2019-2020年高考数学一轮复习第九章解析几何课时跟踪检测50理新人教A版
高考数学一轮总复习单元质检卷9解析几何新人教A版
![高考数学一轮总复习单元质检卷9解析几何新人教A版](https://img.taocdn.com/s3/m/5e0d496ca4e9856a561252d380eb6294dd88222c.png)
单元质检卷九解析几何(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知直线l经过点(1,1),且与直线2xy5=0垂直,则直线l的方程为()A.2x+y1=0B.x2y3=0C.x+2y+1=0D.2xy3=02.若P(0,1)为圆x2+2x+y215=0的弦MN的中点,则直线MN的方程为()A.y=x+1B.y=x+1C.y=2x+1D.y=2x+13.已知中心在坐标原点的椭圆C的右焦点为F(2,0),且其离心率为,则椭圆C的标准方程为()A.=1B.=1C.=1D.=14.若圆C:(x2)2+(y1)2=4恰好被直线l:ax+by=1(a>0,b>0)平分,则的最小值为()A.8B.6C.8D.65.已知双曲线x2=1的左、右焦点分别为F1,F2,过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,则|AB|=()A.2B.3C.4D.2+16.设抛物线y2=2px(p>0)的焦点为F,过点F作倾斜角为60°的直线交抛物线于点A,B(点A位于x轴上方),O是坐标原点,记△AOF和△BOF的面积分别为S1,S2,则=()A.9B.4C.3D.27.已知F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,以F2为圆心,a为半径的圆与双曲线的一条渐近线交于A,B两点,若|AB|>,则双曲线的离心率的取值范围是()A. B.,+∞C.(1,)D.1,8.已知抛物线C:y2=2px(p>0)的焦点为F,准线与坐标轴交于点M,P是抛物线C上的一点,且∠PFM 为钝角.若|PM|=,|PF|=4,则△PMF的面积是()A. B.3C. D.39.设双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,双曲线C上一点P到x轴的距离为2a,∠F1PF2=120°,则双曲线C的离心率为()A. B.1+C.2+D.410.已知抛物线y2=8x的焦点为F,经过点P(1,1)的直线l与该抛物线交于A,B两点,且点P恰为AB 的中点,则|AF|+|BF|=()A.4B.6C.8D.1211.已知抛物线y2=2px(p>0)的焦点为F,过F且倾斜角为的直线l与抛物线相交于A,B两点,|AB|=8,过A,B两点分别作抛物线的切线,交于点Q.下列说法正确的是()A.QA⊥QBB.△AOB(O为坐标原点)的面积为4C.=2D.若M(1,1),P是抛物线上一动点,则|PM|+|PF|的最小值为12.已知直线x2y+n=0(n≠0)与双曲线:=1(a>0,b>0)的两条渐近线分别相交于A,B两点,点P的坐标为(n,0),若|PA|=|PB|,则该双曲线的离心率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.13.已知抛物线C:y2=4x的焦点为F,准线为l,点P在抛物线C上,PQ垂直l于点Q,QF与y轴交于点T,O为坐标原点,且|OT|=2,则|PF|= .14.在平面直角坐标系中,直线mx+y2m2=0与圆C:(x1)2+(y4)2=9交于M,N两点,当△MNC的面积最大时,实数m的值为.15.已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为.16.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与C交于A,B两点,满足AF1⊥AF2且|AF2|=2|AF1|,则tan∠BF2F1= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知抛物线C:y2=2px(p>0)的焦点为F,S(t,4)为C上一点,直线l交C于M,N两点(与点S不重合).(1)若l过点F且倾斜角为60°,|FM|=4(M在第一象限),求C的方程.(2)若p=2,直线SM,SN分别与y轴交于A,B两点,且=8,判断直线l是否恒过定点?若是,求出该定点;若不是,请说明理由.18.(12分)已知椭圆C1:=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.19.(12分)已知椭圆C:=1(a>b>0)的左、右焦点分别是F1,F2,其离心率e=,点P是椭圆C上一动点,△PF1F2内切圆面积的最大值为.(1)求椭圆C的标准方程;(2)直线PF1,PF2与椭圆C分别相交于点A,B,求证:为定值.20.(12分)已知抛物线E:y2=4x的焦点为F,准线为l,O为坐标原点,过F的直线m与抛物线E交于A,B两点,点A在第一象限,过F且与直线m垂直的直线n与准线l交于点M.(1)若直线m的斜率为,求的值;(2)设AB的中点为N,若O,M,N,F四点共圆,求直线m的方程.21.(12分)如图,过椭圆E:+y2=1的左、右焦点F1,F2分别作直线l1,l2,交椭圆于A,B两点与C,D两点,且l1∥l2.(1)求证:当直线l1的斜率k1与直线BC的斜率k2都存在时,k1k2为定值;(2)求四边形ABCD面积的最大值.22.(12分)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且☉M与l相切.(1)求C,☉M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与☉M相切.判断直线A2A1与☉M的位置关系,并说明理由.答案:单元质检卷九解析几何1.C因为直线l与直线2xy5=0垂直,所以直线l的方程可设为x+2y+m=0,因为直线l经过点(1,1),所以1+2×(1)+m=0,解得m=1,则直线l的方程为x+2y+1=0,故选C.2.A圆x2+2x+y215=0的圆心为C(1,0),则CP⊥MN.因为k CP==1,所以k MN=1,故直线MN的方程为y=x+1.3.A由题意,c=2,又,所以a=4,所以b2=a2c2=12,所以椭圆C的标准方程为=1.故选A.4.C由题意,圆心C(2,1)在直线l上,则有2a+b=1,所以=(2a+b)=+4≥2+4=8,当且仅当,即b=2a=时,取等号,所以的最小值为8.故选C.5.C设双曲线的实半轴长为a,依题意可得a=1,由双曲线的定义可得|AF2||AF1|=2a=2,|BF1||BF2|=2a=2,又|AF1|=|BF1|,故|AF2||BF2|=4,又|AB|=|AF2||BF2|,故|AB|=4.6.C由题意,直线AB的方程为y=x,代入y2=2px,整理得x2px+p2=0.设点A,B的坐标分别为(x1,y1),(x2,y2),因为点A位于x轴上方,解方程得x1=p,x2=p,所以=3.故选C.7.D焦点F2(c,0)到渐近线y=±x的距离为d==b,所以|AB|=2因为|AB|>,即2,所以9(a2b2)>c2,解得e2<又e>1,所以1<e<8.A设P(x0,y0),由抛物线的定义得|PF|=x0+=4,∴x0=4=2p4=8pp2.由|PM|=,M,0,得42+=23,即16+8pp2=23,解得p=1或p=7.又cos∠PFM=<0,∴p=1,S△PMF=p×|y0|=故选A.9.C设P为第一象限内的点,|PF1|=m,|PF2|=n,|F1F2|=2c,可得mn=2a,在△PF1F2中,可得4c2=m2+n22mn cos120°=m2+n2+mn=(mn)2+3mn,即为4c2=4a2+3mn,即mn=(c2a2),又△PF1F2的面积为mn sin120°=(c2a2)2c×2a,化为c2a22ac=0,所以e22e1=0,解得e=2+(负根舍去).10.B抛物线y2=8x的焦点为F(2,0),准线方程为x=2,过点A,B,P作准线的垂线段,垂足分别为点M,N,R,因为点P恰为AB的中点,所以|PR|是直角梯形AMNB的中位线,故|AM|+|BN|=2|PR|.由抛物线的定义可得|AF|+|BF|=|AM|+|BN|=2|PR|=2|1(2)|=6.故选B.11.A设A(x1,y1),B(x2,y2),因为直线l过焦点F且倾斜角为,所以由结论|AB|=|AF|+|BF|==4p=8,得p=2,所以y2=4x.不妨设y1>0,当y>0时,y=2,y'=,所以过A的切线斜率为k A=y',同理可得过B的切线斜率为k B=y'=由结论x1x2=,得k A k B===1,所以QA⊥QB,故A正确;S△AOB==2,故B错误;=1,故C错误:设点M到准线的距离为d,M(1,1),则|PM|+|PF|≥d=1+=2,故D错误.故选A.12.C由题意,双曲线的渐近线为y=±x,联立得A,联立得B,所以AB的中点E,k AB=,k PE=,因为|PA|=|PB|,所以k AB·k PE=1,即=2,2a2=3b2,所以e=13.5不妨设点P在第一象限,PQ与y轴交于点M,则易知△MQT∽△OFT,则,又OF=MQ=1,OT=2,所以MT=2.所以点P,Q的纵坐标都为4,代入抛物线方程求得P(4,4),故PF=4+1=5.14.1或由圆C:(x1)2+(y4)2=9,则圆心C(1,4),r=3,点C(1,4)到直线的距离d=,∵直线与圆C相交,∴0<d<r∴0<<3,解得m∈R.则|MN|=2=2,S△MNC=|MN|·d=,设t=d2,则S△MNC=,当t=时,(S△MNC)max=,此时d2=,即,∴7m2+8m+1=0,解得m=1或m=15.x=∵PF⊥x轴,∴x P=x F=,将x P=代入y2=2px,得y=±p.不妨设点P在x轴的上方,则P,p,即|PF|=p.如图,由条件得,△PFO∽△QFP,,即,解得p=3.故C的准线方程为x=16.如图,设|AF2|=2|AF1|=4.又AF1⊥AF2,∴|F1F2|==2设|BF1|=m,|BF2|=n,则有|BF1|+|BF2|=|AF1|+|AF2|=2+4=6,即m+n=6.①又在△BF1F2与Rt△BAF2中,cos B=,∴m2n2+4m+20=0.②由①②解得m=1,n=5,∴cos∠BF2F1=,sin∠BF2F1=,∴tan∠BF2F1=17.解(1)抛物线C的焦点为F,0,因为l过点F且倾斜角为60°,所以l:y=x.由可得12x220px+3p2=0,解得x=p或x=又M在第一象限,设M(x M,y M),所以x M=p.因为|FM|=4,所以p+=4,解得p=2,所以抛物线C的方程为y2=4x.(2)l过定点(4,4).由已知得抛物线C为y2=4x,点S(4,4),设直线l的方程为x=my+n,点M,y1,N,y2, 将直线l的方程与抛物线C:y2=4x联立得y24my4n=0,所以Δ=16m2+16n>0,y1+y2=4m,y1y2=4n.直线SM的方程为y4=(x4),令x=0求得点A的纵坐标为,同理求得点B的纵坐标为由=8,化简得y1y2=4(y1+y2)+16,则4n=16m+16,即n=4m4,所以直线l的方程为x=my4m4,即x+4=m(y4),所以直线l过定点(4,4).18.解(1)由已知可设C2的方程为y2=4cx,其中c=不妨设A,C在第一象限,由题设得A,B的纵坐标分别为,;C,D的纵坐标分别为2c,2c, 故|AB|=,|CD|=4c.由|CD|=|AB|得4c=,即3=222,解得=2(舍去),所以C1的离心率为(2)由(1)知a=2c,b=c,故C1:=1.设M(x0,y0),则=1,=4cx0,故=1.①由于C2的准线为x=c,所以|MF|=x0+c,而|MF|=5,故x0=5c,代入①得=1,即c22c3=0,解得c=1(舍去),c=3.所以C1的标准方程为=1,C2的标准方程为y2=12x.19.(1)解由题意得△PF1F2内切圆半径r的最大值为,椭圆C的标准方程为=1.(2)证明设P(x0,y0),A(x1,y1),B(x2,y2),①当y0≠0时,设直线PF1,PF2的方程分别是x=m1y1,x=m2y+1,由得(3+4)y26m1y9=0,Δ>0显然成立.∴y0y1=∵x0=m1y01,∴m1=,=,同理,由可得=,=②当y0=0时,直线PF1,PF2与x轴重合,易得=3+综上所述,20.解(1)如图,由抛物线y2=4x,得F(1,0),则直线m的方程为y=(x1),联立得3x210x+3=0,解得x1=,x2=3,∵A在第一象限,∴x A=3,x B=,则|AF|=3+1=4,|BF|=+1=,=3;(2)设直线m的方程为x=ty+1,由题意可得t≠0,否则,N与F重合,不存在O,M,N,F四点共圆.把x=ty+1代入y2=4x,得y24ty4=0,Δ>0显然成立.设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=4.x1+x2==4t2+2,∴N(2t2+1,2t).∵直线m的斜率为,∴直线n的斜率为t,则直线n的方程为y=t(x1).由解得M(1,2t).若O,M,N,F四点共圆,再结合FN⊥FM,得OM⊥ON,则=1×(2t2+1)+2t×2t=2t21=0,解得t=±,∴直线m的方程为y=±(x1).21.(1)证明设A(x1,y1),B(x2,y2),根据对称性,有C(x1,y1),因为A(x1,y1),B(x2,y2)都在椭圆E上,所以=1,=1,二式相减,得=0,所以k1k2==为定值.(2)解当l1的倾斜角为0°时,l1与l2重合,舍去.当l1的倾斜角不为0时,由对称性得四边形ABCD为平行四边形,F1(,0), 设直线l1的方程为x=my,代入+y2=1,得(m2+4)y22ym1=0.显然Δ>0,y1+y2=,y1·y2=所以S△OAB=|y1y2|==2设m2+1=t,则m2=t1,t∈[1,+∞).所以当且仅当t=,即m=±时取等号,所以(S△OAB)max=2=1.所以平行四边形面积的最大值为(S▱ABCD)max=4·(S△OAB)=4.22.解(1)由题意设抛物线的标准方程为y2=2px,p>0,当x=1时,y2=2p,y=±∵OP⊥OQ,=1,即2p=1,∴抛物线的标准方程为y2=x,☉M的方程为(x2)2+y2=1.(2)设A1(a2,a),A2(b2,b),A3(c2,c).:ya=(xa2),即x(a+b)y+ab=0,∵直线A1A2与☉M相切,=1.①:ya=(xa2)⇒x(a+c)y+ac=0,∵直线A1A3与☉M相切,=1.②∴b,c是方程=1,即(a21)x2+2axa2+3=0的两根.又:x(b+c)y+bc=0,∴圆心(2,0)到直线的距离d==1.∴d与☉M的半径相等,即直线A2A3与☉M相切.。
2019届高考数学人教A版理科第一轮复习单元测试题:第九章 解析几何
![2019届高考数学人教A版理科第一轮复习单元测试题:第九章 解析几何](https://img.taocdn.com/s3/m/26123850f7ec4afe04a1dff6.png)
单元质检九解析几何(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C.3x-4y+16=0D.3x-4y+16=0或3x-4y-14=02.与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有()A.2条B.3条C.4条D.6条3.(2017全国Ⅱ,理9)若双曲线C1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为()A.24.抛物线y2=8x的焦点到双曲线1的渐近线的距离为()5.1(a>b>0)与双曲线1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a,m 的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()6.过点A(0,3),被圆(x-1)2+y2=4截得的弦长为()A. 3B.x=0或 3C.x=0或 3D.x=07.若直线x-y+2=0与圆C:(x-3)2+(y-3)2=4相交于A,B,()A.-1B.0C.1D.108.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e29.1的两条渐近线与直线A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()C.(1,2)D.(+∞)10.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线2=1的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a=()C.3D.911.已知抛物线y2=2px(p>0)1(a>0,b>0)的两条渐近线分别交于两点A,B(A,B异于原点),抛物线的焦点为F.若双曲线的离心率为2,|AF|=7,则p=()A.3B.6C.12D.4212.(2017福建厦门一模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,A,B是C上两动点,且∠AFB=α(α为常数),线段AB中点为M,过点M作l的垂线,垂足为N,1,则α=()二、填空题(本大题共4小题,每小题5分,共20分)13.(2017北京,理9)若双曲线x21则实数m=.14.抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若三角形OFM的外接圆与抛物线C的准线相切,且该圆的面积为36π,则p的值为.15.(2017全国Ⅰ,理15)已知双曲线C:1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为.16.若关于x,y的方程1表示的是曲线C,给出下列四个命题:①若C为椭圆,则1<t<4;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C表示椭圆,且长轴在x轴上,则1其中正确的命题是.(把所有正确命题的序号都填在横线上)三、解答题(本大题共6小题,共70分)17.(10分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.18.(12分)(2017安徽蚌埠一模)已知椭圆C:1(a>b>0)F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2(1)求椭圆C的方程;(2)设圆T:(x-2)2+y2过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.19.(12分)已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k(k>0).