 点的位相应落后于0点,故取负值∴P 点振动方程为)3410cos(1.0ππ-=t y p ⑶ 由πππ34|3)10(100-=+-=t x t 解得:67.135==x m ⑷ 根据⑵的结果可作出旋转矢量图如题图a,则由P点回到平衡位置应经历的位相角πππφ6523=+=∆ ∴所属最短时间为:121106/5==∆=∆ππωφt s 如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =Acos 0ϕω+t ;⑴ 分别就图中给出的两种坐标写出其波动方程;⑵ 写出距P 点距离为b 的Q 点的振动方程;解:⑴ 如题图a,则波动方程为:0cos[()]l xy A t u uωϕ=+-+ 如图b,则波动方程为:0cos[()]x y A t uωϕ=++⑵ 如题图a,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=-+如题图b,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=++一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为×10-3J/m 2·s,频率为300 Hz,波速为300m/s,求波的平均能量密度和最大能量密度.解: ∵u w I =, ∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅, 4max 102.12-⨯==w w 3m J -⋅如题图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求:⑴ 1S 外侧各点的合振幅和强度;⑵ 2S 外侧各点的合振幅和强度 解:1在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为:πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r ,∴ 0,0211===-=A I A A A 2在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差:0)4(2222=-+-=∆r r λλππφ,∴ 2121114,2A A I A A A A ===+=一平面简谐波沿x 轴正向传播,如题图所示;已知振幅为A ,频率为ν,波速为u ;⑴ 若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;⑵ 若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置;解: ⑴ ∵0=t 时,0,000>=v y ,∴20πφ-=,故波动方程为:cos[2()]2x y A t u ππυ=--m⑵ 入射波传到反射面时的振动位相为即将λ43=x 代入2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为:πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为23542πλππλ--⨯-=,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为:]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为:cos[2()]cos[2()]222 2cos cos(2)2x x y A t A t u u x A t u πππυπυπυππυ=--++-=-故波节位置为:2)12(22πλππυ+==k x u x故 4)12(λ+=k x ,2,1,0±±=k …根据题意,k 只能取1,0,即λλ43,41=x 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =t x ππ4-SI, 2y =t x ππ4+SI;⑴ 试证明绳子将作驻波式振动,并求波节、波腹的位置; ⑵ 波腹处的振幅多大x =1.2m 处振幅多大 解:⑴ 它们的合成波为:0.06cos(4)0.06cos(4)0.12cos cos 4y x t x t x t ππππππ=-++=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动; 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置;⑵波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即:097.0)2.1cos(12.0=⨯=π驻A m第7章 气体动理论基础 P218设有N 个粒子的系统,其速率分布如题图所示;求⑴ 分布函数f υ的表达式; ⑵ a 与υ0之间的关系; ⑶ 速度在υ0到υ0之间的粒子数; ⑷ 粒子的平均速率; 5 υ0到υ0区间内粒子平均速率;解:⑴从图上可得分布函数表达式: 00000()/(0)()(2)()0(2)Nf a Nf a Nf υυυυυυυυυυυυ=≤≤⎧⎪=≤≤⎨⎪=≥⎩, 00000/(0)()/(2)0(2)a N f a N υυυυυυυυυυ≤≤⎧⎪=≤≤⎨⎪≥⎩⑵ f υ满足归一化条件,但这里纵坐标是N f υ而不是f υ,故曲线下的总面积为N.