. 空间曲线及其方程()投影曲线.

合集下载

微积分课件第3节空间曲线及其在坐标面上的投影

微积分课件第3节空间曲线及其在坐标面上的投影

方程组
所表示的曲线方程称为
空间曲线的一般方程. 特殊地,空间直线方程
三、空间曲线及其在坐标面上的投影
例1
方程组
x2
+
y2
+ z2
=
25,
表示什么曲线?
z= 3;
解 因为 x2 + y2 + z2 = 25是球心在原点, 半径为
5 的球面.
z
z = 3 是平行于 x y
坐标面的平面,
z=3
因而它们的交线是
柱面的概念
准线
母线
平行于定直线并沿定曲线 C 移动的直线L 所形成的曲面称为柱面.
复习
几种常用的柱面方程及图形
(1)圆柱面
(2)椭圆柱面
(3)双曲柱面
(4)抛物柱面
统 称 为 二 次 柱 面 圆柱面
椭圆柱面
抛物柱面
三、 旋转曲面
一平面曲线 C 绕同一平面上的一条定直线 L 旋转一周
所形成的曲面称为 旋转曲面. 曲线C 称为旋转曲面的
定直线 L 称为旋转曲面的 旋转轴.
z
1.圆锥面方程
2. 旋转抛物面
O
y
x
第三节 空间曲线及其在 坐标面上的投影
第四节 二次曲面
第三节 空间曲线及其在坐标 面上的投影
一、空间曲线的一般方程 二、空间曲线在坐标面上的投影 三、小结 思考题
第三节 空间曲线及其在坐标面上的投影
一、空间曲线的概念
1、空间曲线 把空间曲线C看作是两曲面的交线.
二、空间曲线在坐标面上的投影
补充: 空间立体或曲面在坐标面上的投影.
空间立体
曲面
二、空间曲线在坐标面上的投影

重要曲面与曲线的投影

重要曲面与曲线的投影
第一节
曲面及其方程

(1)

设S是空间曲面,F ( x, y, z ) 0是一个三元代数方程, 如果它满足:M ( x, y, z ) S F ( x, y, z ) 0 则称(1)是曲面S的方程,而S叫做方程(1)的图形。
常见的空间曲面有:球面、旋转曲面和柱面,下面我们一 一对它们进行介绍。
| y 1 | MP
.
S
2
z
z1
C
x y
2
o
y1
y
.
S:f ( x 2 y 2 , z ) 0 .
x
10. 旋转面的方程
f ( y, z ) 0 曲线 C x 0
旋转一周得旋转曲面 S
绕 z轴
P
z
N (0, y1 , z1 )
M
.
M(x,y,z) S
f f (y11,, z11)=0 z )=0
xoy 面上的投影曲线所围之域 . 二者交线
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .
2 2
机动
C
o x
1
y
目录
上页
下页
返回
结束
空间曲线在坐标平面上的投影举例
同理可得如下两种投影方程:
2. 在YOZ平面上:
H ( y, z ) 0 — 消去x YZ: x0
2 2
S 2:z 25 x 2 y 2 — 半径为5,球心在O点的上半球面。
x 2 y 2 16 XY : z0 P rj XY {( x, y ) | x 2 y 2 16}
H ( x, z ) 0 — 消去y ZX : y0

高等数学 -空间曲线及其方程

高等数学 -空间曲线及其方程
高等数学(下)
第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
G(x, y, z) 0
L
S1
F(x, y, z) 0
z
表示圆柱面与平面的交线 C.
2C
y
sin
1 x
,
,
求证: lim f (x, y) 0.
x0
y0
证: f (x, y) 0
x y
xy 0 xy 0
要证
ε
ε 0, δ ε 2,当0 ρ x2 y2 δ 时,总有

lim f (x, y) 0
x0
y0
证: Q 0 f (x, y)
x y 0 x 0, y 0
若对任意给定的 , 点P 的去心
E
邻域
内总有E 中的点 , 则
称 点P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;
• 若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ;
• 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E
的外点 , 则称 P 为 E 的边界点 .
显然, E 的内点必属于 E , E 的外点必不属于 E , E 的
边界点可能属于 E, 也可能不属于 E .