设抛物线W的焦点在直线AB的下方.(1)求k的取值范围;(2)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,判断四边形ABDC是否为梯形,并说明理由.20.(12分)(2017吉林延边州模拟)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.(1)求动点A的轨迹M的方程;(2)P为轨迹M上的动点,△PBC的外接圆为☉O1,当点P在轨迹M上运动时,求点O1到x轴的距离的最小值.21.(12分)1(a>0,b>0)的右焦点为F(c,0).(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为求双曲线的离心率.22.(12分)已知椭圆E1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P,证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.答案:1.D解析设所求直线方程为3x-4y+m=0,3,解得m=16或m=-14.即所求直线方程为3x-4y+16=0或3x-4y-14=0.2.C解析过原点与圆x2+(y-2)2=1相切的直线有2条;斜率为-1且与圆x2+(y-2)2=1相切的直线也有2条,且此两条切线不过原点,由此可得与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有4条.3.A解析可知双曲线C的渐近线方程为bx±ay=0,取其中的一条渐近线方程为bx+ay=0,则圆心(2,0)到这条渐近线的距离为所以c=2a,所以e=2,故选A.4.A解析抛物线y2=8x的焦点坐标为(2,0),1的渐近线x0的距离1.5.D解析由题意可知2n2=2m2+c2.因为m2+n2=c2,所以m=因为c是a,m的等比中项,所以c2=am,代入m=解得6.B解析当弦所在的直线斜率不存在时,即弦所在直线方程为x=0,此时被圆(x-1)2+y2=4截得的弦长为当弦所在的直线斜率存在时,设弦所在直线l的方程为y=kx+3,即kx-y+3=0.因为弦长为圆的半径为2,1.由点到直线距离公式,1,解得综上所述,所求直线方程为x=0或3.7.B解析依题意,圆心C(3,3)到直线x-y+2=0从而易得cos ACB=45°,所以∠ACB=90°,0,故选B.8.D解析11当a>b时,所以e1<e2.当a<b时,所以e1>e2.所以,当a>b时,e1<e2;当a<b时,e1>e2.9.B解析1的两条渐近线方程为y=,当,y=所以不妨令因为60°<∠AFB<90°,1,1.所以1,即1<e2-1<3,<e<2.10.A解析由题意可知,抛物线y2=2px(p>0)的准线方程为x=-4,则p=8,所以点M(1,4).-y2=1的左顶点为A(,0),所以直线AM的斜率为解得11.B解析因为双曲线的离心率为2,所以e24,即b2=3a2,1(a>0,b>0)的两条渐近线方程为y=,代入y2=2px(p>0),得或x=0,故x A=x B又因为|AF|=x A7,所以p=6.12.C解析如图,过点A,B分别作准线的垂线AQ,BP,垂足分别是Q,P.设|AF|=a,|BF|=b,连接AF,BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|.在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2-2ab cos α.1,∴a2+b2-2ab cos α当α,不等式恒成立.故选C.13.2解析由题意知a=1,m>0,则离心率解得m=2.14.8解析设△OFM的外接圆圆心为O1,则|O1O|=|O1F|=|O1M|,所以O1在线段OF的垂直平分线上.又因为☉O1与抛物线的准线相切,所以O1在抛物线上,所以O又因为圆面积为36π,所以半径为6,2=36,所以p=8.15解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴,设双曲线C的一条渐近线的倾斜角为θ,则tan θ=又tan θ=解得a2=3b2,∴16.②解析若C为椭圆,则有4-t>0,t-1>0,且4-t≠t-1,解得1<t<4,且t所以①不正确;若C为双曲线,则有(4-t)(t-1)<0,解得t>4或t<1,所以②正确;若,该曲线表示圆,所以③不正确;若C表示椭圆,且长轴在x轴上,则4-t>t-1>0,解得1<t<所以④错误.17.解(1)得圆心C(3,2).又因为圆C的半径为1,所以圆C的方程为(x-3)2+(y-2)2=1.显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx-y+3=0,1,所以|3k+1,即2k(4k+3)=0.所以k=0或所以所求圆C的切线方程为y=3或3,即y=3或3x+4y-12=0.(2)由圆C的圆心在直线l:y=2x-4上,可设圆心C为(a,2a-4),则圆C的方程为(x-a)2+[y-(2a-4)]2=1.又因为|MA|=2|MO|,所以设M(x,y),2整理得x2+(y+1)2=4.设方程x2+(y+1)2=4表示的是圆D,所以点M既在圆C上又在圆D上,即圆C和圆D有交点,所以2-12+1,解得a18.解(1)由题意,得可知a=4b,c=∵△PF1F2的周长是8+2,∴2a+2c=8+∴a=4,b=1.∴椭圆C的方程为2=1.(2)椭圆的上顶点为M(0,1),由题意知过点M与圆T相切的直线存在斜率,则设其方程为l:y=kx+1,由直线y=kx+1与圆T相切可知即32k2+36k+5=0,∴k+k k k=(1+x2+32k1x=0,∴x E同理x Fk EF故直线EF的斜率为19.解(1)抛物线y=x2由题意,得直线AB的方程为y-1=k(x-1),令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).因为抛物线W的焦点在直线AB的下方,所以1-k>解得因为k>0,所以0即k的取值范围是(2)结论:四边形ABDC不可能为梯形.理由如下:假设四边形ABDC为梯形.由题意,设B(x1C(x2D(x3,y3),消去y,得x2-kx+k-1=0.由根与系数的关系,得1+x1=k,所以x1=k-1.同理,得x21.对函数y=x2求导,得y'=2x,所以抛物线y=x2在点B处的切线BD的斜率为2x1=2k-2,抛物线y=x2在点C处的切线CD的斜率为2x22.由四边形ABDC为梯形,得AB∥CD或AC∥BD.若AB∥CD,则2,即k2+2k+2=0.因为方程k2+2k+2=0无解,所以AB与CD不平行.若AC∥BD,则2k-2,即2k2-2k+1=0,因为方程2k2-2k+1=0无解,所以AC与BD不平行.所以四边形ABDC不是梯形,与假设矛盾.因此四边形ABDC不可能为梯形.20.解(1)根据题意知,动点A满足椭圆的定义.1(a>b>0且y≠0),所以有|BC|=2c=2,|AB|+|AC|=2a=4,且a2=b2+c2,解得a=2,所以动点A的轨迹M1(y≠0).(2)设P(x0,y0),不妨设0<y0线段PB的垂直平分线方程为线段BC的垂直平分线方程为x=0,两条垂线方程联立求得1,∴∴☉O1的圆心O1到x轴的距离又内是单调递减函数,∴当y,y min∴d min21.解(1)1的渐近线方程为y=,由双曲线的一条渐近线方程为y=x,1,解得a=b.因为c=2,所以1.(2)设A的坐标为(m,n),可得直线AO的斜率满足即①因为以点O为圆心,c为半径的圆的方程为x2+y2=c2,所以将①代入圆的方程,得3n2+n2=c2,解得,将点A,1,2b22a2=a2b2.又因为c2=a2+b2,4-2c2a2+a4=0.两边都除以a4,整理得3e4-8e2+4=0,解得e2e2=2.因为双曲线的离心率e>1,所以该双曲线的离心率负值舍去).22.解(1)由已知,,则椭圆E1.y,得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E1,点T的坐标为(2,1).(2)由已知可设直线l'的方程为(m≠0),所以点P的坐标为|PT|22.设点A,B的坐标分别为A(x1,y1),B(x2,y2).y,得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2).由Δ>0,解得由②得x1+x2=-x1x2所以|PA|同理|PB|=所以|PA|·|PB|2.故存在常数λ使得|PT|2=λ|PA|·|PB|.。
2020版高考文科数学第一轮复习练习:第九章 解析几何 课后跟踪训练50
![2020版高考文科数学第一轮复习练习:第九章 解析几何 课后跟踪训练50](https://img.taocdn.com/s3/m/9b62fca710a6f524cdbf854d.png)
课后跟踪训练(五十)基础巩固练一、选择题1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3 D.5π6[解析] 由直线的方程得直线的斜率为k =-33,设直线的倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.故选D.[★答案★] D2.过点A (0,2)且倾斜角的正弦值是35的直线方程为( ) A .3x -5y +10=0 B .3x -4y +8=0 C .3x +4y +10=0D .3x -4y +8=0或3x +4y -8=0[解析] 设所求直线的倾斜角为α,则sin α=35,∴tan α=±34,∴所求直线方程为y =±34x +2,即为3x -4y +8=0或3x +4y -8=0.故选D.[★答案★] D3.(2019·山东烟台一模)已知p :“直线l 的倾斜角α>π4”;q :“直线l 的斜率k >1”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 直线l 的倾斜角α>π4,则直线l 的斜率k =tan α>1或k <0;又直线l 的斜率k >1,则tan α>1,∴α∈⎝ ⎛⎭⎪⎫π4,π2,∴p 是q 的必要不充分条件.故选B.[★答案★] B4.(2018·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23[解析] 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.故选B.[★答案★] B5.(2018·西安调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )[解析] 当a >0,b >0时,-a <0,-b <0.选项B 符合.故选B. [★答案★] B 二、填空题6.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为__________________________.[解析] BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.[★答案★] x +13y +5=07.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.[解析]设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23. 如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2. [★答案★] ⎣⎢⎡⎦⎥⎤23,28.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________________.[解析] 若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.若直线不过原点,设直线方程为x a +ya =1, 即x +y =a ,则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. [★答案★] 4x +3y =0或x +y +1=0 三、解答题9.(2019·四川达州月考)已知直线l 过点(1,2)且在x ,y 轴上的截距相等.(1)求直线l 的一般方程;(2)若直线l 在x ,y 轴上的截距不为0,点P (a ,b )在直线l 上,求3a +3b 的最小值.[解] (1)①截距为0时,l :y =2x ;②截距不为0时,k =-1,l :y -2=-(x -1),∴y =-x +3.综上,l 的一般方程为2x -y =0或x +y -3=0.(2)由题意得l :x +y -3=0,∴a +b =3,∴3a +3b ≥23a ·3b =23a +b=63,∴3a+3b的最小值为63,当且仅当a =b =32时,等号成立.10.(2019·山东临沂检测)已知直线l :(2+m )x +(1-2m )y +4-3m =0.(1)求证:不论m 为何实数,直线l 过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程.[解] (1)证明:直线l 的方程整理得(2x +y +4)+m (x -2y -3)=0,由⎩⎪⎨⎪⎧ 2x +y =-4,x -2y =3,解得⎩⎪⎨⎪⎧x =-1,y =-2,所以无论m 为何实数,直线l 过定点M (-1,-2).(2)过定点M (-1,-2)作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,则直线l 1过点(-2,0),(0,-4),设直线l 1的方程为y =kx +b ,把两点坐标代入得⎩⎪⎨⎪⎧ -2k +b =0,b =-4,解得⎩⎪⎨⎪⎧k =-2,b =-4,则直线l 1的方程为y =-2x -4,即2x +y +4=0.能力提升练11.(2018·广东惠州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15 B .-1<k <12 C .k >15或k <-1D .k <-1或k >12[解析] 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k <3,解不等式得k <-1或k >12.故选D.[★答案★] D12.(2019·福建福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( )A .1B .2C .4D .8[解析] ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +ab ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴、y 轴上的截距之和的最小值为4.故选C. [★答案★] C13.过点A (2,1),其倾斜角是直线l 1:3x +4y +5=0的倾斜角的一半的直线l 的方程为_____________________________.[解析] 设直线l 和l 1的倾斜角分别为α、β, 则α=β2∈⎣⎢⎡⎭⎪⎫0,π2,又tan β=-34,则-34=2tan α1-tan 2α, 解得tan α=3或tan α=-13(舍去).由点斜式得y -1=3(x -2),即3x -y -5=0. [★答案★] 3x -y -5=014.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.[解] 解法一:设A (a,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1. 因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0. 解法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12) =12,当且仅当-9k =4-k ,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.拓展延伸练15.直线y =-m n x +1n 经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0[解析] 因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.故选B.[★答案★] B16.(2018·黑龙江哈尔滨模拟)经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为______________________.[解析] 设所求直线l 的方程为x a +yb =1, 由已知可得⎩⎪⎨⎪⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.所以2x +y +2=0或x +2y -2=0为所求. [★答案★] 2x +y +2=0或x +2y -2=0感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
2019届高考数学人教A版理科第一轮复习:第九章 解析几何 9.2
![2019届高考数学人教A版理科第一轮复习:第九章 解析几何 9.2](https://img.taocdn.com/s3/m/aedfb535844769eae009ed43.png)
l2:A2x+B2y+C2=0,
l1⊥l2⇔ A1A2+B1B2=0
.
2019年5月18日
缘分让我在这里遇见你缘分让我在这里遇见 你
3
知识梳理 双基自测
123
2.两条直线的交点
唯一解 无解
无穷多解
2019年5月18日
缘分让我在这里遇见你缘分让我在这里遇见 你
4
知识梳理 双基自测
123
3.三种距离
关闭
由“l1∥l2”得到a2-1=0,解得a=-1或a=1,所以应是充分不必要条件.故选A.
A
2019年5月18日
缘分让我在这里遇见你缘分让我在这里遇见 你
关闭
解析
答7 案
知识梳理 双基自测
12345
3.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l 的方程是( )
A.x+y-2=0 B.x-y+2=0 C.x+y-3=0 D.x-y+3=0
∴kAB=���4���-+������2=-2,解得 m=-8.
又 l2⊥l3,∴
-
1 ������
×(-2)=-1,
解得 n=-2.∴月18日
缘分让我在这里遇见你缘分让我在这里遇见 你
17
考点1
考点2
考点3
考点4
(2)解 ①由已知可得l2的斜率存在,故k2=1-a.
关闭
已知圆的圆心为(0,3),直线x+y+1=0的斜率为-1,则所求直线的斜率为1,
故所求直线的方程为y=x+3,即x-y+3=0.故选D.