由归一化条件:20d d a NN a N υυυυυυυ+=⎰⎰,可得023Na υ=⑶ 可通过面积计算001(2 1.5)3N a N υυ∆=⨯-=⑷N 个粒子平均速率:220220001()d ()d d d 11311()329a f Nf a Na a N υυυυυυυυυυυυυυυυυυ∞∞===+=+=⎰⎰⎰⎰5 υ0到υ0区间内粒子数:100013(0.5)(0.5)284NN a a a υυυ=+-== υ0到υ0区间内粒子平均速率:000000.50.50.5111d d ()d NN N N f N N N N υυυυυυυυυυυυ===⎰⎰⎰ 0020.510d N a N N υυυυυυ=⎰0033220000.51010017111d ()32424a av a a N N N υυυυυυυυυ==-=⎰ 2007769a N υυυ==试计算理想气体分子热运动速率的大小介于υp -υp /100与υp +υp /100之间的分子数占总分子数的百分比; 解:令P u υυ=,则麦克斯韦速率分布函数可表示为:du e u N dN u 224-=π因为u=1,∆u=由u e u N N u ∆=∆-224π,得 %66.102.0141=⨯⨯⨯=∆-e N N π容器中储有氧气,其压强为P=即1atm 温度为27℃求:⑴ 单位体积中的分子数n ;⑵ 氧分子的质量m ;⑶ 气体密度ρ;⑷ 分子间的平均距离e ;5 平均速率υ;62υ7分子的平均动能ε; 解:⑴ 由气体状态方程nkT p =得:242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n m -3⑵ 氧分子的质量:26230mol 1032.51002.6032.0⨯=⨯==N M m Kg ⑶ 由气体状态方程RT M MpV mol =,得: 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ3m kg -⋅⑷ 分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m5 平均速率:mol 8.313001.601.60446.580.032RT M υ⨯=≈=1s m -⋅ 题图Nf υO2υ0υυ0a6482.87≈=1s m -⋅ 7 氧分子的平均动能:20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少解:理想气体分子的能量:RT iE 2υ= 平动动能 t=3 5.373930031.823=⨯⨯=t E J转动动能 r=2 249330031.822=⨯⨯=r E J内能 i=5 5.623230031.825=⨯⨯=i E J一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求⑴氧气和氢气分子数密度之比;⑵氧分子和氢分子的平均速率之比; 解:⑴ 因为nkT p =,则:1O H n n =⑵由平均速率公式υ=,得:14O H υυ== 7-25 一真空管的真空度约为×10-3 Pa 即×10-5 mmHg,试 求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直径d =3×10-10 m; 解:由气体状态方程nkT p =得:317-3231.3810 3.3310m 1.3810300p n kT -⨯===⨯⨯⨯ 由平均自由程公式nd 221πλ=得: 5.71033.3109211720=⨯⨯⨯⨯=-πλ m ⑴ 求氮气在标准状态下的平均碰撞频率;⑵ 若温度不变,气压降到×10-4Pa,平均碰撞频率又为多少设分子有效直径为10-10m解:⑴碰撞频率公式2z d n υ=对于理想气体有nkT p =,即:kTpn =,所以有:2d p z kT υ=而-1455.43 m s υ≈≈=⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz s -1⑵气压下降后的平均碰撞频率2042310455.43 1.33100.7141.3810273z ---⨯⨯⨯⨯==⨯⨯ s -11mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间⑴气体分子方均根速率之比;⑵ 分子平均自由程之比; 解:⑴ 由气体状态方程:2211T p T p = 及 3322V p V p =====⑵ 对于理想气体,nkT p =,即 kTpn =所以有:pd kT 22πλ=,即:12121==T p p T 末初λλ第8章 热力学基础.如题图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统做功126 J;⑴ 若沿adb 时,系统做功42 J,问有多少热量传入系统⑵ 若系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84 J,试问系统是吸热还是放热热量传递是多少 解:由abc 过程可求出b 态和a 态的内能之差:A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热1mol 单原子理想气体从300K 加热到350K,问在下列两过程中吸收了多少热量增加了多少内能对外做了多少功⑴ 容积保持不变; ⑵ 压力保持不变; 解:⑴ 等体过程对外作功0=A∴ V 2121()()2328.31(350300)623.25J iQ E A E C T T R T T νν=∆+=∆=-=-=⨯⨯-=, ⑵ 等压过程,吸热:P 212125()()8.31(350300)1038.75J 22i Q C T T R T T νν+=-=-=⨯⨯-=内能增加:V 21()328.31(350300)623.25J E C T T ν∆=-=⨯⨯-=对外作功:5.4155.62375.1038=-=∆-=E Q A J一个绝热容器中盛有摩尔质量为M mol ,比热容比为γ的理想气体,整个容器以速度υ运动,若容器突然停止运动,求气体温度的升高量设气体分子的机械能全部转变为内能;解:整个气体有序运动的能量为212m υ,转变为气体分子无序运动使得内能增加,温度变化;2V 12m E C T m M υ∆=∆=,22mol mol V 