09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案

09-13全国大学生高等数学竞赛真题及答案(非数学类)-无答案
2009 年 第一届全国大学生数学竞赛预赛试卷
一、填空题(每小题 5 分,共 20分)
(x y) ln(1 y )
1.计算 D
x dxdy ____________,其中区域 D 由直线 x y 1 与 1x y
两坐标轴所围成三角形区域.
2.设 f (x) 是连续函数,且满足 f (x) 3x2 2 f (x)dx 2 , 则 f (x) ____________. 0
3.曲面 z x22 y 2 2 平行平面 2x 2 y z 0 的切平面方程是__________.
4.设函数 y y(x) 由方程 xe f ( y) d2 y ________________. dx 2
ey ln 29确定,其中 f 具有二阶导数,且 f
1 ,则
二、(5 分)求极限 lim( ex e2x
2.证明广义积分
0
sin x
x
dx
不是绝对收敛的
3.设函数 y y x 由 x3 3x2 y 2 y3 2 确定,求 y x 的极值。
4.过曲线 y 3 x x 0 上的点 A 作切线,使该切线与曲线及 x 轴所围成的平面图形 3
的面积为 4 ,求点 A 的坐标。
二、(满分 12)计算定积分 I
x sin x arctan ex dx 1 cos2 x
三 、( 满 分 12 分 ) 设 f x 在 x 0 处 存 在 二 阶 导 数 f 0 , 且
lim f x x0 x
0 。证明 :级数 f 1 收敛。
n1
n
四 、( 满 分 12 分 ) 设 f x
b
sin f x dx
2
a
m
,f x
0a x b,证 明