高考数学一轮复习 第九章 解析几何 课时跟踪检测50 理 新人教A版
![高考数学一轮复习 第九章 解析几何 课时跟踪检测50 理 新人教A版](https://img.taocdn.com/s3/m/afd00cb4d0d233d4b14e6984.png)
课时跟踪检测(五十)[高考基础题型得分练]1.[2017·浙江温州十校联考]对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( )A .相离B .相切C .相交D .以上三个选项均有可能 答案:C解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.2.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8答案:B解析:将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.3.[2017·辽宁大连期末]圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =( )A.2-1或-2-1 B .1或-3 C .1或- 2 D. 2答案:B解析:由题意知,圆的标准方程为x 2+(y +1)2=4. 较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2. 即|1+k |2=2,解得k =1或-3. 4.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21B .19C .9D .-11答案:C解析:圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m , 所以圆心C 2(3,4),半径r 2=25-m , 从而|C 1C 2|=32+42=5.由两圆外切,得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.5.[2017·江西南昌模拟]已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当S △AOB =1时,直线l 的倾斜角为( )A .150°B .135°C .120°D .不存在答案:A解析:由于S △AOB =12×2×2sin ∠AOB =1,∴sin ∠AOB =1,∴∠AOB =π2, ∴点O 到直线l 的距离OM 为1,而OP =2,OM =1,在直角△OMP 中,∠OPM =30°, ∴直线l 的倾斜角为150°,故选A.6.[2017·山东青岛一模]过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4答案:A解析:如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线,∴AB ⊥OP .∵P (1,3),O (0,0), ∴|OP |=1+3=2. 又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|OA |sin ∠AOP = 3.7.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2答案:D解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22, 因此根据直角三角形勾股定理,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 8.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x +y -3=0B .x +y -1=0C .x -y +5=0D .x -y -5=0答案:C解析:设直线的斜率为k ,又弦AB 的中点为(-2,3), 所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2), 所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1, 所以直线l 的方程为x -y +5=0.9.[2017·河北唐山模拟]过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=________.答案:5解析:解法一:由已知得,圆心C (0,2),半径r =5,△ABC 是直角三角形,|AC |=-2+-2=10,|BC |=5,∴cos ∠ACB =BC AC=510,∴CA →·CB →=|CA →||CB →|cos ∠ACB =5.解法二:CA →·CB →=(CB →+BA →)·CB →=CB →2+BA →·CB →, 由于|BC |=5,AB ⊥BC , 因此CA →·CB →=5+0=5.10.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案:4±15解析:依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是为________.答案:⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:整理曲线C 1的方程得,(x -1)2+y 2=1,故曲线C 1为以点C 1(1,0)为圆心,1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,依题意知直线l 与圆相交,故有圆心C 1到直线l 的距离d =|m+-0|m 2+1<r =1,解得m∈⎝ ⎛⎭⎪⎫-33,33, 又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 故m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 12.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.答案:x +y -3=0解析:依题意得,当∠ACB 最小时,圆心C 到直线l 的距离达到最大,此时直线l 与直线CM 垂直,又直线CM 的斜率为1, 因此所求直线l 的方程是y -2=-(x -1),即x +y -3=0.[冲刺名校能力提升练]1.[2017·辽宁沈阳一模]直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为( ) A .3 B .2 2 C .3或-5 D .-3或5答案:C解析:解法一:联立⎩⎪⎨⎪⎧y =x +4,x -a 2+y -2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4×2×(a 2-7)=0, 整理可得a 2+2a -15=0,解得a =3或-5.解法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y =x +4与圆(x -a )2+(y -3)2=8相切知,圆心到直线的距离等于半径,所以|a -3+4|12+-2=22,即|a +1|=4,解得a =3或-5.2.[2017·新疆乌鲁木齐一诊]在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是( )A.π6 B.π4 C.π3D.3π4答案:B解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.3.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)·(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条; 当直线l 的斜率k 存在时,如图,x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.4.[2017·云南名校联考]已知圆O :x 2+y 2=1,P 为直线x -2y +5=0上的动点,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.答案:2解析:过O 作OP 垂直于直线x -2y +5=0, 过P 作圆O 的切线PA ,连接OA , 易知此时|PA |的值最小. 由点到直线的距离公式,得 |OP |=|1×0-2×0+5|1+22= 5. 又|OA |=1,所以|PA |=|OP |2-|OA |2=2.5.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 6.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若a =2,过点M 作圆O 的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解:(1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1), 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33, 此时切线方程为y +3=33(x -1), 即x -3y -4=0.所以所求的切线方程为x +3y -4=0或x -3y -4=0. (2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0), 则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22). 因为2d 1d 2≤d 21+d 22=3, 所以d 21d 22≤94,当且仅当d 1=d 2=62时等号成立, 所以4+d 21d 22≤52,所以(|AC |+|BD |)2≤4×⎝ ⎛⎭⎪⎫5+2×52=40.所以|AC |+|BD |≤210, 即|AC |+|BD |的最大值为210.。
高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人
![高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人](https://img.taocdn.com/s3/m/aeb8980603020740be1e650e52ea551810a6c9f3.png)
第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。
2020年高中数学 一轮复习 专题检测卷九 解析几何(理科)(人教A版)
![2020年高中数学 一轮复习 专题检测卷九 解析几何(理科)(人教A版)](https://img.taocdn.com/s3/m/a69c365876c66137ee0619c3.png)
专题检测卷九 解析几何(时间:100分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019山西芮城模拟,6)点P (2,3)到直线l :ax+y-2a=0的距离为d ,则d 的最大值为( ) A.3B.4C.5D.72.(2019云南师范大学附中模拟,8)直线l 与双曲线x 2-y 22=1交于A ,B 两点,以AB 为直径的圆C 的方程为x 2+y 2+2x+4y+m=0,则m=( ) A.-3B.3C.5-2√2D.2√23.(2019湖南湖北八市十二校一调联考,8)已知抛物线C :y 2=2px (p>0)的焦点为F ,过点F 的直线l 与抛物线C 交于A 、B 两点,且直线l 与圆x 2-px+y 2-34p 2=0交于C 、D 两点.若|AB|=2|CD|,则直线l 的斜率为 ( )A.±√22B.±√32C.±1D.±√24.(2019江西名校(临川一中、南昌二中)2019联考,7)阿波罗尼斯(约公元前262—190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k>0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P 满足|PA ||PB |=√2,当P 、A 、B 不共线时,三角形PAB 面积的最大值是( ) A.2√2 B.√2 C.2√2D.√25.设F 1、F 2是双曲线C :x 2a2−y 2b2=1(a>0,b>0)的左、右焦点,A 为左顶点,点P 为双曲线C 右支上一点,|F 1F 2|=10,PF 2⊥F 1F 2,|PF 2|=163,O 为坐标原点,则OA⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ = ( )A.-293 B.163C.15D.-156.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为( ) A.11B.5√5C.41D.57.(2019山东青岛调研,11)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴相交于点R ,若∠NRF=60°,则|FR|等于( ) A.12 B.1 C.2 D.48.(2019福建宁德质检,8)如图,点F 是抛物线C :x 2=4y 的焦点,点A ,B 分别在抛物线C 和圆x 2+(y-1)2=4的实线部分上运动,且AB 总是平行于y 轴,则△AFB 周长的取值范围是( ) A.(3,6)B.(4,6)C.(4,8)D.(6,8)9.(2019黑龙江齐齐哈尔市二模,9)已知椭圆E :x 2a 2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,过F 1作垂直x 轴的直线交椭圆E 于A ,B 两点,点A 在x 轴上方.若|AB|=3,△ABF 2的内切圆的面积为9π16,则直线AF 2的方程是( ) A.3x+2y-3=0 B.2x+3y-2=0 C.4x+3y-4=0D.3x+4y-3=010.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足|PA|=m|PB|,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( ) A.√2+12B.√2+1C.√5-12D.√5-111.(2019四川南充三模,8)已知直线x+y=1与椭圆x 2a 2+y 2b2=1(a>b>0)交于P ,Q 两点,且OP ⊥OQ (其中O 为坐标原点),若椭圆的离心率e 满足√3≤e ≤√2,则椭圆长轴的取值范围是( ) A.[√5,√6] B.√52,√62C.54,32D.52,312.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3B.2√2C.√5D.2二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 过点P (3,2),且与x 轴的正半轴、y 轴的正半轴分别交于A ,B 两点,当△AOB 的面积取最小值时,直线l 的方程为 .14.(2019河北唐山摸底)已知直线l :kx-y-k+2=0与圆C :x 2+y 2-2y-7=0相交于A ,B 两点,则|AB|的最小值为 .15.已知抛物线C :y 2=2px (p>0)的焦点为F ,准线为l ,过点F 斜率为√3的直线l'与抛物线C 交于点M (M 在x 轴的上方),过M 作MN ⊥l 于点N ,连接NF 交抛物线C 于点Q ,则|NQ ||QF |= .16.(2019四川成都棠湖中学开学考试,16)已知F是椭圆C:x 225+y216=1的右焦点,P是椭圆上一点,A0,365,当△APF周长最大时,该三角形的面积为.三、解答题(本大题共5小题,共70分)17.(14分)(2019安徽滁州模拟,18)已知圆O:x2+y2=r2(r>0)与直线3x-4y+15=0相切.(1)若直线l:y=-2x+5与圆O交于M,N两点,求|MN|;(2)已知A(-9,0),B(-1,0),设P为圆O上任意一点,证明:|PA||PB|为定值.18.(14分)(2019河南洛阳模拟,20)已知椭圆x 2a2+y2b2=1(a>b>0)的离心率e=√33,左、右焦点分别为F1,F2,且F2与抛物线y2=4x的焦点重合.(1)求椭圆的标准方程;(2)若过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,求|AC|+|BD|的最小值.19.(14分)(2019湖南益阳,20)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.20.(14分)(2019江西宜春模拟,20)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√32,点-√3,12在椭圆上,A,B分别为椭圆C的上、下顶点,点M(t,2)(t≠0).(1)求椭圆C的方程;(2)若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.21.(14分)(2019河北衡水模拟,20)已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为13,点P在椭圆C上,且△PF1F2的面积的最大值为2√2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,若在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.参考答案专题检测卷九解析几何1.A直线方程即y=-a(x-2),据此可知直线恒过定点M(2,0),当直线l⊥PM时,d有最大值,结合两点之间距离公式可得d的最大值为√(2-2)2+(3-0)2=3.故选A.2.A 设A (x 1,y 1),B (x 2,y 2),根据圆的方程可知C (-1,-2),C 为AB 的中点,根据双曲线中点差法的结论k AB =b 22×x 00=2×-1-2=1,由点斜式可得直线AB 的方程为y=x-1,将直线AB 方程与双曲线方程联立{x 2-y22=1,y =x -1,解得{x =-3,y =-4,或{x =1,y =0,所以|AB|=4√2,由圆的直径|AB|=√D 2+E 2-4F =√22+42-4m =4√2,可解得m=-3,故选A .3.C 由题设可得x-p22+y 2=p 2,故圆心在焦点上,故CD=2p ,AB=4p ,设直线l 的方程为x=ty+p2,设A (x 1,y 1)B (x 2,y 2)代入y 2=2px (p>0)得y 2-2pty-p 2=0,所以y 1+y 2=2pt ,y 1y 2=-p 2,则AB=√(1+t 2)(4p 2t 2+4p 2)=2p (1+t 2)=4p ,即1+t 2=2,解得t=±1.故选C.4.A 以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0),B (1,0),设P (x ,y ),∵|PA |=√2,∴√(x+1)2+y 2√(x -1)+y 2=√2,两边平方并整理得x 2+y 2-6x+1=0,即(x-3)2+y 2=8,当点P 到AB (x 轴)的距离最大时,三角形PAB 的面积最大,此时面积为12×2×2√2=2√2,故选A .5.D 由题得{a 2+b 2=25,b2a=163,∴a=3,b=4.所以双曲线的方程为x 29−y 216=1,所以点P 的坐标为5,163或5,-163,所以OA ⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ =(-3,0)·5,±163=-15.故选D.6.C 圆的内接四边形对角互补,因为x 轴与y 轴垂直,所以2x+y-4=0与x+ky-3=0垂直.所以2×1+1×k=0,解得k=-2,直线2x+y-4=0与坐标轴的交点为(2,0),(0,4),x-2y-3=0与坐标轴的交点为0,-32,(3,0),两直线的交点纵坐标为-25.所以四边形的面积为12×3×32−12×1×25=4120,故选C.7.C ∵M ,N 分别是PQ ,PF 的中点,∴MN ∥FQ ,且PQ ∥x 轴,∵∠NRF=60°,∴∠FQP=60°,由抛物线定义知,|PQ|=|PF|,∴△FQP 为正三角形,则FM ⊥PQ ⇒QM=p=2,正三角形边长为4,PQ=4,FN=12PF=2,又可得△FRN 为正三角形,∴FR=2,故选C.8.B 抛物线x 2=4y 的焦点为(0,1),准线方程为y=-1,圆(y-1)2+x 2=4的圆心为(0,1),与抛物线的焦点重合,且半径r=2,∴|FB|=2,|AF|=y A +1,|AB|=y B -y A ,∴三角形ABF 的周长=2+y A +1+y B -y A =y B +3,∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选B . 9.D 设内切圆半径为r ,则πr 2=9π16,∴r=34,∵F 1(-c ,0),∴内切圆圆心为-c+34,0,由|AB|=3知A -c ,32,又F 2(c ,0),所以AF 2方程为3x+4cy-3c=0,由内切圆圆心到直线AF 2距离为r ,即|3(-c+34)-3c|√3+(4c )=34,得c=1,所以AF 2方程为3x+4y-3=0,故选D .10.B 过点P 作准线的垂线,垂足为N ,则由抛物线的定义可得|PN|=|PB|.∵|PA|=m|PB|, ∴|PA|=m|PN|.∴1m =|PN ||PA |. 设直线PA 的倾斜角为α,则sin α=1m .当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切.