111(1)22T M M C R υυγ∆==- 0.01m 3氮气在温度为300K 时,由压缩到10MPa;试分别求氮气经等温及绝热压缩后的⑴ 体积;⑵ 温度;⑶ 各过程对外所做的功; 解:⑴ 等温压缩过程中,T =300K,且2211V p V p =,解得:3112210.0111010p V V p -==⨯=⨯m 3 , 6321112lnln 0.1100.01ln0.01 4.6710J V pA vRT p V V p ===⨯⨯⨯=-⨯ ⑵ 绝热压缩:R C 25V =,57=γ 由绝热方程 γγ2211V p V p =,得:111/33111421221()()()0.01 1.9310m 10p V p V V p p γγγ-===⨯=⨯由绝热方程 111122T p T p γγγγ----=,得11.40.4122211300(10)579K T p T T p γγγγ--==⨯⇒=Oab c d由热力学第一定律A E Q +∆=及0=Q 得:)(12molT T C M MA V --=, 又RT M MpV mol=,所以 51121135 1.013100.015()(579300)23002 2.3510Jp V A R T T RT ⨯⨯=--=-⨯⨯-=-⨯ 理想气体由初状态P 1,V 2经绝热膨胀至末状态P 2,V 2;试证过程中气体所做的功为:12211--=γV P V P w 式中γ为气体的比热容比;证明: 由绝热方程C V p V p pV ===γγγ2211得γγV V p p 111= 故,22111121221111221121d 11d ()11 ()11V V r V V V C A p V C V V V p V p V p V p V V V γγγγγγγγγ----===----=--=--⎰⎰1 mol 的理想气体的T -V 图如题图所示,ab 为直线,延长线通过原点O ;求ab 过程气体对外做的功; 解:设T kV =,由图可求得直线的斜率k 为:2T k V =,得过程方程002T T V V =由状态方程pV vRT=得:RT p V ==R V 02T V V =002RT V ab 过程气体对外作功:⎰=02d V v V p A 02000d 22V V RT RTV V ==⎰某理想气体的过程方程为Vp 1/2=a ,a 为常数,气体从V 1膨胀到V 2;求其所做的功;解:气体做功:22211122221211d d ()|()V V V V V V a a A p V V a V V V V ===-=-⎰⎰设有一以理想气体为工质的热机循环,如题图所示;试证其循环效率为:η=1212111V V p p ηγ-=--解:等体过程:1V 21()0Q vC T T '=->,吸热,∴ )(1221V 11RV p R V p C Q Q -='= 绝热过程:03='Q 等压压缩过程:2p 21()0Q vC T T '=-<,放热 ∴ 212222P 21P ()()p V p V Q Q vC T T C R R'==--=-,则, 循环效率为:p 21222121V 122212()(/1)111()(/1)C p V p V Q Q C pV p V p p ννηγ--=-=-=--- 一卡诺热机在1000K 和300K 的两热源之间工作,试计算⑴ 热机效率;⑵ 若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少⑶ 若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少T Oab题图Vp OV绝热题图V 2 V 1 p 1p解:⑴ 卡诺热机效率 213001170%1000T T η=-=-= ⑵ 低温热源2300K T =不变时,即1130080%T η'=-=,解得:11500K T '=,则: 11115001000500K T T T '∆=-=-=即高温热源温度提高500K;⑶ 高温热源11000K T =不变时,即21100080%T η'=-= 解得:2200K T '=,则:222200300-100K T T T '∆=-=-=即低温热源温度降低100K;如题图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为T 2和T 3;求此循环效率;这是卡诺循环吗解:⑴热机效率211Q Q η=-AB 等压过程1P 21()0Q C T T ν'=->,吸热,即有: 11P mo ()B A lMQ Q C T T M '==- CD 等压过程2P 21()0Q vC T T '=-<,放热,即有: )(P mol22D C T T C M MQ Q -='-= ∴)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= AD 绝热过程,其过程方程为:γγγγ----=D D AA T p T p 11 BC 绝热过程,其过程方程为:γγγγ----=C C B BT p T p 111 又 A B C D p p p p ==,,所以得:D C BT TT T = ∴ 231T T -=η⑵ 不是卡诺循环,因为不是工作在两个恒定的热源之间;⑴ 用一卡诺循环的致冷机从7℃的热源中提取1000J 的热量传向27℃的热源,需要多少功从-173℃向27℃呢⑵ 一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于做功就愈有利;当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利为什么解:⑴卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功:12122300280100071.4J 280T T A Q T --==⨯= 