高等数学(1)-2习题册8章答案

高等数学(1)-2习题册8章答案

第八章 空间解析几何与向量代数第1次课 空间直角坐标系 向量及其线性运算1.在x 轴上求与点(3,1,7)A -及(7,5,5)B -等距离的点. 解:设所求点为(,0,0)x ,据题意知:22(3)149(7)2525x x --++=-++得2x =,于是所求点为(2,0,0).2.把ABC ∆的BC 边三等分,设分点依次为12,D D ,再把各分点与点A 连接起来,试以,AB c BC a −−→→−−→→==表示向量−→−−→−A D A D 21,.解:113D A c a −−→=-- ,2D A −−→23c a =-- .3.已知两点)1,2,4(1M 和)2,0,3(2M ,计算向量123M M -的模、方向角.解:1236M M -= ,2,,343πππαβγ===.4.求平行于向量(3,2,1)a →=-的单位向量.解:0(aa→=5.已知||3a →=,其方向余弦31cos ,32cos ==βα,求向量a →的坐标表示式.解:设(,,)x y z a a a a →=,则2cos 3x aaα==,1cos 3y a a β== ,所以2x a =,1y a =. 又222cos cos cos 1αβγ++=,得24cos 9γ=,2cos 3γ=±. 2cos 3z a aγ==± ,所以2z a =±,于是,所求向量a →的坐标表示式为(2,1,2)a →=±.6.一向量的终点为)7,1,2(-B ,它在x 轴,y 轴和z 轴上的投影依次为4,4-和1,求该向量的起点A 的坐标.解:设起点A 的坐标为(,,)x y z ,则由24,14,71x y z -=--=--=可得(,,)(2,3,6)x y z =-.7.设32a i j k →→→→=--,2b i j k →→→→=+-,求(1)→→→→⨯⋅b a b a ,;(2) ,3)2(→→⋅-b a →→⨯b a 2;(3) ),cos(→∧→b a ;(4)b prj a →.解:(1)3,57a b a b i j k →→→→⋅=⨯=++ ;(2)(2)318a b →→-⋅=-,210214a b i j k →→⨯=++ ;(3)cos(,)14a ba b a b→→→∧→→→⋅==; (4)cos 14b prj a a ϕ→→===.8.已知)2,1,1(M 1-,)1,3,3(M 2,)3,1,3(M 3,求与−→−21M M 、−→−32M M 同时垂直的单位向量.解:设所求单位向量(,,)a x y z →=.12(2,4,1)M M −−→=-,23(0,2,2)M M −−→=-.1223M M M M ⨯241644022i j ki j k =-=---所求单位向量a →=12231223M M M M M M M M ⨯⨯=±. 9.已知(3,0,4),(5,2,14)OA OB =-=--,求AOB ∠平分线上的单位向量.解:AOB ∠平分线上的一个向量为011(3,0,4)(5,2,14)515OC OA OB =+=-+-- 2(2,1,1)15=-.所以,所求的AOB ∠平分线上的单位向量为OC OC= . 10.若向量3a b + 垂直于75a b - ,4a b - 垂直于72a b - ,求a 和b之间的夹角.解:由题意知:(3)(75)0a b a b +⋅-= ,(4)(72)0a b a b -⋅-=22716150a a b b +⋅-= ,2273080a a b b -⋅+=整理得:24623a b b ⋅= ,22a b b ⋅= ,将22a b b ⋅= 代入22716150a a b b +⋅-= 得,a b = ,又22112cos(,)2b a b a b a b b→→→→∧→→→→⋅===故1(,)arccos23a b π→∧→==. 11.在Oxy 面上,求垂直于(5,3,4)a =-,并与a 等长的向量b .解:设b (,,0)x y =,则b ===2250x y +=又由a b ⊥ ,可得 530x y -=.于是解方程组2250x y +=,530x y -=得1717x y ==或,1717x y =-=- 即b(,1717=或b(,0)1717=--. 12.求向量(3,12,4)a =- 在向量(1,0,2)(1,3,4)b =-⨯-上的投影.解:(1,0,2)(1,3,4)b =-⨯-102(6,2,3)134i j k=-=-.b prj a→(3,12,4)a b →→=⋅=-67=13.设向量4=α,3=β,6),(^πβα=,求以βα2+和βα3-为边的平行四边形的面积.解:以βα2+和βα3-为边的平行四边形的面积为22(2)(3)3()2()6S αβαβααββαβ=+⨯-=-⨯+⨯-^55s i n (,)543s i n6παβαβαβ=⨯=⋅⋅=⨯⨯30=提高题:设(2,1,2),(1,1,)a b z =--=,问z 为何值时^(,)a b 最小?并求出此最小值. 解:记^(,)a b ϕ=,则cos a ba bϕ→→→→⋅==所以,ϕ=d1d3zϕ==当4z<-时,dd zϕ<;当4z>-,dd zϕ<.所以,当4z=-时,^(,)a bϕ=有最小值,且min4πϕ==.第2次课平面及其方程空间直线及其方程1.求满足下列条件的平面方程:(1)过点1(1,2,0)M和2(2,1,1)M且垂直于平面П:1=-xy.解:所求平面的法向量()1,1,0(1,1,1)110111i j kn=-⨯-=--i j=+.所求平面方程为1(1)1(2)0x y⋅-+⋅-=,即30x y+-=.(2)过点(2,3,0)A -,(1,1,2)B -且与向量{4,5,1}a →=平行.解:所求平面的法向量()3,4,2(4,5,1)342451i j kn =-⨯=- 14531i j k =-++所求平面方程为14(2)5(3)310x y z -⋅++⋅-+=,即14531430x y z --+=(3)过(1,1,1),(2,2,2)A B ---和(1,1,2)C -.解:所求平面的法向量()3,3,3(0,2,3)333023i j kn =--⨯-=--- 396i j k =-++.