设直线PA 的方程为y=kx-1,代入x 2=4y ,可得x 2=4(kx-1),即x 2-4kx+4=0, ∴Δ=16k 2-16=0,∴k=±1, ∴P (2,1)或P (-2,1).∴双曲线的实轴长为|PA|-|PB|=2(√2-1), ∴双曲线的离心率为√2-1=√2+1. 故选B .11.A 联立{x +y =1,x 2a 2+y 2b2=1,得(a 2+b 2)x 2-2a 2x+a 2-a 2b 2=0,设P (x 1,y 1),Q (x 2,y 2),∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0,化为a 2+b 2>1. 则x 1+x 2=2a 2a 2+b2,x 1x 2=a 2-a 2b 2a 2+b2.∵OP ⊥OQ ,∴OP ⃗⃗⃗⃗⃗ ·OQ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(x 1-1)(x 2-1)=2x 1x 2-(x 1+x 2)+1=0,∴2×a 2-a 2b 2a 2+b2−2a 2a 2+b2+1=0.化简得a 2+b 2=2a 2b 2.∴b2=a 22a 2-1.∵椭圆的离心率e 满足√33≤e ≤√22,∴13≤e 2≤12, ∴13≤a 2-b 2a 2≤12,13≤1-12a 2-1≤12,化为5≤4a 2≤6,解得√5≤2a ≤√6.满足Δ>0.∴椭圆长轴的取值范围是[√5,√6].故选A .12.A 建立如图所示的平面直角坐标系,则A (0,1),B (0,0),D (2,1).设P (x ,y ),圆C 的半径为r ,由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45.易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0). 由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +λAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P (x ,y )在圆(x-2)2+y 2=45上,所以圆心C 到直线12x-y+1-z=0的距离d ≤r , 即√14+1≤2√5,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3,故选A .13.2x+3y-12=0方法1:易知直线l的斜率k存在且k<0,则直线l的方程为y-2=k(x-3)(k<0),则A3-2k ,0,B(0,2-3k),所以S△AOB=12(2-3k)3-2k=1212+(-9k)+4-k≥1212+2√(-9k)·4-k =12×(12+2×6)=12,当且仅当-9k=4-k,即k=-23时等号成立.所以当k=-23时,△AOB的面积最小,此时直线l的方程为y-2=-23(x-3),即2x+3y-12=0.方法2:设直线l的方程为xa+yb=1(a>0,b>0),将点P(3,2)代入得3a+2b=1≥2√6ab,即ab≥24,当且仅当3a =2b,即a=6,b=4时等号成立,又S△AOB=12ab,所以当a=6,b=4时△AOB的面积最小,此时直线l的方程为x6+y4=1,即2x+3y-12=0.14.2√6kx-y-k+2=0,化为y-2=k(x-1),直线过定点E(1,2),E(1,2)在圆x2+y2-2y-7=0内,当E 是AB中点时,|AB|最小,由x2+y2-2y-7=0得x2+(y-1)2=8,圆心C(0,1),半径2√2,|AB|=2√8-|EC|2=2√8-2=2√6,故答案为2√6.15.2由抛物线定义可得MF=MN,又斜率为√3的直线l'倾斜角为π3,MN⊥l,所以∠NMF=π3,即三角形MNF为正三角形,因此NF倾斜角为2π3,由{y2=2px,y=-√3(x-p2),解得x=p6或x=3p2(舍),即x Q=p6,|NQ||QF|=p6-(-p2)p2-p6=2.16.1445由x225+y216=1得右焦点F(3,0),左焦点F'(-3,0),△APF周长|AF|+|AP|+|PF|=|AF|+|AP|+2a-|PF'|≤10+(|AF|+|AF'|),当A,P,F'共线时△APF周长最大,此时直线AF'方程为x-3+y365=1,与x225+y216=1联立,解得y P=-125,可得S△APF=12|FF'|(y A-y P)=12×6×365+125=1445,故答案为1445.17.(1)解由题意知,圆心O到直线3x-4y+15=0的距离d=√9+16=3, ∵圆O与直线相切,∴r=d=3,∴圆O方程为x2+y2=9.圆心O到直线l:y=-2x+5的距离d1=√4+1=√5,∴|MN|=2√9-d 12=4.(2)证明 设P (x 0,y 0),则x 02+y 02=9,∴|PA |=√(x 0+9)2+y 2√(x 0+1)+y 0=√x 02+18x 0+81+y 2√x 0+2x 0+1+y 0=√18x 0+902x 0+10=3,即|PA ||PB |为定值3.18.解 (1)抛物线y 2=4x 的焦点为(1,0),所以c=1,又因为e=c a =1a =√33,所以a=√3, 所以b2=2,所以椭圆的标准方程为x 23+y 22=1.(2)(i)当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y=k (x+1),代入椭圆方程x 23+y 22=1, 并化简得(3k 2+2)x 2+6k 2x+3k 2-6=0. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k23k 2+2,x 1x 2=3k 2-63k 2+2,|BD|=√1+k 2·|x 1-x 2|=√(1+k 2)·[(x 1+x 2)2-4x 1x 2]=4√3(k 2+1)3k 2+2.易知AC 的斜率为-1k ,所以|AC|=4√3(1k 2+1)3×1k2+2=4√3(k 2+1)2k 2+3.所以|AC|+|BD|=4√3(k 2+1)13k 2+2+12k 2+3=20√3(k 2+1)2(3k 2+2)(2k 2+3)≥20√3(k 2+1)2[(3k 2+2)+(2k 2+3)2]2 =20√3(k 2+1)225(k 2+1)24=16√35.当k 2=1,即k=±1时,上式取等号,故|AC|+|BD|的最小值为16√35. (ii)当直线BD 的斜率不存在或等于零时,易得|AC|+|BD|=10√33>16√35. 综上,|AC|+|BD|的最小值为16√35.19.解 (1)由抛物线的定义可知,|MF|=m+p2=2,①又M (2,m )在抛物线上,所以2pm=4,②由①②联立解得p=2,m=1,所以抛物线C 的方程为x 2=4y.(2)①当x 0=0,即点P 为原点时,易知点Q 在直线y=0上;②当x 0≠0,即点P 不在原点时,由(1)得,x 2=4y ,则y'=1x ,所以在点P 处的切线的斜率为1x 0,所以在点P 处的切线l 0的方程为y-y 0=1x 0(x-x 0),又x 02=4y 0, 所以y=12x 0x-y 0.又过点F 与切线l 0垂直的方程为y-1=-2x 0x , 联立方程{y =12x 0x -y 0,y -1=-2x 0x , 消去x ,得y=-14(y-1)x 02-y 0.(*)因为x 02=4y 0,所以(*)可化为y=-yy 0,即(y 0+1)y=0,由y 0>0,可知y=0,即垂足Q 必在x 轴上.所以点Q 必在直线y=0上,综上,点Q 必在直线y=0上. 20.(1)解 由题意知{ c a =√32,3a 2+14b 2=1,a 2=b 2+c 2,解得{a =2,b =1,c =√3,所以椭圆C 的方程为x 24+y 2=1. (2)证明 易知A (0,1),B (0,-1),则直线MA 的方程为y=1t x+1,直线MB 的方程为y=3t x-1.联立{y =1t x +1,x 24+y 2=1,得4t 2+1x 2+8t x=0,于是x P =-8t t 2+4,y P =t 2-4t 2+4, 同理可得x Q =24t t 2+36,y Q =36-t 2t 2+36, 又由点M (t ,2)(t ≠0)及椭圆的对称性可知定点在y 轴上,设为N (0,n ),则直线PN 的斜率k 1=t 2-4t 2+4-n -8t t 2+4,直线QN 的斜率k 2=36-t 2t 2+36-n 24t t 2+36, 令k 1=k 2,则t 2-4t 2+4-n -8tt 2+4=36-t 2t 2+36-n 24t t 2+36,化简得t 2-4-n (t 2+4)-8t =36-t 2-n (t 2+36)24t ,解得n=12,所以直线PQ 过定点0,12. 21.解 (1)由已知得{ c a =13,12×2c ×b =2√2,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1,∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E (x 0,y 0),点G (m ,0),使得|GM|=|GN|, 则GE ⊥MN.由{y =kx +2,x 29+y 28=1,消y 得(8+9k 2)x 2+36kx-36=0,由Δ>0,得k ∈R . ∴x 1+x 2=-36k 9k 2+8, ∴x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8.∵GE ⊥MN ,∴k GE =-1k ,即169k 2+8-0-18k 9k 2+8-m =-1k , ∴m=-2k9k 2+8=-29k+8k . 当k>0时,9k+8k ≥2√9×8=12√2当且仅当9k=8k ,即k=2√23时,取等号, ∴-√212≤m<0;当k<0时,9k+8k ≤-12√2当且仅当9k=8k ,即k=-2√23时,取等号,∴0<m≤√212,∴点G的横坐标的取值范围为-√212,0∪0,√212.。
2019届高考数学人教A版一轮复习单元质检九 含解析 精品
![2019届高考数学人教A版一轮复习单元质检九 含解析 精品](https://img.taocdn.com/s3/m/3e8168f2240c844768eaee03.png)
单元质检九解析几何(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2017浙江,2)椭圆=1的离心率是()A. B. C. D.2.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C.3x-4y+16=0D.3x-4y+16=0或3x-4y-14=03.与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有()A.2条B.3条C.4条D.6条4.抛物线y2=8x的焦点到双曲线=1的渐近线的距离为()A.1B.C. D.5.已知椭圆=1(a>b>0)与双曲线=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a,m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.B.C.D.6.过点A(0,3),被圆(x-1)2+y2=4截得的弦长为2的直线方程是()A.y=-x+3B.x=0或y=-x+3C.x=0或y=x+3D.x=07.若直线x-y+2=0与圆C:(x-3)2+(y-3)2=4相交于A,B,则的值为()A.-1B.0C.1D.108.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e29.设双曲线=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()A.(1,)B.(,2)C.(1,2)D.(,+∞)10.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a=()A. B. C.3 D.911.已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)的两条渐近线分别交于两点A,B(A,B异于原点),抛物线的焦点为F.若双曲线的离心率为2,|AF|=7,则p=()A.3B.6C.12D.4212.已知椭圆E:=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B 两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是() A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2017北京,文12)已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则的最大值为.14.(2017山东,文15)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(2017天津,文12)设抛物线y2=4x的焦点为F,准线为l,已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A,若∠F AC=120°,则圆的方程为.16.若关于x,y的方程=1所表示的曲线C,给出下列四个命题:①若C为椭圆,则1<t<4;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C表示椭圆,且长轴在x轴上,则1<t<.其中正确的命题是.(把所有正确命题的序号都填在横线上)三、解答题(本大题共6小题,共70分)17.(10分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.18.(12分)已知圆心在x轴上的圆C过点(0,0)和(-1,1),圆D的方程为(x-4)2+y2=4.(1)求圆C的方程;(2)由圆D上的动点P向圆C作两条切线分别交y轴于A,B两点,求|AB|的取值范围.19.(12分)已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k(k>0).设抛物线W的焦点在直线AB的下方.(1)求k的取值范围;(2)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,判断四边形ABDC是否为梯形,并说明理由.20.(12分)已知椭圆C1:=1(a>b>0)与椭圆C2:+y2=1有相同的离心率,经过椭圆C2的左顶点作直线l,与椭圆C2相交于P,Q两点,与椭圆C1相交于A,B两点.(1)若直线y=-x经过线段PQ的中点M,求直线l的方程:(2)若存在直线l,使得,求b的取值范围.21.(12分)已知双曲线=1(a>0,b>0)的右焦点为F(c,0).(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.22.(12分)(2017天津,文20)已知椭圆=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),△EF A的面积为.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.①求直线FP的斜率;②求椭圆的方程.答案:1.B解析:e=,故选B.2.D解析:设所求直线方程为3x-4y+m=0,由=3,解得m=16或m=-14.即所求直线方程为3x-4y+16=0或3x-4y-14=0.3.C解析:过原点与圆x2+(y-2)2=1相切的直线有2条;斜率为-1且与圆x2+(y-2)2=1相切的直线也有2条,且此两条切线不过原点,由此可得与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有4条.4.A解析:抛物线y2=8x的焦点坐标为(2,0),其到双曲线=1的渐近线x±y=0的距离d==1.5.D解析:由题意可知2n2=2m2+c2,又m2+n2=c2,所以m=.因为c是a,m的等比中项,所以c2=am,代入m=,解得e=.6.B解析:当弦所在的直线斜率不存在时,即弦所在直线方程为x=0;此时被圆(x-1)2+y2=4截得的弦长为2.当弦所在的直线斜率存在时,设弦所在直线l的方程为y=kx+3,即kx-y+3=0.因为弦长为2,圆的半径为2,所以弦心距为=1.由点到直线距离公式得=1,解得k=-.综上所述,所求直线方程为x=0或y=-x+3.7.B解析:依题意,圆心C(3,3)到直线x-y+2=0的距离为,从而易得cos∠ACB=,即∠ACB=45°,所以∠ACB=90°,所以=0,故选B.8.D解析:由条件知=1+=1+,当a>b时,,则,所以e1<e2.当a<b时,,则,所以e1>e2.所以,当a>b时,e1<e2;当a<b时,e1>e2.9.B解析:双曲线=1的两条渐近线方程为y=±x,当x=时,y=±,所以不妨令A,B.因为60°<∠AFB<90°,所以<k FB<1,即<1,即<1.所以<1,即1<e2-1<3,故<e<2.10.A解析:由题意可知,抛物线y2=2px(p>0)的准线方程为x=-4,则p=8,所以点M(1,4).因为双曲线-y2=1的左顶点为A(-,0),所以直线AM的斜率为.由题意得,解得a=.11.B解析:因为双曲线的离心率为2,所以e2==4,即b2=3a2,所以双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,代入y2=2px(p>0),得x=p或x=0,故x A=x B=p.又因为|AF|=x A+p+=7,所以p=6.12.A解析:如图,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边形,则|AF|+|BF|=|AF1|+|AF|=2a=4.故a=2.不妨设M(0,b),则,即b≥1.所以e=.因为0<e<1,所以0<e≤.故选A.13.6解析:(方法一)设P(cos α,sin α),α∈R,则=(2,0),=(cos α+2,sin α),=2cos α+4.当α=2kπ,k∈Z时,2cos α+4取得最大值,最大值为6.故的最大值为6.(方法二)设P(x,y),x2+y2=1,-1≤x≤1,=(2,0),=(x+2,y),=2x+4,故的最大值为6.14.y=±x解析:抛物线x2=2py的焦点F,准线方程为y=-.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4·=2p.所以y1+y2=p.联立双曲线与抛物线方程得消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2==p,所以.所以该双曲线的渐近线方程为y=±x.15.(x+1)2+(y-)2=1解析:∵抛物线y2=4x的焦点F(1,0),准线l的方程为x=-1,由题意可设圆C的方程为(x+1)2+(y-b)2=1(b>0),则C(-1,b),A(0,b).∵∠F AC=120°,∴k AF=tan 120°=-,直线AF的方程为y=-x+.∵点A在直线AF上,∴b=.则圆的方程为(x+1)2+(y-)2=1.16.②解析:若C为椭圆,则有4-t>0,t-1>0,且4-t≠t-1,解得1<t<4,且t≠,所以①不正确;若C为双曲线,则有(4-t)(t-1)<0,解得t>4或t<1,所以②正确;若t=时,该曲线表示圆,所以③不正确;若C表示椭圆,且长轴在x轴上,则4-t>t-1>0,解得1<t<,所以④错误.17.解:(1)由得圆心C(3,2).又因为圆C的半径为1,所以圆C的方程为(x-3)2+(y-2)2=1.显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx-y+3=0,则=1,所以|3k+1|=,即2k(4k+3)=0.所以k=0或k=-.所以所求圆C的切线方程为y=3或y=-x+3,即y=3或3x+4y-12=0.(2)由圆C的圆心在直线l:y=2x-4上,可设圆心C为(a,2a-4),则圆C的方程为(x-a)2+[y-(2a-4)]2=1.又因为|MA|=2|MO|,所以设M(x,y),则=2,整理得x2+(y+1)2=4.设方程x2+(y+1)2=4表示的是圆D,所以点M既在圆C上又在圆D上,即圆C和圆D有交点,所以2-1≤≤2+1,解得a的取值范围为.18.解:(1)过两点(0,0)和(-1,1)的直线的斜率为-1,则线段AB的垂直平分线方程为y-=1×,整理得y=x+1.取y=0,得x=-1.所以圆C的圆心坐标为(-1,0),半径为1,所以圆C的方程为(x+1)2+y2=1.(2)设P(x0,y0),A(0,a),B(0,b),则直线P A方程为,整理得(y0-a)x-x0y+ax0=0.因为直线P A与圆C相切,可得=1,化简得(x0+2)a2-2y0a-x0=0.同理可得PB方程(x0+2)b2-2y0b-x0=0,所以a,b为方程(x0+2)x2-2y0x-x0=0的两根,所以|AB|=|a-b|===2,令t=x0+2∈[4,8],则|AB|=2,求得|AB|min=,|AB|max=.|AB|的取值范围是.19.解:(1)抛物线y=x2的焦点为.由题意,得直线AB的方程为y-1=k(x-1),令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).因为抛物线W的焦点在直线AB的下方,所以1-k>,解得k<.因为k>0,所以0<k<.即k的取值范围是.(2)结论:四边形ABDC不可能为梯形.理由如下:假设四边形ABDC为梯形.由题意,设B(x1,),C(x2,),D(x3,y3),联立方程消去y,得x2-kx+k-1=0,由根与系数的关系,得1+x1=k,所以x1=k-1.同理,得x2=--1.