173-℃→27℃时,需作功:1222230010010002000J 100T T A Q T --==⨯= ⑵从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的;p O 题图A B C D第9章 静电场长l =15.0cm 的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷;试求:⑴ 在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;⑵ 在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强; 解:⑴ 如题图所示,在带电直线上取线元d x ,其上电量d q 在P 点产生场强为:20)(d π41d x a xE P -=λε 22200220d d 4π()11 []4π22π(4)l P P l x E E a x a l a l la l λελελε-==-=--+=-⎰⎰用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得:21074.6⨯=P E 1C N -⋅ 方向水平向右⑵ 同理,2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220ddd d π41d ++=x x xE Qy λε22223222222022d d d 4π(d )2π4ll Qy Qy l x lE E x d l d λλεε-===++⎰⎰以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得:21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强; 解:如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为:20π4d d R R E εϕλ=,方向沿半径向外,则:ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-= 积分得:R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向;均匀带电的细线弯成正方形,边长为l ,总电量为q ;⑴求这正方形轴线上离中心为r 处的场强E ;⑵证明:在l r >>处,它相当于点电荷q 产生的场强E ;解:如图示,正方形一条边上电荷4q 在P 点产生物强P E 方向如图,大小为:()12220cos cos 4π4P E r l λθθε-=+∵1222cos 2l r l θ=+ ,12cos cos θθ-=∴ 222204π42P lE r l r l λε=++P E 在垂直于平面上的分量cos P E E β⊥=∴ 22222204π424lr E r l r l r l λε⊥=+++由于对称性,P 点场强沿OP 方向,大小为:22220444π(4)2PO lrE E r l r l λε⊥=⨯=++∵ l q4=λ ∴ 222204π(4)2P qrE r l r l ε=++ , 方向沿OP⑴ 点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;⑵ 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: ⑴ 立方体六个面,当q 在立方体中心时,每个面上电通量相等,由高斯定理0d sE S q ε⋅=⎰得:各面电通量06εq e =Φ; ⑵ 电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe ;均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×510-C/m 3求距球心5cm,8cm ,12cm 各点的场强;解:高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E5=r cm 时,0=∑q ,0=E8=r cm 时,334π()3q pr r =-∑内 ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外; 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外. 半径为1R 和2R 2R >1R 的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:⑴r <1R ;⑵ 1R <r <2R ;⑶ r >2R 处各点的场强;解:取同轴圆柱形高斯面,侧面积rl S π2=,则:rl E S E Sπ2d =⋅⎰⑴ 1R r <时,0q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =;⑵ 21R r R <<时,λl q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:rE 0π2ελ= 沿径向向外;⑶ 2R r >时,0=∑q ,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强;解:如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外,n E)(21210σσε+-=2σ面外,n E )(21210σσε+=, n:垂直于两平面由1σ面指为2σ面;半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示;试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的;。