所求平面方程为3(1)9(1)6(1)0x y z -⋅-+⋅-++=,即320x y z -++=.2.求平行于平面6650x y z +++=,而与三坐标面所构成的四面体体积为一个单位的平面.解:设所求平面方程为1x y za b c++=.由题意知 116111/6/1/6abc t ab c ⎧=⎪⎪⎨⎪===⎪⎩得111,,66a b c t t t ===,将其代入116abc =,得16t =.所以 1,6,1a b c ===故所求平面方程为116x y z ++=. 3.一平面通过Oz轴与平面27x y +=的夹角为3π,试求此平面方程. 解:因为所求平面过Oz ,所以可设平面方程为0Ax By += (1) 则其法向量为(,,)A B O .平面27x y +=的法向量为(2,1,.因为所求平面与已知平面的夹角为3π,所以cos 3π=223830A AB B +-= (2) 联立(1)、(2)解得 13A B =再由A B 、不同时为零,代入式(1)可得所求平面方程为 30x y +=或30x y -=.4.求与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行、且过原点的平面方程. 解:{}{}120,1,1,1,2,1s s ==由题意所求平面平行于两直线,则平面的法向量n与该两直线的方向向量垂直,即12011121i j kn s s i j k =⨯==-+-又平面过原点,所以所求平面方程为 即 0x y z -+=.5.求满足下列条件的直线方程:(1)过点(4,1,3)-且平行于直线31122-=-=-z y x . 解:方向向量(2,1,3)s =- ,故所求直线方程为413213x y z -+-==-.(2)过点(5,2,3)-且垂直于平面132=+-z y x 的直线方程.解:方向向量(2,3,1)s = ,故所求直线方程为523213x y z --+==-.(3)过点(0,2,4)且与直线⎩⎨⎧=-=+2312z y z x 平行.解:12(1,0,2),(0,1,3)n n ==-.方向向量s = 12102(2,3,1)013i j kn n ⨯==--故所求直线方程为34221x y z --==-.6.试求直线21:24x y z L x y z ++=⎧⎨++=⎩的对称式方程和参数方程.解:直线L 的方向向量为{}11321112121--==⨯=,,kj i n n v 点(-2,0,3)在直线L 上,所求直线L 的对称式方程:13132--=-=+z y x7.求直线⎩⎨⎧=--=++003z y x z y x 与平面220x y z -+=的夹角.解:12(1,1,3),(1,1,1),(2,2,1)n n n ==--=-.方向向量s = 12113(2,4,2)111i j kn n ⨯==---.则sin s n s nϕ⨯==⋅故所求夹角为arcsin6. 8.求直线⎩⎨⎧=++-=--+0220532:z y x z y x l 在平面14=+-z y x 上的投影直线方程.解:包含l 的平面束方程为235(22)0x y z x y z λ+--+-++=.(12)(2)(3)520x y z λλλλ++-+--+= 12(4,1,1),(12,2,3)n n λλλ=-=+--则124(12)(2)(3)1010n n λλλλ⋅=+--+-=-= ,得110λ=.故所求投影直线方程为12192948041x y z x y z +--=⎧⎨-+=⎩.提高题:1.已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1),线段AB 绕z 轴旋转一周所成的旋转曲面为S ,求由S 及两平面0,1z z ==所围成的立体体积.第3次课 曲面及其方程 空间曲线及其方程1.建立以点(1,3,2)-为球心,且通过坐标原点的球面方程. 解:2222(1)(3)(2)x y z R -+-++= 因为过原点,得214R =.所求球面方程为222(1)(3)(2)14x y z -+-++=.2.一动点与两定点)1,3,2(和)6,5,4(等距离,求该动点的轨迹方程. 解:设该点坐标为(,,)x y z ,则=所以该动点的轨迹方程为441063x y z ++=.3.求下列旋转曲面的方程:(1)xOy 面上的椭圆22221x y a b+=绕x 轴旋转所形成的旋转面的方程为( 122222=++bz y a x ).(2)zOx 面上的抛物线22x z =绕x 轴旋转的旋转抛物面方程是( 222y z x += ).(3)yOz 面上曲线22yz =绕z 轴旋转一周所得旋转曲面方程为( 222()z x y =+ ). (4)xOy 面上曲线9422=+y x 绕x 轴旋转一周所得旋转曲面方程为( 222()94x z y ++= ). 4.方程222y z x +=表示的二次曲面是( 圆锥面 ).5.方程221x y +=在空间所表示的图形是( 圆柱面 ). 6.方程22201x y x x z ⎧+-=⎨+=⎩代表的图形是( 椭圆 ).7.曲线22251x y z z ⎧++=⎨=⎩在xOy 面上的投影曲线方程为( ⎩⎨⎧==+0422z y x ). 8.曲线222112x y z z ⎧++=⎪⎨=⎪⎩在xOy 面上的投影曲线方程为( ⎪⎩⎪⎨⎧==+04322z y x ). 9.下列曲面是否是旋转曲面?若是,它是如何产生的?(1)z y x 422=+ (2)14425222=--z y x 解:(1)是,由xOz 面上曲线24x z =绕z 轴旋转而成,或yOz 面上曲线24y z =绕z 轴旋转而成. (2)是,由xOy 面上曲线221254x y -=绕x 轴旋转而成,或xOz 面上曲线221254x z -=绕x 轴旋转而成.10.画出下列曲面(或立体)的图形:(1))(222y x z += (2)Rz z y x 2222=++(3)22y x z +=与222y x z --=所围的立体11.求以直线113:234x y z L ---==为中心轴,底半径为2的圆柱面方程. 