对函数y=x2求导,得y'=2x,所以抛物线y=x2在点B处的切线BD的斜率为2x1=2k-2,抛物线y=x2在点C处的切线CD的斜率为2x2=--2.由四边形ABDC为梯形,得AB∥CD或AC∥BD.若AB∥CD,则k=--2,即k2+2k+2=0,因为方程k2+2k+2=0无解,所以AB与CD不平行.若AC∥BD,则-=2k-2,即2k2-2k+1=0,因为方程2k2-2k+1=0无解,所以AC与BD不平行.所以四边形ABDC不是梯形,与假设矛盾.因此四边形ABDC不可能为梯形.20.解:(1)设P(-2,0),Q(x,y),则线段PQ的中点M为,则=0,即x+y=2.联立解得所以直线l的方程为y=0或y-0=(x+2),化为x-4y+2=0.(2)由题意,得椭圆C2:+y2=1的离心率e=.设2c是椭圆C1:=1(a>b>0)的焦距,则.由a2=b2+c2,可得a=2b,c=b,椭圆C1的方程可化为x2+4y2=4b2.设直线l的方程为y=k(x+2),P(x3,y3),Q(x4,y4),A(x1,y1),B(x2,y2).联立消去y,得(1+4k2)x2+16k2x+16k2-4=0,所以x3+x4=,x3x4=,|PQ|=.联立消去y得(1+4k2)x2+16k2x+16k2-4b2=0,所以x1+x2=,x1x2=,|AB|==.因为,所以||=3||,即3×.所以b2=1+∈(1,9],即b∈(1,3].所以b的取值范围是(1,3].21.解:(1)双曲线=1的渐近线方程为y=±x,由双曲线的一条渐近线方程为y=x,可得=1,解得a=b.因为c==2,所以a=b=.由此可得双曲线方程为=1.(2)设A的坐标为(m,n),可得直线AO的斜率满足k=,即m=n.①因为以点O为圆心,c为半径的圆的方程为x2+y2=c2,所以将①代入圆的方程,得3n2+n2=c2,解得n=c,m=c.将点A代入双曲线方程,得=1,化简得c2b2-c2a2=a2b2.又因为c2=a2+b2,所以上式化简整理得c4-2c2a2+a4=0.两边都除以a4,整理得3e4-8e2+4=0,解得e2=或e2=2.因为双曲线的离心率e>1,所以该双曲线的离心率e=(负值舍去).22.解:(1)设椭圆的离心率为e.由已知,可得(c+a)c=.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=.所以,椭圆的离心率为.(2)①依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为.由(1)知a=2c,可得直线AE的方程为=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=,y=,即点Q的坐标为.由已知|FQ|=c,有,整理得3m2-4m=0,所以m=,即直线FP的斜率为.②由a=2c,可得b=c,故椭圆方程可以表示为=1.由①得直线FP的方程为3x-4y+3c=0,与椭圆方程联立消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去)或x=c.因此可得点P,进而可得|FP|=,所以|PQ|=|FP|-|FQ|==c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QN⊥FP,所以|QN|=|FQ|·tan∠QFN=,所以△FQN的面积为|FQ||QN|=,同理△FPM的面积等于,由四边形PQNM的面积为3c,得=3c,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为=1.。
2019年人教A版高考数学(理)一轮真题训练第九章解析几何 9-7及答案
![2019年人教A版高考数学(理)一轮真题训练第九章解析几何 9-7及答案](https://img.taocdn.com/s3/m/1f242a20b52acfc788ebc901.png)
真题演练集训1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1答案:A解析:由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知,焦点F (1,0),作准线l , 则l 的方程为x =-1.∵ 点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN , ∴ |BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 2.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案:B解析:由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,解得p =4,故选B.3.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22D .1 答案:C解析:设P ⎝ ⎛⎭⎪⎫t 22p ,t ,易知F ⎝ ⎛⎭⎪⎫p 2,0,则由|PM |=2|MF |,得M ⎝⎛⎭⎪⎫p +t 22p 3,t 3. 当t =0时,直线OM 的斜率k =0; 当t ≠0时,直线OM 的斜率k =tp +t 22p =1p t +t2p,所以|k |=1p |t |+|t |2p ≤12p |t |·|t |2p=22,当且仅当p |t |=|t |2p 时等号成立,于是直线OM 的斜率的最大值为22,故选C.4.设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________. 答案: 6解析:抛物线的普通方程为y 2=2px ,故F ⎝ ⎛⎭⎪⎫p 2,0,l :x =-p 2.由|CF |=2|AF |,得|AF |=32p ,不妨设点A (x ,y )在第一象限,则x +p2=3p2,即x =p ,所以y =2p .易知△ABE ∽△FCE ,|AB ||CF |=|AE ||EF |=12, 所以|EF |=2|AE |,所以△ACF 的面积等于△AEC 的面积的3倍,即S △ACF =92,所以S △ACF =12×3p ×2p =92,解得p = 6.5.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 答案:9解析:由于抛物线y 2=4x 的焦点为F (1,0),准线为x =-1,设点M 的坐标为(x ,y ),则x +1=10,所以x =9.故M 到y 轴的距离是9.课外拓展阅读对抛物线的标准方程认识不准而致误分析抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233D.433抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎪⎫0,p 2,双曲线x23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p4(x -2), 联立⎩⎪⎨⎪⎧y =-p4x -,y =12p x 2,消去y ,得2x 2+p 2x -2p 2=0. 设点M 的横坐标为a ,易知在点M 处切线的斜率存在,则在点M 处切线的斜率为y ′x =a =⎝ ⎛⎭⎪⎫12p x 2′x =a =ap ,又因为双曲线x 23-y 2=1的渐近线方程为x3±y =0,其与切线平行,所以a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去).D。
高考数学一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆教学案 理 新人教A版-新
![高考数学一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆教学案 理 新人教A版-新](https://img.taocdn.com/s3/m/90ab4765dcccda38376baf1ffc4ffe473368fddf.png)
第2课时 直线与椭圆直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A.m >1B.m >0C.0<m <5且m ≠1D .m ≥1且m ≠5 答案 D解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴5k 2+m -1≥0, ∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.弦长及中点弦问题命题点1 弦长问题例1斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=2|x 1-x 2| =2x 1+x 22-4x 1x 2=2⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15=425·5-t 2, 当t =0时,|AB |max =4105.命题点2 中点弦问题例2已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________________. 答案 x +2y -3=0解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y -1=k (x -1),弦所在的直线与椭圆相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k x -1,x 24+y22=1,消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, ∴x 1+x 2=4k k -12k 2+1,又∵x 1+x 2=2, ∴4kk -12k 2+1=2,解得k =-12. 经检验,k =-12满足题意.故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.方法二 易知此弦所在直线的斜率存在,∴设斜率为k ,弦所在的直线与椭圆相交于A ,B 两点, 设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,①x 224+y 222=1,②①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式. 跟踪训练1(1)已知椭圆两顶点A (-1,0),B (1,0),过焦点F (0,1)的直线l 与椭圆交于C ,D 两点,当|CD |=322时,则直线l 的方程为________. 答案2x -y +1=0或2x +y -1=0.解析 由题意得b =1,c =1. ∴a 2=b 2+c 2=1+1=2. ∴椭圆方程为y 22+x 2=1.若直线l 斜率不存在时,|CD |=22,不符合题意. 若l 斜率存在时,设l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,y 2+2x 2=2,得(k 2+2)x 2+2kx -1=0.Δ=8(k 2+1)>0恒成立.设C (x 1,y 1),D (x 2,y 2). ∴x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. ∴|CD |=1+k 2|x 1-x 2| =1+k 2x 1+x 22-4x 1x 2=22k 2+1k 2+2.即22k 2+1k 2+2=322,解得k 2=2,∴k =± 2.∴直线l 方程为2x -y +1=0或2x +y -1=0.(2)(2019·某某模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝⎛⎭⎪⎫1,12,则椭圆的离心率为( )A.22B.12C.14D.32答案 A解析 设A (x 1,y 1),B (x 2,y 2).∵AB 的中点为M ⎝⎛⎭⎪⎫1,12,∴x 1+x 2=2,y 1+y 2=1.∵PF ∥l ,∴k PF =k l =-b c =y 1-y 2x 1-x 2.∵x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ∴x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b2=0,∴2a 2+-bc b2=0,可得2bc =a 2,∴4c 2(a 2-c 2)=a 4,化为4e 4-4e 2+1=0, 解得e 2=12,又∵0<e <1,∴e =22. 直线与椭圆的综合问题例3(2019·某某)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 解 (1)设椭圆的半焦距为c ,依题意知,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以,直线PB 的斜率为2305或-2305.思维升华(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 跟踪训练2已知椭圆C 的两个焦点分别为F 1(-1,0),F 2(1,0),短轴的两个端点分别为B 1,B 2. (1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P ,Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)由题意知,△F 1B 1B 2为等边三角形,则⎩⎨⎧c =3b ,c =1,即⎩⎪⎨⎪⎧a 2-b 2=3b 2,a 2-b 2=1,解得⎩⎪⎨⎪⎧a 2=43,b 2=13,故椭圆C 的方程为3x 24+3y 2=1.(2)易知椭圆C 的方程为x 22+y 2=1,当直线l 的斜率不存在时,其方程为x =1,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k x -1,x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0,Δ=8(k 2+1)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-12k 2+1,F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2),因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0,解得k 2=17,即k =±77,故直线l 的方程为x +7y -1=0或x -7y -1=0.1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A.至多为1B.2C.1D.0 答案 B 解析 由题意知,4m 2+n2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 24=1的内部, 故所求交点个数是2.2.直线y =kx +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( )A.2B.433C.4D.不能确定答案 B解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x ,y ), 则弦长为x 2+y -12=4-4y 2+y 2-2y +1=-3y 2-2y +5,当y =-13时,弦长最大为433.3.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53, 故选B.4.已知椭圆x 236+y 29=1以及椭圆内一点P (4,2),则以P 为中点的弦所在直线的斜率为( )A.12B.-12C.2D.-2 答案 B解析 设弦所在直线的斜率为k ,弦的端点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4,⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y229=1,两式相减,得x 1+x 2x 1-x 236+y 1+y 2y 1-y 29=0,所以2x 1-x 29=-4y 1-y 29,所以k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.故弦所在直线的斜率为-12.故选B.5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点,若AB 的中点为M (1,-1),则椭圆E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 k AB =0+13-1=12,k OM =-1,由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2.∵c =3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1.6.(2019·某某模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba的值为( ) A.32B.233 C.932 D.2327答案 B解析 方法一 设A (x 1,y 1),B (x 2,y 2), 则ax 21+by 21=1,ax 22+by 22=1, 即ax 21-ax 22=-(by 21-by 22),则by 21-by 22ax 21-ax 22=-1,b y 1-y 2y 1+y 2a x 1-x 2x 1+x 2=-1,由题意知,y 1-y 2x 1-x 2=-1, 过点⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22与原点的直线的斜率为32,即y 1+y 2x 1+x 2=32, ∴b a×(-1)×32=-1, ∴b a =233,故选B. 方法二 由⎩⎪⎨⎪⎧y =1-x ,ax 2+by 2=1消去y ,得(a +b )x 2-2bx +b -1=0, 可得AB 中点P 的坐标为⎝ ⎛⎭⎪⎫b a +b ,a a +b ,∴k OP =a b =32,∴b a =233. 7.直线y =kx +k +1与椭圆x 29+y 24=1的位置关系是________.答案 相交解析 由于直线y =kx +k +1=k (x +1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.8.设F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为__________. 答案x 29+y 26=1 解析 ∵△F 2AB 是面积为43的等边三角形,∴AB ⊥x 轴,∴A ,B 两点的横坐标为-c ,代入椭圆方程,可求得|F 1A |=|F 1B |=b 2a.又|F 1F 2|=2c ,∠F 1F 2A =30°,∴b 2a =33×2c .① 又2F AB S △=12×2c ×2b2a=43,②a 2=b 2+c 2,③由①②③解得a 2=9,b 2=6,c 2=3, ∴椭圆C 的方程为x 29+y 26=1.9.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O为坐标原点),则△F 1PF 2的面积是________. 答案 1解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n , 则m +n =4,m 2+n 2=12, ∴2mn =4,mn =2, ∴12F PF S △=12mn =1.10.(2020·某某部分重点中学联考)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为________. 答案105解析 设|BF 1|=k ,则|AF 1|=3k ,|BF 2|=4k .由|BF 1|+|BF 2|=|AF 1|+|AF 2|=2a ,得2a =5k ,|AF 2|=2k .在△ABF 2中,cos∠BAF 2=4k 2+2k 2-4k 22×4k ×2k=14, 又在△AF 1F 2中,cos∠F 1AF 2=3k 2+2k 2-2c22×3k ×2k =14, 所以2c =10k ,故离心率e =ca =105. 11.已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点,则直线AB 的斜率为________.答案 2 解析 设A (x 1,y 1),B (x 2,y 2),同时设PA 的方程为y -2=k (x -1),代入椭圆方程化简,得(k 2+2)x 2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解,因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2, 由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2, 所以y 2-y 1x 2-x 1= 2. 故直线AB 的斜率为 2. 12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,E 的离心率为22,点(0,1)是E 上一点.(1)求椭圆E 的方程;(2)过点F 1的直线交椭圆E 于A ,B 两点,且BF 1→=2F 1A →,求直线BF 2的方程.