大学物理课后作业10.1

大学物理课后作业10.1

I
大学物理
6、 一铜板厚度为D=1.00mm, 放置在磁感应强度为 B=1.35T的匀强磁场中,磁场方向垂直于导体的侧表 面,如图4所示,现测得铜板上下两面电势差为 V=1.10×10 5 V,已知铜板中自由电子数密度 n=4.20×1028m3, 则此铜板中的电流为: (A) 22.2A; (B) 30.8A; B (C) 54.8A; (D) 82.2A D I V IB 1 IB
2m R T h v xT qB qB BRq 64 vy 107 m / s m 91 hqB 80 vx 107 m / s 2m 91 mvy
2 2 v vx vy 7.6 106 m / s
R U 为R的无限长导体薄壁管 (厚度忽略)沿轴向割去一宽度为h(h <<R)的无限长 狭缝后,再沿轴向均匀地流有电流,其面电流的 线密度为i,则管轴线上磁感应强度的大小 是 0 ih 。 o R 2 R
8R
大学物理
3、如图15所示,一根半径为R的无限长载流直导体, 内有一半径为R的圆柱形空腔,其轴与直导体的轴平 行,两轴相距为 d。电流I沿轴向流过,并均匀分布在 横截面上。试求空腔中任意一点的磁感应强度。 解:此电流可认为是由半径为R的无 限长圆柱电流I1和一个同电流密度的 反方向的半径为R的无限长圆柱电流 I2组成。 I1=JR2 I2=JR 2 J=I/[ (R2R 2)] 它们在空腔内产生的磁感应强度分别为 B1=0r1J/2 B2=0r2J/2 方向如图。 R O 2R
量为
0 I 0 L a b . ln 2 a
s s
m dm Bds


a b
a
0 I 0 L a b ln 2 a

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理上册-课后习题答案全解

大学物理上册-课后习题答案全解

大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.图取向上为正,人在竖直方向的位移为y = v y0t - gt2/2,移项得时间的一元二次方程,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ = rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A AB v v + uv - u ABv uuvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以: ,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.图1h lα图 m(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:12图2 图(2), 因此角度为;而张力为. (5)与上一问相比,加速度的 方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.图图由于,所以,因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,图设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2,v x Δv v y可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .图(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

大学物理学(第三版上) 课后习题5答案详解

大学物理学(第三版上)  课后习题5答案详解

习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A)kA 2 (B) kA 2/2 (C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A ± (C) 23A ±(D) 22A± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