解:圆柱面是到直线L 的距离为2的动点轨迹,设所求圆柱面上点的坐标为(,,)x y z ,由点到直线的距离公式知2=将上式两边平方,整理即得所求圆柱面方程为16(1)(3)12(1)(1)580x z x y --+--+=2.证明:直线0:x z l a c y b ⎧+=⎪⎨⎪=⎩在曲面2222221x y z a b c +-=上. 证明:曲面2222221x y z a b c+-=是一个单叶双曲面,要证明直线l 在该曲面上,只需证明只需l 上的每一点都在该曲面上.直线l 的参数方程为:x at l y b z ct =⎧⎪=⎨⎪=-⎩将上式代入曲面方程,满足曲面2222221x y z a b c+-=方程,故直线l 在曲面上.13.求曲线222222:x y z l z x y⎧++=⎪⎨=+⎪⎩,在xOy 平面上的投影曲线的方程. 解:在曲线l 方程中消去z ,即得曲线l 在xOy 平面上的投影柱面方程为22222()2x y x y +++=即 2222(2)(1)0x y x y +++-=因为2220x y ++≠,所以有2210x y +-=,故所求投影曲线方程为 2210x y z ⎧+=⎨=⎩提高题:1. 椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是经过点(4,0)且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1) 求1S 及2S 的方程;(2) 求1S 及2S 之间的立体体积.第4次课 第八章 总复习题1.设3,4a b == ,且a b ⊥ ,求()()a b a b +⨯- .解:因为a b ⊥ ,^sin(,)sin 12a b π== 故^()()22sin(,)243124a b a b b a b a a b +⨯-=⨯==⨯⨯⨯=2.设(2,3,1),(1,2,5),,a b c a c b =-=-⊥⊥ ,且(27)10c i j k ⋅+-= ,求 c .解:设(,,)c x y z = ,由,c a c b ⊥⊥ 有230250270x y z x y z x y z -+=⎧⎪-+=⎨⎪+-=⎩,得65155,,12412x y z ===,所以65155(,,)12412c = . 3.设()2a b c ⨯⋅= ,求[()()]()a b b c c a +⨯+⋅+ .解:[()()]()a b b c c a +⨯+⋅+()()a b b b a c b c c a =⨯+⨯+⨯+⨯⋅+()()a b a c b c c a =⨯+⨯+⨯⋅+()()()()()()a b c a c c b c c a b a a c a b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅()()a b c b c a =⨯⋅+⨯⋅2()a b c =⨯⋅4=4.直线过点(3,5,9)A --,且与两直线135:23y x L z x =+⎧⎨=-⎩和247:510y x L z x =-⎧⎨=+⎩相交,求此直线方程. 解:设所求直线方程3:59x lt L y mt z nt =-+⎧⎪=+⎨⎪=-+⎩因为直线L 与1L 和2L 相交,所以59359623mt lt nt lt +=-++⎧⎨-+=-+-⎩,即(3)92m l t n l-=-⎧⎨=⎩ 51247915510mt lt nt lt +=-+-⎧⎨-+=-++⎩即(4)24(5)4m l t n l t -=-⎧⎨-=⎩得2,22n l m l ==.令1l =,则2,22n m ==.故所求直线方程为3:52292x t L y t z t =-+⎧⎪=+⎨⎪=-+⎩.5.求过点(1,0,4)-,平行于平面340x y z -+=,且与直线132z x y +=-=相交的直线方程. 解:设所求直线方程为1,(,,)4x lt y mts l m n z nt =-+⎧⎪==⎨⎪=+⎩. 平面的法向量(3,4,1)n =- ,由于直线与平面平行,所以n s ⊥ ,即340l m n -+= 因为两直线相交,故有432nt lt mt +=-+=. ()3(2)4m l t l n t -=⎧⎨-=⎩,即43100m n l +-= 于是得419,728l n m n ==. 令28n =,得16,19l m ==.故所求直线方程为31619428x t y t z t =-+⎧⎪=⎨⎪=+⎩.6.求通过下列两平面1:220x y z ∏+--=和2:32210x y z ∏--+=的交线,且与平面3:32360x y z ∏++-=垂直的平面方程.解:设所求平面方程为(22)(3221)x y z x y z λμ+--+--+= 即 (23)(2)(2)(2)x y z λμλμλμλμ++-+--+-+= 由于该平面⊥平面2∏,所以它们的法向量一点互相垂直,于是3(23)2(2)3(2)0λμλμλμ++-+--=得50λμ-=.取1,5λμ==,代入(22)(3221)0x y z x y z λμ+--+--+=,得 所求平面方程为1791130x y z --+=.7.求与两平面632350x y z ---=和632630x y z ---=相切的球面方程,其中的一个切点为(5,1,1)--.解:由两平行平面的距离公式4d ==所以,球半径为2.求出另一个切点,过点作平面的法线方程561312x t y t z t =+⎧⎪=--⎨⎪=--⎩代入另一个平面方程,得47t =.从而得到球心坐标为471311(,,)777--.故所求球面方程为 222471311()()()4777x y z -++++= 8.求曲线22222(1)(1)z x y z x y ⎧=--⎪⎨=-+-⎪⎩在三个坐标面上的投影曲线的方程. 解:方程组消z ,得22x y x y +=+,故曲线在xOy 面上的投影为 2200x y x y z ⎧+--=⎨=⎩ 同理可得曲线在yOz 面上和xOz 面上的投影为222243200y z yz y z x ⎧++--+=⎨=⎩和222243200x z xz x z y ⎧++--+=⎨=⎩。