解 (1)由题意知,b =1,且e 2=c 2a 2=a 2-b 2a 2=12, 解得a 2=2,所以椭圆E 的方程为x 22+y 2=1. (2)由题意知,直线AB 的斜率存在且不为0,故可设直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ x 22+y 2=1,x =my -1,得(m 2+2)y 2-2my -1=0,则y 1+y 2=2m m 2+2,① y 1y 2=-1m 2+2,② 因为F 1(-1,0),所以BF 1→=(-1-x 2,-y 2),F 1A →=(x 1+1,y 1),由BF 1→=2F 1A →可得,-y 2=2y 1,③由①②③可得B ⎝ ⎛⎭⎪⎫-12,±144, 则2BF k =146或-146, 所以直线BF 2的方程为14x -6y -14=0或14x +6y -14=0.13.(2019·全国100所名校联考)已知椭圆C :x 2+y 2b 2=1(b >0,且b ≠1)与直线l :y =x +m 交于M ,N 两点,B 为上顶点.若|BM |=|BN |,则椭圆C 的离心率的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎣⎢⎡⎭⎪⎫22,1C.⎝ ⎛⎭⎪⎫63,1D.⎝⎛⎦⎥⎤0,63 答案 C解析 设直线y =x +m 与椭圆x 2+y 2b 2=1的交点为M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =x +m ,x 2+y 2b 2=1,得(b 2+1)x 2+2mx +m 2-b 2=0, 所以x 1+x 2=-2m b 2+1,x 1x 2=m 2-b 2b 2+1, Δ=(2m )2-4(b 2+1)(m 2-b 2)=4b 2(b 2+1-m 2)>0.设线段MN 的中点为G ,知G 点坐标为⎝ ⎛⎭⎪⎫-m b 2+1,b 2m b 2+1, 因为|BM |=|BN |,所以直线BG 垂直平分线段MN ,所以直线BG 的方程为y =-x +b ,且经过点G ,可得b 2m b 2+1=m b 2+1+b ,解得m =b 3+b b 2-1. 因为b 2+1-m 2>0,所以b 2+1-⎝ ⎛⎭⎪⎫b 3+b b 2-12>0, 解得0<b <33, 因为e 2=1-b 2,所以63<e <1. 14.(2019·某某调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3,则椭圆C 的离心率为________.答案 63解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b 2=0.(*) 因为△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3, 所以⎩⎪⎨⎪⎧ x 1+x 2-c 3=c 6,y 1+y 23=c 3,故⎩⎪⎨⎪⎧ x 1+x 2=3c 2,y 1+y 2=c ,代入(*)式得3x 1-x 2c 2a 2+y 1-y 2c b 2=0, 所以y 1-y 2x 1-x 2=-3b 22a 2=-12,即a 2=3b 2, 所以椭圆C 的离心率e =63. 15.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则椭圆在其上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b2=1(a >b >0),其焦距为2,且过点⎝ ⎛⎭⎪⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( ) A.22B.2C.3D.2 答案 B解析 由题意可得2c =2,即c =1,a 2-b 2=1,将点⎝ ⎛⎭⎪⎫1,22代入椭圆方程,可得1a 2+12b 2=1, 解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2), 则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1, 令x =0,得y D =1y 2,令y =0,可得x c =2x 2, 所以S △OCD =12·1y 2·2x 2=1x 2y 2, 又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1, 即有1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2, 即S △OCD ≥2,当且仅当x 222=y 22=12, 即点B 的坐标为⎝ ⎛⎭⎪⎫1,22时,△OCD 面积取得最小值2,故选B. 16.已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝ ⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程; (2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0), 由题意可得⎩⎪⎨⎪⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1.故椭圆C 的标准方程为x 24+y 2=1. (2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4, 所以x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75. 又|AB |=1+34x 1+x 22-4x 1x 2=72·4-m 2, O 到直线AB 的距离d =|m |1+34=|m |72, 所以S △AOB =12·|AB |·d =12×72×4-m 2×|m |72=9110.。
高考数学(人教A版理科)一轮复习真题演练集训:第九章解析几何9-4Word版含答案
![高考数学(人教A版理科)一轮复习真题演练集训:第九章解析几何9-4Word版含答案](https://img.taocdn.com/s3/m/858f2700941ea76e59fa046b.png)
真题操练集训1.圆x2+y2- 2x- 8y+ 13= 0 的圆心到直线ax+ y-1=0的距离为1,则 a=()4 3A.-3B.-4C.3D. 2答案: A分析:由已知可得,圆的标准方程为( x- 1)2+ ( y- 4)2= 4,故该圆的圆心为 (1,4),由点| a+ 4- 1|4到直线的距离公式得d=a2+1= 1,解得a=-3,应选 A.2.过三点A(1,3), B(4,2), C(1,-7)的圆交 y 轴于 M, N两点,则| MN|=()A.26B. 8C.46D. 10答案: C分析:设圆的方程为x2+y2+ Dx+Ey+ F=0,D+3E+ F+10=0,则 4D+ 2E+F+ 20= 0,D-7E+ F+50=0,D=-2,解得 E=4,F=-20.∴圆的方程为 x2+ y2-2x+4y-20=0.令 x=0,得 y=-2+2 6或 y=-2-2 6,∴M(0,-2+26) ,N(0 ,- 2- 2 6) 或M(0 ,- 2-26) ,N(0 ,- 2+26) ,∴ | MN|=4 6,应选 C.3.已知直线l : x+ay-1=0( a∈R)是圆 C: x2+y2-4x-2y+1=0的对称轴.过点A(-4,a) 作圆C的一条切线,切点为B,则| AB|=()A.2B.42C.6 D .2 10答案: C分析:∵直线x+ ay-1=0是圆 C: x2+ y2-4x-2y+1=0的对称轴,∴圆心 C(2,1)在直线 x+ ay-1=0上,∴2 +a- 1= 0,∴a=- 1,∴A(-4,-1).∴| AC| 2= 36+4= 40.又 r =2,∴| AB|2=40-4=36.∴| AB| =6.4.已知直线l :++3-3=0 与圆x2+y2= 12 交于,两点,过,分别作l的mx y m A B A B垂线与 x 轴交于 C, D两点.若| AB|=23,则 | CD| =________.答案: 4分析:设圆心到直线l : mx+ y+3m-3= 0 的距离为d,则弦长 | AB| = 212-d2= 23,得d=3,即|3m-3|= 3,解得=-3,则直线l:- 3y+ 6= 0,数形联合可得 || =2m3x CDm+1| AB|cos 30 °=4.5.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx- y-2m-1=0( m∈R)相切的全部圆中,半径最大的圆的标准方程为__________________ .答案: ( x-1) 2+y2= 2分析:直线 mx- y-2m-1=0经过定点(2,-1).当圆与直线相切于点(2 ,- 1) 时,圆的半径最大,此时半径r 知足 r 2=(1-2)2+(0+1)2= 2.课外拓展阅读圆与线性规划的综合应用假如点P在平面地区2x-y+2≥0,x-2y+1≤0,上,点Q在曲线x2+( y+2)2=1上,那么|PQ| x+ y-2≤0的最小值为 ________.求解此题应先画出点P 所在的平面地区,再画出点Q 所在的圆,最后利用几何意义将问题转变为圆上的点到定直线的距离的最值问题,即可求出| PQ| 的最小值.2x-y+2≥0,由点 P 在平面地区 x- 2 +1≤0,上,画出点 P 所在的平面地区.yx+y-2≤0由点 Q在圆 x2+( y+2)2=1上,画出点 Q所在的圆,如下图.由题意,得 | PQ| 的最小值为圆心(0 ,- 2) 到直线x-2y+1=0的距离减去半径 1.又圆心 (0 ,- 2) 到直线x- 2y+1= 0 的距离为|0 --+1|=5,12+ 22此时垂足 ( -1,0) 在知足条件的平面地区内,故| PQ| 的最小值为5- 1.5- 1方法点睛此题考察线性规划及圆、点到直线的距离等知识,并考察考生综合应用知识解决问题的能力.此题的突出特色就是将圆与线性规划问题有机地联合起来,为我们显现了数学知知趣互交汇的新天地,求解时既要注意使用线性规划的基本思想,又要利用圆上各点的特别性,其实是对数形联合思想的提高,即利用线性或非线性函数的几何意义,经过作图来解决最值问题.。
2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测56 理 新人教A版
![2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测56 理 新人教A版](https://img.taocdn.com/s3/m/ceb18bab51e79b89680226fc.png)
2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测56 理 新人教A 版1.[2017·山西太原模拟]已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是点F 1,F 2,其离心率e =12,点P 为椭圆上的一个动点,△PF 1F 2面积的最大值为4 3.(1)求椭圆的方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点F 1,AC →·BD →=0,求|AC →|+|BD →|的取值范围.解:(1)由题意,得当点P 是椭圆的上、下顶点时, △PF 1F 2面积取最大值,此时S △PF 1F 2=12·|F 1F 2|·|OP |=bc ,∴bc =43,∵e =12,∴b =23,a =4,∴椭圆的方程为x 216+y 212=1.(2)由(1)得,椭圆的方程为x 216+y 212=1, 则F 1的坐标为(-2,0), ∵AC →·BD →=0,∴AC ⊥BD .①当直线AC 与BD 中有一条直线斜率不存在时,易得|AC →|+|BD →|=6+8=14. ②当直线AC 的斜率k 存在且k ≠0时,则其方程为y =k (x +2), 设A (x 1,y 1),C (x 2,y 2),联立⎩⎪⎨⎪⎧y =k x +,x 216+y 212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0,∴⎩⎪⎨⎪⎧x 1+x 2=-16k 23+4k2,x 1x 2=16k 2-483+4k2,∴|AC →|=1+k 2|x 1-x 2|=k 2+3+4k 2,此时直线BD 的方程为y =-1k(x +2), 同理,由⎩⎪⎨⎪⎧y =-1kx +,x 216+y212=1,可得|BD →|=k 2+3k 2+4,∴|AC →|+|BD →|=k 2+4k 2+3+k 2+3k 2+4=k 2+2k 2+k 2+,令t =k 2+1(k ≠0),则t >1, ∴|AC →|+|BD →|=16812+t -1t2, ∵t >1,∴0<t -1t 2≤14, ∴|AC →|+|BD →|∈⎣⎢⎡⎭⎪⎫967,14. 由①②可知,|AC →|+|BD →|的取值范围是⎣⎢⎡⎦⎥⎤967,14.2.[2017·甘肃兰州模拟]已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为e =63,过C 1的左焦点F 1的直线l :x -y +2=0被圆C 2:(x -3)2+(y -3)2=r 2(r >0)截得的弦长为2 2.(1)求椭圆C 1的方程;(2)设C 1的右焦点为F 2,在圆C 2上是否存在点P ,满足|PF 1|=a 2b2|PF 2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.解:(1)∵直线l 的方程为x -y +2=0, 令y =0,得x =-2,即F 1(-2,0), ∴c =2,又e =c a =63, ∴a 2=6,b 2=a 2-c 2=2,∴椭圆C 1的方程为x 26+y 22=1.(2)∵圆心C 2(3,3)到直线l :x -y +2=0的距离d =|3-3+2|2=2,又直线l :x -y +2=0被圆C 2:(x -3)2+(y -3)2=r 2(r >0)截得的弦长为22, ∴r =d 2+⎝⎛⎭⎪⎫2222=2+2=2, 故圆C 2的方程为(x -3)2+(y -3)2=4.设圆C 2上存在点P (x ,y )满足|PF 1|=a 2b2|PF 2|,即|PF 1|=3|PF 2|,且F 1,F 2的坐标分别为F 1(-2,0),F 2(2,0), 则x +2+y 2=3x -2+y 2,整理得⎝ ⎛⎭⎪⎫x -522+y 2=94,它表示圆心是C ⎝ ⎛⎭⎪⎫52,0,半径是32的圆.∵|CC 2|=⎝ ⎛⎭⎪⎫3-522+-2=372, 故有2-32<|CC 2|<2+32,故圆C 与圆C 2相交,有两个公共点.∴圆C 2上存在两个不同的点P ,满足|PF 1|=a 2b2|PF 2|.3.[2016·新课标全国卷Ⅲ]已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解:由题知,F ⎝ ⎛⎭⎪⎫12,0.设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2. 所以AR ∥FQ .(2)解:设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合. 所以,所求轨迹方程为y 2=x -1.[冲刺名校能力提升练]1.[2017·河北石家庄摸底考试]平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,离心率e =32,过点F 且垂直于x 轴的直线被椭圆截得的弦长为1. (1)求椭圆C 的方程;(2)记椭圆C 的上、下顶点分别为A ,B ,设过点M (m ,-2)(m ≠0)的直线MA ,MB 与椭圆C 分别交于点P ,Q .求证:直线PQ 必过一定点,并求该定点的坐标.解:(1)由e =32,可得a 2=4b 2, 因过点F 垂直于x 轴的直线被椭圆所截得弦长为1, 所以2b2a=1,所以b =1,a =4,椭圆C 的方程为x 24+y 2=1.(2)由(1)知,A (0,1),B (0,-1),点M 的坐标为(m ,-2), 直线MAP 方程为y =-3mx +1,直线MBQ 方程为y =-1mx -1.分别与椭圆x 24+y 2=1联立方程组,消去x ,可得⎝ ⎛⎭⎪⎫m 29+4y 2-29m 2y +m 29-4=0 和(m 2+4)y 2+2m 2y +m 2-4=0, 由韦达定理,可解得P ⎝ ⎛⎭⎪⎫24m m 2+36,m 2-36m 2+36,Q ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4. 则直线PQ 的斜率k =m 2-1216m,则直线方程为y -4-m 2m 2+4=m 2-1216m ⎝ ⎛⎭⎪⎫x +8m m 2+4,化简可得直线PQ 的方程为y =m 2-1216m x -12,恒过定点⎝⎛⎭⎪⎫0,-12.所以直线PQ 必过y 轴上的一定点⎝⎛⎭⎪⎫0,-12.2.如图,已知椭圆x 24+y 23=1的左焦点为F ,过点F 的直线交椭圆于A ,B 两点,线段AB的中点为G ,AB 的中垂线与x 轴和y 轴分别交于D ,E 两点.(1)若点G 的横坐标为-14,求直线AB 的斜率;(2)记△GFD 的面积为S 1,△OED (O 为原点)的面积为S 2.试问:是否存在直线AB ,使得S 1=S 2?并说明理由.解:(1)依题意可知,直线AB 的斜率存在, 设其方程为y =k (x +1),将其代入x 24+y 23=1,整理得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=-8k24k 2+3.故点G 的横坐标为x 1+x 22=-4k 24k 2+3=-14, 解得k =±12.(2)假设存在直线AB ,使得S 1=S 2, 显然直线AB 不能与x 轴、y 轴垂直. 由(1)可得G ⎝ ⎛⎭⎪⎫-4k 24k 2+3,3k 4k 2+3. 设点D 的坐标为(x D,0).因为DG ⊥AB , 所以3k 4k 2+3-4k24k 2+3-x D×k =-1, 解得x D =-k 24k 2+3,即D ⎝ ⎛⎭⎪⎫-k 24k 2+3,0.因为△GFD ∽△OED , 所以S 1=S 2⇔|GD |=|OD |. 即⎝ ⎛⎭⎪⎫-k 24k 2+3--4k 24k 2+32+⎝ ⎛⎭⎪⎫-3k 4k 2+32 =⎪⎪⎪⎪⎪⎪-k 24k 2+3, 整理得8k 2+9=0. 因为此方程无解,所以不存在直线AB ,使得S 1=S 2.3.[2017·山西太原模拟]如图所示,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上.(1)求曲线C 的方程及t 的值; (2)记d =|AB |1+4m2,求d 的最大值.解:(1)y 2=2px (p >0)的准线为x =-p2,∴1-⎝⎛⎭⎪⎫-p 2=54,p =12,∴抛物线C 的方程为y 2=x . 又点M (t,1)在抛物线C 上,∴t =1. (2)由(1)知,点M (1,1), 从而n =m ,即点Q (m ,m ),依题意,直线AB 的斜率存在,且不为0, 设直线AB 的斜率为k (k ≠0). 且A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2,故k ·2m =1,∴直线AB 的方程为y -m =12m(x -m ), 即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x 消去x ,整理得y 2-2my +2m 2-m =0,∴Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2=2+4m 2m -m 2.∴d =|AB |1+4m2=2m-m ≤m +(1-m )=1,当且仅当m =1-m ,即m =12时等号成立,又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.。
高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新
![高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新](https://img.taocdn.com/s3/m/b46d8c593a3567ec102de2bd960590c69ec3d87d.png)
§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。
2020届高考数学一轮第九单元解析几何第讲双曲线理新人教A版
![2020届高考数学一轮第九单元解析几何第讲双曲线理新人教A版](https://img.taocdn.com/s3/m/2ada84d1a0116c175f0e4859.png)
即|PC|-|PA|=2,
因为0<|PC|-|PA|<|AC|,
所以由双曲线的定义,知点P
的轨迹是以A,C为焦点,2为实轴
长的双曲线的左支,其中a=1,c=3, 所以b2=c2-a2=9-1=8. 故所求的轨迹方程为x2-y82=1(x≤-1). 答案:x2-y82=1(x≤-1)
x2 4
+
y2 3
=1的左、右焦点,平面内
一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是( )
A.双曲线
B.双曲线的一支
C.两条射线
D.一条射线
解:对于椭圆有c2=a2-b2=4-3=1,
所以椭圆的左、右焦点为F1(-1,0),F2(1,0), 因为|MF1|-|MF2|=2=|F1F2|, 所以M点的轨迹为一条射线. 答案:D
10
2.(2018·浙江卷)双曲线x32-y2=1 的焦点坐标是( ) A.(- 2,0),( 2,0) B.(-2,0),(2,0) C.(0,- 2),(0, 2) D.(0,-2),(0,2) 解:因为双曲线方程为x32-y2=1, 所以 a2=3,b2=1,且双曲线的焦点在 x 轴上, 所以 c= a2+b2= 3+1=2, 即得该双曲线的焦点坐标为(-2,0),(2,0).