大学物理课后习题答案

大学物理课后习题答案

大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。

(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。

(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。

解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。

大学物理学课后习题参考答案

大学物理学课后习题参考答案

习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理课后作业答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第八章8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强.解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴ ,方向沿轴正向.8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强.解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为∵R λO ϕRd dl =ϕλλd d d R l q ==O 20π4d d R R E εϕλ=ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=RR E x 000π2d sin π4ελϕϕελπ==⎰d cos π400=-=⎰ϕϕελπR E y RE E x 0π2ελ==x l q r E l r >>q E 4q P P Ed ()4π4cos cos d 22021l r E P +-=εθθλ22cos 221l r l +=θ12cos cos θθ-=∴在垂直于平面上的分量∴题8-8图由于对称性,点场强沿方向,大小为∵∴方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,当时,,时, ∴, 方向沿半径向外.cm 时,∴ 沿半径向外.24π4d 22220l r ll r E P ++=ελP Ed βcos d d P E E =⊥424π4d 2222220l r rl r l r l E +++=⊥ελP OP 2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελl q 4=λ2)4(π422220l r l r qrE P ++=ε510-02π4ε∑=q r E 5=r cm 0=∑q 0=E 8=r cm ∑q 3π4p =3(r )3内r -()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅0 d ? ? ? ?? qS E s ? ?8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强.解: 高斯定理取同轴圆柱形高斯面,侧面积则对(1)(2)∴ 沿径向向外 (3)∴题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为和,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为与, 两面间,面外,面外,:垂直于两平面由面指为面.8-13 半径为的均匀带电球体内的电荷体密度为,若在球内挖去一块半径为<的小球体,如题8-13图所示.试求:两球心与点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题8-13图(a).(1) 球在点产生电场,1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑⎰=⋅qS E srl S π2=rlE S E Sπ2d =⋅⎰1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q 0=E 1σ2σ1σ2σnE )(21210σσε-=1σnE )(21210σσε+-=2σnE )(21210σσε+=n1σ2σR ρr R O O 'ρρ-ρ+O 010=E球在点产生电场∴ 点电场;(2) 在产生电场球在产生电场 ∴ 点电场题8-13图(a) 题8-13图(b)(3)设空腔任一点相对的位矢为,相对点位矢为(如题8-13(b)图)则 ,,∴∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功. 解: 如题8-16图示ρ-O 'd π4π3430320OO r E ερ= O d 33030r E ερ= ρ+O ''d π4d 3430301E ερπ='ρ-O '002='E O '003ερ='E 'OOP O 'r'O r 03ερrE PO =3ερr E O P '-=' 00033)(3ερερερd r r E E E O P PO P=='-=+='A B q q AB R 0q O C 0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R q R q -Rq 0π6ε-=∴8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向题8-17图[](2) 电荷在点产生电势,以同理产生 半圆环产生∴8-22 三个平行金属板,和的面积都是200cm 2,和相距,与相距 mm .,都接地,如题8-22图所示.如果使板带正电×10-7C ,略去边缘效应,问板和板上的感应电荷各是多少以地的电势为零,则板的电势是多少解: 如题8-22图示,令板左侧面电荷面密度为,右侧面电荷面密度为Rqq U U q A o C O 00π6)(ε=-=λR O AB CD O θdd R l =θλd d R q =O Ed O y θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=)2sin(π-2sin π-R 0π2ελ-=AB O 0=∞U ⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελCD 2ln π402ελ=U 0034π4πελελ==R R U 0032142ln π2ελελ+=++=U U U U O A B C A B A C B C A B C A A 1σ2σ题8-22图(1)∵ ,即 ∴∴且 + 得而(2)8-23 两个半径分别为和(<)的同心薄金属球壳,现给内球壳带电+,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;解: (1)内球带电;球壳内表面带电则为,外表面带电为,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷入地,外表面不带电,内表面电荷仍为.所以球壳电势由内球与内表面产生:AB AC U U =AB AB AC AC E E d d =2d d 21===AC ABAB AC E E σσ1σ2σS q A=,32S q A =σS q A321=σ7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ301103.2d d ⨯===AC AC AC A E U εσV1R 2R 1R 2R q q +q -q +⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε q +q -q +q -0π4π42020=-=R q R q U εε8-27 在半径为的金属球之外包有一层外半径为的均匀电介质球壳,介质相对介电常数为,金属球带电.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理(1)介质内场强;介质外场强(2)介质外电势介质内电势(3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为,真空部分场强为,自由电荷面密度分别为与由得,而 ,1R 2R r εQ ∑⎰=⋅qS D Sd )(21R r R <<303π4,π4r rQ E r r Q D r εε ==内)(2R r <303π4,π4r r Q E r Qr D ε ==外)(2R r >rQ E U 0r π4r d ε=⋅=⎰∞ 外)(21R r R <<2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεεrd r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεεr ε2E 1E2σ1σ∑⎰=⋅0d q S D11σ=D 22σ=D 101E D ε=202E D r εε=rd r d⋅+⋅=⎰⎰∞∞rrE E U 外内∴题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为,半径分别为和(>),且>>-,两柱面之间充有介电常数的均匀电介质.当两圆柱面分别带等量异号电荷和-时,求:(1)在半径处(<<=,厚度为dr ,长为的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为的同轴圆柱面 则当时,∴(1)电场能量密度 薄壳中(2)电介质中总电场能量(3)电容:∵∴8-34 半径为= 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为=和=,当内球带电荷=×10-8C 时,求:(1)整个电场储存的能量;d 21U E E ==r D D εσσ==1212l 1R 2R 2R 1R l 2R 1R εQ Q r 1R r 2R l r )(S rlDS D S π2d )(=⋅⎰)(21R r R <<Qq =∑rl Q D π2=22222π82l r Q D w εε==rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222===⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εεC Q W 22=)/ln(π22122R R lW Q C ε==1R 2R 3R Q(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电,外球壳内表面带电,外表面带电题8-34图(1)在和区域在时时 ∴在区域在区域∴ 总能量(2)导体壳接地时,只有时,∴(3)电容器电容习题九9-6 已知磁感应强度Wb ·m -2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量.Q Q -Q 1R r <32R r R <<0=E21R r R <<301π4r rQ E ε =3R r >302π4r rQ E ε =21R r R <<⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε3R r >⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε)111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J 21R r R <<30π4r rQ E ε =02=W 4210211001.1)11(π8-⨯=-==R R Q W W εJ )11/(π422102R R Q W C -==ε121049.4-⨯=F 0.2=B x abcd befc aefd解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量(3)通过面积的磁通量(或曰)题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生 产生,方向垂直向里段产生 ,方向向里∴,方向向里. 题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度.解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。

相关文档
最新文档