空间曲线及其方程

空间曲线及其方程

n级排列的总数为n!个。
<2> 一个排列中,若较大的数 is 排在较小的数 it 的前面 ( is > it ) 时,称这一对数 is it 构成一个逆序。 一个排列中逆序的总数,称为它的逆序数。 记为τ(i1, i2, … in),简记为τ 。 例如: 例如: τ(1 2 3)=0, τ(3 1 2)=2, τ(4 5 2 1 3)=7, 1 3 2 2 1 3 3 1 2
3. 空间曲线在坐标面上投影 F (x, y, z) = 0 设空间曲线C的一般方程 G (x, y, z) = 0 由方程组(4)消去z后得方程 H (x, y) = 0 (5) 方程(5)表示一个母线平行于z 轴的柱面,
z
(4)
曲线 C 一定在柱面上. 空间曲线 C 在 x O y 面上的 投影曲线必定包含于: H (x, y) = 0 z=0
§6
二次曲面的标准方程 二次曲面的标准方程 曲面的标准
1.定义 由x, y, z的二次方程: 定义 ax2 + by2 + cz2 +dxy + exz + fyz + gx + hy + iz +j = 0 + + 所表示的曲面, 称为二次曲面. 其中a, b, …, i, j 为常数且a, b, c, d,e, f 不全为零. 研究方法是采用平面截痕法.
z = 4− x 2 − y 2 C: z = 3( x 2 + y 2 )
由方程消去 z , 得 x2 + y2 =1 ( 圆柱面) x 于是交线C 在xoy面上的投影曲线为 x2 + y2 = 1 z=0
O x2 + y2 ≤ 1

空间曲线及其方程

空间曲线及其方程

平行于x轴的柱面
投影柱面
yoz面上的投影Cyoz为线段:
z
x
10,
| y | 1
(3)同理xoz面上的投影Czox也为线段:
z
y
10,
| x | 1.
15
例7 求抛物面 y2 z2 x 与平面 x 2 y z 0
的截线在三个坐标面上的投影曲线方程. z
解 截线C的方程为:
y2 z2 x
y
x 2y z 0
如图,
o
x
16
(1)消去z ,得 C 在 xoy 面上的投影:
x2 5 y2 4xy x 0
,
z 0
(2)消去y ,得 C 在 zox 面上的投影:
x2 5z2 2xz 4x 0
,
y 0
(3)消去 x,得 C 在 yoz 面上的投影:
y2 z2 2y z 0
F( x, y, z) 0 G( x, y, z) 0
消去x
C yoz
:
x0 R( y, z)
0
C在zox 面上的投影 Czox:
F( x, y, z) 0 消去y G( x, y, z) 0
C z ox
:
T ( x, z)
y
0
0
9
例4
C
:
x
2
x2 (y
y2 1)2
z2 1 (z 1)2
.
x 0
17
四、一元向量值函数
1. 基本概念
(1) 一元向量值函数
r r(t), t I
其中r
xi
yj
zk ,
空间曲线的向量形式
r(t )
x(t)i

空间曲线及其方程

空间曲线及其方程

-0.5 -1
0
x
0
1
2
0.5
1
y
0.1
0.05
x
z
0
-0.05 x
-1
-0.1
-0.5
0
0.25
0.5
0.75
1
0
0.5 y
1
例6
求曲线 C:z z
4x2 y2 3(x2 y2)
z
在 xoy 面上的投影曲线.
解: 从方程组消去 z, 得
x2 y2 1.
Co
x
所以曲线C在 xoy 面的投影曲线为
2
4
xa2a2cots
y
a 2
sint
(0t2)
za
1 2
12
c
ots
三、空间曲线在坐标面上的投影
设空间曲线 C的一般方程为
z
F(x, y,z) 0, G(x, y,z) 0.
C
y
从 方 程 组 中 消z去 后变 得量 到 方 程
H(x, y)0.
x C
当x、y和z满 足 方 程 , x组 、y必 时定 满 足, 方 这 说 明C曲 上线 的 所 有 点 都 所在 表由 示方 的程 面 上 .

y2

4x

0.
例1 方程组 x2y2 1, 表示怎样的 ? 曲线
2x3z6
z
解 因为 x2y21表示圆, 柱面
2
C
2x3z6表 示 平. 面

x2 y2 2x3z
1 表 6



的.
交线o
10
10
x
5

同济版高等数学第六版课件第八章第六节空间曲线及其方程

同济版高等数学第六版课件第八章第六节空间曲线及其方程
直角坐标方程
直角坐标方程是另一种描述空间曲线 的方法,它由一个方程组组成,表示 曲线上任意一点的坐标与三个直角坐 标轴之间的关系。
02
空间曲线的方程
空间曲线的一般方程
空间曲线的一般方程是两个三维空间 的方程联立得到的,通常表示为: F(x,y,z)=0 和 G(x,y,z)=0。
一般方程描述了空间中曲线的形状和 位置,通过解方程组可以求得曲线上 点的坐标。
参数方程
参数方程是描述空间曲线 的一种常用方法,其中参 数的变化反映了曲线上点 的运动轨迹。
空间曲线的弯曲程度
曲率
曲率描述了曲线在某一点 的弯曲程度,曲率越大, 弯曲程度越剧烈。
挠率
挠率描述了曲线在某一点 的方向变化速率,与曲线 的形状和类型有关。
曲率和挠率的关系
曲率和挠率共同决定了空 间曲线的弯曲程度和形状 。
原曲线与投影曲线的位置关系
通过比较原曲线和投影曲线的形状,可以确定它们之间的位 置关系,如相交、相切或相离。
投影曲线的面积与原曲线的关系
投影曲线面积的求解
根据投影曲线的方程,利用定积分计算其面积。
投影曲线面积与原曲线的关系
通过比较投影曲线面积和原曲线的面积,可以分析它们之间的数量关系,如相等 、成比例或相差一个常数倍。
02
极坐标方程的一般形式为:ρ=ρ(θ),其中 ρ 是极径,θ是极角