A. 5
B.2
C. 3
D. 2
37
解:(方法 1)如图,过点 F1 向 OP 的反向延长线作垂线, 垂足为 P′,连接 P′F2,
由题意可知,四边形 PF1P′F2 为平行四边形,且△PP′F2 是直角三角形.
因为|F2P|=b,|F2O|=c,所以|OP|=a. 又|PF1|= 6a=|F2P′|,|PP′|=2a,所以|F2P|= 2a=b, 所以 c= a2+b2= 3a,所以 e=ac= 3.
2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测54 理 新人教A版
![2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测54 理 新人教A版](https://img.taocdn.com/s3/m/06b2a125866fb84ae45c8dfc.png)
2019版高考数学一轮复习 第九章 解析几何 课时跟踪检测54 理 新人教A 版1.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则点Q 的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0答案:D解析:由题意知,M 为PQ 的中点,设Q (x ,y ),则P 的坐标为(-2-x,4-y ),代入2x -y +3=0,得2x -y +5=0.2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则动点P 的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线 答案:B解析:设P (x ,y ),则x +2+y 2=2x -2+y 2,整理得x 2+y 2-4x =0, 又D 2+E 2-4F =16>0, 所以动点P 的轨迹是圆.3.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 作垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线答案:D解析:由已知,得|MF |=|MB |.由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.4.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3x C .x 2=2y D .y 2=4x答案:A解析:设点P (x ,y ),则Q (x ,-1).因为QP →·QF →=FP →·FQ →,所以(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y .5.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则点P 的轨迹方程是( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2答案:D解析:如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1, 又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2, 即|PM |2=2,∴(x -1)2+y 2=2.6.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为( )A.4x 221-4y225=1 B.4x 221+4y225=1 C.4x 225-4y221=1 D.4x 225+4y221=1 答案:D解析:∵M 为AQ 垂直平分线上一点,则|AM |=|M Q |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5, 故点M 的轨迹为椭圆.∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y221=1.7.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1C .y 2-x 248=-1D .x 2-y 248=1答案:A解析:由题意,得|AC |=13,|BC |=15,|AB |=14, 又|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支. ∵c =7,a =1,∴b 2=48,∴点F 的轨迹方程为y 2-x 248=1(y ≤-1).8.直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线答案:A解析:设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1, 所以y +3x 10+3y -x10=1,即x +2y =5 ,所以点C 的轨迹是直线,故选A.9.动点P (x ,y )到定点A (3,4)的距离比P 到x 轴的距离多一个单位长度,则动点P 的轨迹方程为________.答案:x 2-6x -10y +24=0(y >0)解析:由题意知,动点P 满足|PA |=|y |+1, 即x -2+y -2=|y |+1,当y >0时,整理得x 2-6x -10y +24=0; 当y ≤0时,整理得x 2-6x -6y +24=0, 变形为(x -3)2+15-6y =0,此方程无轨迹.10.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.答案:x 22-y 22=1(x >2)解析:以BC 的中点为原点,中垂线为y 轴建立如图所示的平面直角坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |. ∴|AB |-|AC |=22<|BC |=4,∴点A 的轨迹为以B ,C 的焦点的双曲线的右支(y ≠0)且a =2,c =2, ∴轨迹方程为x 22-y 22=1(x >2).11.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________.答案:x 2+y 2=4解析:由题意,延长F 1D ,F 2A 并交于点B , 易证Rt △ABD ≌Rt △AF 1D , ∴|F 1D |=|BD |,|F 1A |=|AB |, 又O 为F 1F 2的中点,连接OD , ∴OD ∥F 2B ,从而可知|DO |=12|F 2B |=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4.12.设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且AB 的中点为M ,则点M 的轨迹方程是________.答案:y 2=2(x -1)解析:由题意知,F (1,0),设A (x 1,y 1),B (x 2,y 2),M (x ,y ), 则x 1+x 2=2x ,y 1+y 2=2y ,y 21=4x 1,y 22=4x 2, 后两式相减并将前两式代入,得 (y 1-y 2)y =2(x 1-x 2). 当x 1≠x 2时,y 1-y 2x 1-x 2y =2, 又A ,B ,M ,F 四点共线, 所以y 1-y 2x 1-x 2=yx -1, 代入上式,得y 2=2(x -1);当x 1=x 2时,M (1,0)也满足这个方程,即y 2=2(x -1)是所求的轨迹方程.[冲刺名校能力提升练]1.[2017·辽宁葫芦岛调研]在△ABC 中,已知A (2,0),B (-2,0),G ,M 为平面上的两点且满足GA →+GB →+GC →=0,|MA →|=|MB →|=|MC →|,GM →∥AB →,则顶点C 的轨迹为( )A .焦点在x 轴上的椭圆(长轴端点除外)B .焦点在y 轴上的椭圆(短轴端点除外)C .焦点在x 轴上的双曲线(实轴端点除外)D .焦点在x 轴上的抛物线(顶点除外) 答案:B解析:设C (x ,y )(y ≠0),则由GA →+GB →+GC →=0,即G 为△ABC 的重心,得G ⎝ ⎛⎭⎪⎫x 3,y3. 又|MA →|=|MB →|=|MC →|, 即M 为△ABC 的外心, 所以点M 在y 轴上, 又GM →∥AB →,则有M ⎝ ⎛⎭⎪⎫0,y 3.所以x 2+⎝ ⎛⎭⎪⎫y -y 32=4+y 29,化简得x 24+y 212=1,y ≠0.所以顶点C 的轨迹为焦点在y 轴上的椭圆(除去短轴端点).2.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )A BC D答案:D解析:当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y2(0≤y ≤1),∴y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),∴y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.3.[2017·浙江杭州模拟]坐标平面上有两个定点A ,B 和动点P ,如果直线PA ,PB 的斜率之积为定值m ,则点P 的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:________.答案:①②④⑤解析:设A (a,0),B (-a,0),P (x ,y ), 则yx -a ·yx +a=m ,即y 2=m (x 2-a 2).①当m =-1时,点P 的轨迹为圆; ②当m >0时,点P 的轨迹为双曲线; ③当m <0且m ≠-1时,点P 的轨迹为椭圆; ④当m =0时,点P 的轨迹为直线. 故选①②④⑤.4.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案:x 29-y 216=1(x >3)解析:如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支, 故轨迹方程为x 29-y 216=1(x >3).5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)依题意,得c =5,e =c a =53, 因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0,则由⎩⎪⎨⎪⎧y =k x -x 0+y 0,x 29+y24=4,得x 29+[k x -x 0+y 0]24=1,即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0, Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0, 整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0. 又所引的两条切线相互垂直, 设两切线的斜率分别为k 1,k 2,于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=-3,y 0=2或⎩⎪⎨⎪⎧x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2,经检验知均满足x 20+y 20=13.因此,动点P (x 0,y 0)的轨迹方程是x 2+y 2=13.6.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.(1)解:由题意可得,动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等, 所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线. 所以动点P 的轨迹W 的方程为x 2=4y .(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1).由⎩⎪⎨⎪⎧y =kx -4,x 2=4y 消去y ,整理得x 2-4kx +16=0. 则Δ=16k 2-64>0,即|k |>2.x 1+x 2=4k ,x 1x 2=16.直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2), 所以y =y 2-y 1x 2+x 1(x -x 2)+y 2, 即y =x 22-x 21x 1+x 2(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A1,D,B三点共线.。
高考数学一轮复习 第九章 解析几何 课时跟踪检测51 理 新人教A版
![高考数学一轮复习 第九章 解析几何 课时跟踪检测51 理 新人教A版](https://img.taocdn.com/s3/m/8189bf75cf84b9d528ea7aca.png)
课时跟踪检测(五十一)[高考基础题型得分练]1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A.14 B.12 C .2 D .4答案:A解析:由题意知,a 2=1m,b 2=1,且a =2b ,∴1m =4,∴m =14. 2.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.306B.7C.306或7 D.56或7 答案:C解析:因为实数4,m,9构成一个等比数列, 所以可得m 2=36, 解得m =6或m =-6.当圆锥曲线为椭圆时,即x 2m +y 2=1的方程为x 26+y 2=1,所以a 2=6,b 2=1,则c 2=a 2-b 2=5, 所以离心率e =ca =56=306. 当曲线是双曲线时,可求得离心率为7.3.[2017·河北邯郸一模]椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍答案:A解析:设线段PF 2的中点为D , 则|OD |=12|PF 1|且OD ∥PF 1,OD ⊥x 轴,∴PF 1⊥x 轴.∴|PF 1|=b 2a =323=32.又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732. ∴|PF 2|是|PF 1|的7倍.4.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A.32B.332 C.94 D.154答案:B解析:设向量F 1P →,F 2A →的夹角为θ.由条件知,|AF 2|为椭圆通径的一半,即|AF 2|=b 2a =32,则F 1P →·F 2A →=32|F 1P →|cos θ,于是F 1P →·F 2A →要取得最大值, 只需F 1P →在F 2A →上的投影值最大, 易知此时点P 为椭圆短轴的上顶点, 所以F 1P →·F 2A →=32×|F 1P →|cos θ≤332.故选B.5.[2017·陕西西安质量检测]已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( ) A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 答案:C解析:依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a 2-c 2=3,因此椭圆C 的方程是x 24+y 23=1,故选C.6.[2017·甘肃兰州诊断]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,则椭圆C 的离心率e =( )A.22B.32C.23D.33答案:A解析:设椭圆C 的焦距为2c (c <a ), 由于直线AB 的方程为bx +ay -ab =0, ∴ab a 2+b 2=63c , ∵b 2=a 2-c 2, ∴3a 4-7a 2c 2+2c 4=0,解得a 2=2c 2或3a 2=c 2(舍去),∴e =22. 7.[2017·江西师大附中模拟]椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba的值为( ) A.32 B.233 C.932D.2327答案:B解析:设A (x 1,y 1),B (x 2,y 2), 则ax 21+by 21=1,ax 22+by 22=1,即ax 21-ax 22=-(by 21-by 22),by 21-by 22ax 21-ax 22=-1,∴b y 1-y 2y 1+y 2a x 1-x 2x 1+x 2=-1,∴b a×(-1)×32=-1, ∴b a =233,故选B.8.[2017·山东青岛模拟]设椭圆x 2m 2+y 2n2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________.答案:x 216+y 212=1解析:抛物线y 2=8x 的焦点为(2,0), ∴m 2-n 2=4,①e =12=2m,∴m =4, 代入①得,n 2=12, ∴椭圆的方程为x 216+y 212=1.9.[2017·湖南长沙一模]椭圆Г:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案:3-1解析:依题意得∠MF 1F 2=60°, ∠MF 2F 1=30°,∠F 1MF 2=90°,设|MF 1|=m ,则有|MF 2|=3m ,|F 1F 2|=2m , 该椭圆的离心率是e =|F 1F 2||MF 1|+|MF 2|=3-1.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.解:(1)由已知可得,c a =63,c =2, 所以a = 6.又由a 2=b 2+c 2,解得b =2, 所以椭圆C 的标准方程是x 26+y 22=1.(2)设点T 的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3--=-m .当m ≠0时,直线PQ 的斜率k PQ =1m, 直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2, 也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1.消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →, 即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3-3,y 1+y 2=4mm 2+3=m ,解得m =±1.此时,S 四边形OPTQ =2S △OPQ =2×12·|OF ||y 1-y 2|=2⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=2 3. [冲刺名校能力提升练]1.[2017·广东汕头一模]已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左、右焦点,若△F 1PF 2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个答案:C解析:当∠PF 1F 2为直角时,根据椭圆的对称性知,这样的点P 有2个;同理当∠PF 2F 1为直角时,这样的点P 有2个;当点P 为椭圆的短轴端点时,∠F 1PF 2最大,且为直角,此时这样的点P 有2个.故符合要求的点P 有6个.2.[2017·河北唐山模拟]椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y=0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A.12B.3-12C.32D.3-1答案:D解析:解法一:设A (m ,n ),则⎩⎪⎨⎪⎧n m +c -3=-1,3×m -c 2+n 2=0,解得A ⎝ ⎛⎭⎪⎫c2,32c ,代入椭圆C 中,有c 24a 2+3c 24b2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2), ∴c 4-8a 2c 2+4a 4=0, ∴e 4-8e 2+4=0, ∴e 2=4±23, ∵0<e <1,∴e =3-1.解法二:设F ′是椭圆的右焦点,连接AF ,AF ′.由已知得△AFF ′是直角三角形,其中∠A =90°,∠AFF ′=30°, ∵|FF ′|=2c ,∴|AF |=3c ,|AF ′|=c , ∴e =2c 2a =|FF ′||AF |+|AF ′|=2c c +3c=3-1,故选D.3.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2.若△PF 1F 2的面积为9,则b =________.答案:3解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,∴2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,又∵S △PF 1F 2=12r 1r 2=b 2=9,∴b =3.4.[2017·河北保定一模]与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案:x 225+y 216=1解析:设动圆的半径为r ,圆心为P (x ,y ), 则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.5.已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左、右焦点分别为F 1和F 2,且|F 1F 2|=2,点⎝ ⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的面积为1227,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由题意知c =1,2a =32+⎝ ⎛⎭⎪⎫322+22=4, 解得a =2,故椭圆C 的方程为x 24+y 23=1.(2)①当直线l ⊥x 轴时,可取A ⎝⎛⎭⎪⎫-1,-32,B ⎝ ⎛⎭⎪⎫-1,32,△AF 2B 的面积为3,不符合题意. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),代入椭圆方程得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0成立,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,可得|AB |=1+k 2·x 1+x 22-4x 1x 2=k 2+3+4k2,又圆F 2的半径r =2|k |1+k2,∴△AF 2B 的面积为12|AB |·r =12|k |k 2+13+4k 2=1227,化简得17k 4+k 2-18=0,解得k =±1,∴r =2,圆的方程为(x -1)2+y 2=2.6.[2016·浙江卷]如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 解:(1)设直线y =kx +1被椭圆截得的线段为AP ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k 1+a 2k 2.因此|AP |=1+k 2|x 1-x 2| =2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由于k 1≠k 2,k 1,k 2>0得 1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a得,所求离心率的取值范围为⎝ ⎛⎦⎥⎤0,22 .。