极坐标方程可以用来表示各种形状的空间曲线,如球面曲线、
03
柱面曲线等。
03
空间曲线的性质
空间曲线的方向
01
02
03
方向向量
空间曲线的方向由其上的 方向向量决定,方向向量 表示了曲线上任意两点的 相对位置。
切线向量

高数同济第六版下高等数学2第八章解答

高数同济第六版下高等数学2第八章解答

习题8-1向量及其线性运算1.在yOz 平面上,求与三点(3,1,2)A 、(4,2,2)B --和(0,5,1)C 等距离的点。

2.设已知两点1M 和2(3,0,2)M ,计算向量12M M的模、方向余弦和方向角。

3. 设向量r的模是4,它与u 轴的夹角是3π,求r在u 轴上的投影。

4. 设358m i j k =++,247n i j k =-- 和54p i j k =+- ,求向量43a m n p =+- 在x 轴上的投影以及在y 轴上的分向量。

5. 从点()2,1,7A -沿向量8912a i j k =+-方向取长为34的线段AB ,求点B 的坐标。

解 设点B 的坐标为(),,x y z ,则()2,1,7AB x y z =-+-,且AB a λ= ,即28,19,712x y z λλλ-=+=-=-,34AB ==从而2λ=,所以点B 的坐标为()18,17,17-习题8-2数量积 向量积1. 设32a i j k =--,2b i j k =+- ,求(1)a b 及a b ⨯ ;(2)(2)3a b - 及2a b ⨯;(3)a 、b 的夹角的余弦。

2.已知1(1,1,2)M -、2(3,3,1)M 和3(3,1,3)M ,求与12M M 、23M M同时垂直的单位向量。

3.求向量(4,3,4)a =-在向量(2,2,1)b = 上的投影。

4. 已知3OA i k =+ 、3OB j k =+ ,求OAB ∆的面积。

5. 设()()3,5,2,2,1,4a b =-= ,问λ与μ有怎样的关系能使a b λμ+与z 轴垂直?解 ()32,5,24a b λμλμλμλμ+=++-+ ,在z 轴上取单位向量()0,0,1e =, 要使它与a b λμ+互相垂直,只须()0a b e λμ+⋅=,即()()()320502410,240,2λμλμλμλμλμ+⨯++⨯+-+⨯=∴-+==,即为所求λ与μ的关系习题8-3曲面及其方程1.一动点与两定点(2,3,1)和(4,5,6)等距离,求这动点的轨迹方程。

7-7空间曲线及其方程

7-7空间曲线及其方程
.
y2+(z – 2)2 = 4
(消去x )
L
y2 = – 4x
0 y
转动坐标系,有下页图
x
.
机动
目录
上页
下页
返回
结束
例5:空间曲线作为投影柱面的交线
z L: y 2 + (z – 2)2 = 4 (消去x) y2 = – 4x (消去z) y2+(z – 2)2 = 4 y2 = – 4x
L
y
0
M t N
机动 目录 上页 下页 返回 结束
a
y

P
x
三、空间曲线在坐标面上的投影
F ( x, y, z ) 0 设空间曲线的一般方程: G ( x , y , z ) 0
消去变量 z 后得: H ( x , y ) 0
曲线关于 xoy的投影柱面
投影柱面的特征:
以此空间曲线为准线,垂直于所投影的坐标面.
z
S1
S2
o
C
y
机动
目录
上页
下页
返回
结束
x2 y2 1 例1 方程组 表示怎样的曲线? 2 x 3 y 3z 6

x 2 y 2 1 表示圆柱面,
2 x 3 y 3 z 6 表示平面,
x y 1 2 x 3 y 3z 6
0 0 2
机动
目录
上页
下页
返回
结束
定理: 证明:空间曲线 L
x (t ) y (t ) z (t )
t
绕 z 轴旋转一周所得的旋转曲面方程 S 为
x 2 ( t ) 2 ( t ) cos 2 2 y ( t ) ( t ) sin z (t )

[整理]ch9-4第四讲空间曲线及其方程.