(精品)2019年高考一轮复习数学(文):第九章 平面解析几何 课时跟踪训练50 Word版含解析
![(精品)2019年高考一轮复习数学(文):第九章 平面解析几何 课时跟踪训练50 Word版含解析](https://img.taocdn.com/s3/m/cb384d79be23482fb5da4c06.png)
名师对话2019届高考高三数学(文)一轮复习课时跟踪训练(五十)[基础巩固]一、选择题1.(2017·辽宁师大附中期中)过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2 C.12 D .-12[解析] 由过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆的方程,化简得(2k 21+1)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),∴x 1+x 2=-8k 212k 21+1,∴P 的横坐标为-4k 212k 21+1,P 的纵坐标为k 1⎝ ⎛⎭⎪⎫-4k 212k 21+1+2=2k 12k 21+1,即点P ⎝ ⎛⎭⎪⎫-4k 212k 21+1,2k 12k 21+1,∴直线OP 的斜率k 2=-12k 1,∴k 1k 2=-12.故选D.[答案] D2.如图,F (c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,A ,B 为椭圆的上、下顶点,P 为直线AF 与椭圆的交点,则直线PB 的斜率k PB =( )A.c a 2B.b a 2C.b +c a 2D.bca 2[解析] 直线AF 的方程为x c +y b =1,把y =-b c x +b 代入x 2a 2+y 2b 2=1,得a 2+c 2a 2c 2x 2-2c x =0,∴x P =2a 2ca 2+c 2,y P =c 2b -a 2b a 2+c 2,∴k PB =c 2b -a 2ba 2+c 2+b2a 2ca 2+c 2=bca 2. [答案] D3.(2017·河北唐山统考)平行四边形ABCD 内接于椭圆x 24+y 22=1,直线AB 的斜率k 1=1,则直线AD 的斜率k 2=( )A.12 B .-12 C .-14 D .-2[解析] 解法一:设AB 的中点为G ,由椭圆与平行四边形的对称性知O 为平行四边形ABCD 的对角线的交点,则GO ∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1,x 224+y 222=1,两式相减是(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)2,整理得x 1+x 22(y 1+y 2)=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12.又G ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,所以k OG =y 1+y 22-0x 1+x 22-0=-12, 即k 2=-12,故选B.解法二:设直线AB 的方程为y =x +t ,A (x 1,y 1),B (x 2,y 2),利用椭圆与平行四边形的对称性可得D (-x 2,-y 2).则直线AD 的斜率k 2=y 1+y 2x 1+x 2=x 1+x 2+2t x 1+x 2=1+2tx 1+x 2.联立⎩⎪⎨⎪⎧y =x +t ,x 2+2y 2-4=0,消去y 得3x 2+4tx +2t 2-4=0,则x 1+x 2=-4t 3,∴k 2=1+2t -43t =-12.故选B.[答案] B 二、解答题4.(2017·河北涞水波峰中学、高碑店三中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 与圆M :x 2+(y -3)2=4的公共弦长为4.(1)求椭圆C 的方程;(2)已知O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=85相切并交椭圆C 于另一点B ,求OA →·OB →的值.[解] (1)∵椭圆C 与圆M 的公共弦长为4,∴椭圆C 经过点(±2,3),∴4a 2+9b 2=1,又c a =12,a 2=b 2+c 2,解得a 2=16,b 2=12,∴椭圆C 的方程为x 216+y 212=1.(2)已知右顶点A (4,0),∵直线l 与圆x 2+y 2=85相切,设直线l 的方程为y =k (x -4),∴|4k |1+k2=85,∴9k 2=1,∴k =±13.联立y =±13(x -4)与x 216+y 212=1,消去y ,得31x 2-32x -368=0.设B (x 0,y 0),则由根与系数的关系得4x 0=-36831,∴OA →·OB →=4x 0=-36831.5.(2017·吉林长春外国语学校期中)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,它的焦距为2.(1)求椭圆C 的方程.(2)是否存在正实数t ,使直线x -y +t =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=56上?若存在,求出t 的值;若不存在,请说明理由.[解] (1)∵F 1,F 2为椭圆的左、右焦点,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,∴a = 2.∵2c =2,∴c =1,∴b =a 2-c 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧x -y +t =0,x 22+y 2=1,化简得3x 2+4tx +2t 2-2=0.①由①知x 1+x 2=-4t 3,∴y 1+y 2=x 1+x 2+2t =2t3. ∵线段AB 的中点在圆x 2+y 2=56上,∴⎝ ⎛⎭⎪⎫-2t 32+⎝ ⎛⎭⎪⎫t 32=56,解得t =62(负值舍去), 故存在t =62满足题意.6.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.[解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +1,则由⎩⎨⎧y =kx +1,x 24+y 23=1得(3+4k 2)x 2+8kx -8=0,且Δ=192k 2+96>0.设A (x 1,y 1),B (x 2,y 2),则由AM →=2MB →得x 1=-2x 2.又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k 2,x 1·x 2=-83+4k,所以⎩⎪⎨⎪⎧-x 2=-8k3+4k 2,-2x 22=-83+4k ,消去x 2,得⎝ ⎛⎭⎪⎫8k 3+4k 22=43+4k 2,解得k 2=14,k =±12. 所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.[能力提升]7.(2017·河南考前预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为12.(1)求椭圆C 的方程;(2)若过椭圆右焦点F 2的直线l 交椭圆于A ,B 两点,求|AF 2|·|F 2B |的取值范围.[解] (1)因为椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意知⎩⎨⎧a 2=b 2+c 2,c a =12,2c =2,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)因为F 2(1,0),所以①当直线l 的斜率不存在时,A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,则|AF 2|·|F 2B |=94. ②当直线l 的斜率存在时,直线l 的方程可设为y =k (x -1).由⎩⎨⎧y =k (x -1),x 24+y 23=1消去y ,得(3+4k 2)x 2-8k 2x +4k 2-12=0.(*)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(*)的两个根,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2. 所以|AF 2|=(x 1-1)2+y 21=1+k 2·|x 1-1|, |F 2B |=(x 2-1)2+y 22=1+k 2·|x 2-1|, 所以|AF 2|·|F 2B |=(1+k 2)·|x 1x 2-(x 1+x 2)+1|=(1+k 2)·⎪⎪⎪⎪⎪⎪4k 2-123+4k 2-8k 23+4k 2+1 =(1+k 2)·⎪⎪⎪⎪⎪⎪-93+4k 2 =(1+k 2)·93+4k 2=94⎝ ⎛⎭⎪⎫1+13+4k 2. 当k 2=0时,|AF 2|·|F 2B |取最大值3,所以|AF 2|·|F 2B |的取值范围为⎝ ⎛⎦⎥⎤94,3. 由①②知|AF 2|·|F 2B |的取值范围为⎣⎢⎡⎦⎥⎤94,3. 8.(2018·河北百校联盟期中)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1. 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎨⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎪⎨⎪⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎨⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3+x 4=-4n3,x 3·x 4=2n 2-63.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.9.设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1(b >0),其离心率为22.(1)求椭圆M 的方程;(2)若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? [解] (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎫222,得b 2=2.所以椭圆M 的方程为x 24+y 22=1.(2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交. ②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎨⎧y =kx +4,x 24+y 22=1,消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0, 解得k <-142或k >142.综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎫142,+∞时,直线l 与椭圆M 相交. 10.(2017·广东惠州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,椭圆短轴的一个端点与两个焦点构成的三角形的面积为523.(1)求椭圆C 的方程;(2)已知动直线y =k (x +1)与椭圆C 相交于A ,B 两点. ①若线段AB 中点的横坐标为-12,求斜率k 的值;②已知点M ⎝ ⎛⎭⎪⎫-73,0,求证:MA →·MB →为定值. [解] (1)x 2a 2+y 2b 2=1(a >b >0)满足a 2=b 2+c 2,又c a =63,12×b ×2c =523,解得a 2=5,b 2=53,则椭圆方程为x 25+3y 25=1. (2)设A (x 1,y 1),B (x 2,y 2). ①将y =k (x +1)代入x 25+3y 25=1, 得(1+3k 2)x 2+6k 2x +3k 2-5=0, ∴Δ=48k 2+20>0,x 1+x 2=-6k 23k 2+1,∵AB 中点的横坐标为-12,∴-3k 23k 2+1=-1,解得k =±33. ②证明:由①知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1, ∴MA →·MB →=⎝ ⎛⎭⎪⎫x 1+73,y 1·⎝ ⎛⎭⎪⎫x 2+73,y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+y 1y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+k 2(x 1+1)(x 2+1) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫73+k 2(x 1+x 2)+499+k 2 =(1+k 2)3k 2-53k 2+1+⎝⎛⎭⎪⎫73+k 2⎝ ⎛⎭⎪⎫-6k 23k 2+1+499+k 2 =-3k 4-16k 2-53k 2+1+499+k 2 =49(定值).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习第九章解析几何课时跟踪检测50理新人教A 版1.[xx·浙江温州十校联考]对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( )A .相离B .相切C .相交D .以上三个选项均有可能 答案:C解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.2.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8答案:B解析:将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.3.[xx·辽宁大连期末]圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =( )A.2-1或-2-1 B .1或-3 C .1或- 2 D. 2答案:B解析:由题意知,圆的标准方程为x 2+(y +1)2=4. 较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2. 即|1+k |2=2,解得k =1或-3. 4.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11答案:C解析:圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m , 所以圆心C 2(3,4),半径r 2=25-m , 从而|C 1C 2|=32+42=5.由两圆外切,得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.5.[xx ·江西南昌模拟]已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当S △AOB =1时,直线l 的倾斜角为( )A .150°B .135°C .120°D .不存在答案:A解析:由于S △AOB =12×2×2sin ∠AOB =1,∴sin ∠AOB =1,∴∠AOB =π2, ∴点O 到直线l 的距离OM 为1,而OP =2,OM =1,在直角△OMP 中,∠OPM =30°, ∴直线l 的倾斜角为150°,故选A.6.[xx·山东青岛一模]过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4答案:A解析:如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线, ∴AB ⊥OP .∵P (1,3),O (0,0), ∴|OP |=1+3=2. 又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|OA |sin ∠AOP = 3.7.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2答案:D解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22, 因此根据直角三角形勾股定理,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 8.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x +y -3=0B .x +y -1=0C .x -y +5=0D .x -y -5=0答案:C解析:设直线的斜率为k ,又弦AB 的中点为(-2,3), 所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2), 所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1,所以直线l 的方程为x -y +5=0.9.[xx·河北唐山模拟]过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=________.答案:5解析:解法一:由已知得,圆心C (0,2),半径r =5, △ABC 是直角三角形,|AC |=-2+-2=10,|BC |=5,∴cos ∠ACB =BC AC=510,∴CA →·CB →=|CA →||CB →|cos ∠ACB =5.解法二:CA →·CB →=(CB →+BA →)·CB →=CB →2+BA →·CB →, 由于|BC |=5,AB ⊥BC , 因此CA →·CB →=5+0=5.10.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案:4±15解析:依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. 11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是为________.答案:⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:整理曲线C 1的方程得,(x -1)2+y 2=1,故曲线C 1为以点C 1(1,0)为圆心,1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,依题意知直线l 与圆相交,故有圆心C 1到直线l 的距离d =|m+-0|m 2+1<r =1,解得m∈⎝ ⎛⎭⎪⎫-33,33, 又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 故m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33. 12.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.答案:x +y -3=0解析:依题意得,当∠ACB 最小时,圆心C 到直线l 的距离达到最大, 此时直线l 与直线CM 垂直,又直线CM 的斜率为1, 因此所求直线l 的方程是y -2=-(x -1),即x +y -3=0.[冲刺名校能力提升练]1.[xx·辽宁沈阳一模]直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为( ) A .3 B .2 2 C .3或-5 D .-3或5答案:C解析:解法一:联立⎩⎪⎨⎪⎧y =x +4,x -a 2+y -2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4×2×(a 2-7)=0, 整理可得a 2+2a -15=0,解得a =3或-5.解法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y =x +4与圆(x -a )2+(y -3)2=8相切知,圆心到直线的距离等于半径,所以|a -3+4|12+-2=22,即|a +1|=4,解得a =3或-5.2.[xx·新疆乌鲁木齐一诊]在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是( )A.π6 B.π4 C.π3D.3π4答案:B解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.3.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)·(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条; 当直线l 的斜率k 存在时,如图,x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.4.[xx·云南名校联考]已知圆O :x 2+y 2=1,P 为直线x -2y +5=0上的动点,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.答案:2解析:过O 作OP 垂直于直线x -2y +5=0, 过P 作圆O 的切线PA ,连接OA , 易知此时|PA |的值最小. 由点到直线的距离公式,得 |OP |=|1×0-2×0+5|1+22= 5.又|OA |=1,所以|PA |=|OP |2-|OA |2=2.5.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 6.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 作圆O 的两条弦AC ,BD 互相垂直,求|AC |+|BD |的最大值. 解:(1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1), 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33, 此时切线方程为y +3=33(x -1), 即x -3y -4=0.所以所求的切线方程为x +3y -4=0或x -3y -4=0. (2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0), 则d 21+d 22=OM 2=3.又有|AC |=24-d 21,|BD |=24-d 22, 所以|AC |+|BD |=24-d 21+24-d 22.则(|AC |+|BD |)2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22). 因为2d 1d 2≤d 21+d 22=3, 所以d 21d 22≤94,当且仅当d 1=d 2=62时等号成立, 所以4+d 21d 22≤52,所以(|AC |+|BD |)2≤4×⎝ ⎛⎭⎪⎫5+2×52=40.所以|AC |+|BD |≤210, 即|AC |+|BD |的最大值为210.。