[整理]ch9-4第四讲空间曲线及其方程.

第四讲Ⅰ 授课题目§7.4 空间曲线及其方程Ⅱ 教学目的与要求1、掌握空间曲线的一般方程及参数方程;2、掌握空间曲线在坐标面上的投影。

Ⅲ 教学重点与难点重点:空间曲线的一般方程及参数方程。

难点:空间曲线在坐标面上的投影。

Ⅳ 讲授内容:一、空间曲线的一般空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F . 反过来, 如果点M 不在曲线C 上, 那么它不可能同时在两个曲面上, 所以它的坐标不满足方程组. 因此, 曲线C 可以用上述方程组来表示. 上述方程组叫做空间曲线C 的一般方程.例1 方程组⎩⎨⎧=+=+632122z x y x 表示怎样的曲线? 解 方程组中第一个方程表示母线平行于z 轴的圆柱面, 其准线是xOy 面上的圆, 圆心在原点O , 半行为1. 方程组中第二个方程表示一个母线平行于y 轴的柱面, 由于它的准线是zOx 面上的直线, 因此它是一个平面. 方程组就表示上述平面与圆柱面的交线.例2 方程组⎪⎩⎪⎨⎧=+---=222222)2()2(a y a x y x a z 表示怎样的曲线? 解 方程组中第一个方程表示球心在坐标原点O , 半行为a 的上半球面. 第二个方程表示母线平行于z 轴的圆柱面, 它的准线是xOy 面上的圆, 这圆的圆心在点)0 ,2(a , 半行为2a . 方程组就表示上述半球面与圆柱面的交线.例2 方程组⎩⎨⎧=+---=222222)(4a y a x y x a z 表示怎样的曲线? 解 方程组中第一个方程表示球心在坐标原点O , 半行为2a 的上半球面. 第二个方程表示母线平行于z 轴的圆柱面, 它的准线是xOy 面上的圆, 这圆的圆心在点(a , 0) , 半行为a . 方程组就表示上述半球面与圆柱面的交线.二、空间曲线的参数方程空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程.例3 如果空间一点M 在圆柱面x 2+y 2=a 2 上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升(其中ω、v 都是常数), 那么点M 构成的图形叫做螺旋线. 试建立其参数方程.解 取时间t 为参数. 设当t =0时, 动点位于x 轴上的一点A (a , 0, 0)处. 经过时间t , 动点由A 运动到M (x , y , z ) . 记M 在xOy 面上的投影为M ', M '的坐标为x , y ,0. 由于动点在圆柱面上以角速度ω 绕 z 轴旋转, 所以经过时间t ,∠AOM '= ω t . 从而x =|OM '|cos ∠AOM '=a cos ω t ,y =|OM '|sin ∠AOM '=a sin ω t ,由于动点同时以线速度v 沿平行于 z 轴的正方向上升, 所以z =MM '=vt .因此螺旋线的参数方程为⎪⎩⎪⎨⎧===vtz t a y t a x ωωsin cos ,也可以用其他变量作参数; 例如令θ=ω t , 则螺旋线的参数方程可写为⎪⎩⎪⎨⎧===θθθb z a y a x sin cos , 其中ωv b =, 而参数为θ . *曲面的参数方程曲面的参数方程通常是含两个参数的方程, 形如⎪⎩⎪⎨⎧===),() ,() ,(t s z z t s y y t s x x .例如空间曲线Γ⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ (α≤t ≤β),绕z 轴旋转, 所得旋转曲面的方程为⎪⎪⎩⎪⎪⎨⎧=+=+=)(sin )]([)]([cos )]([)]([2222t z t t y t t x ωθψϕθψϕ (α≤t ≤β, 0≤θ≤2π). (4)这是因为, 固定一个t , 得Γ上一点M 1(ϕ(t ), ψ(t ), ω(t )), 点M 1绕z 轴旋转, 得空间的一个圆, 该圆在平面z =ω(t )上, 其半径为点M 1到z 轴的距离22)]([)]([t t ψϕ+, 因此, 固定t 的方程(4)就是该圆的参数方程. 再令t 在[α, β]内变动, 方程(4)便是旋转曲面的方程.例如直线⎪⎩⎪⎨⎧===tz t y x 21绕z 轴旋转所得旋转曲面的方程为⎪⎩⎪⎨⎧=+=+=t z t y t x 2sin 1cos 122θθ.(上式消t 和θ, 得曲面的直角坐标方程为41222z y x +=+) 又如球面x 2+y 2+z 2=a 2可看成zOx 面上的半圆周⎪⎩⎪⎨⎧===ϕϕcos 0sin a z y a x (0≤ϕ≤π)绕z 轴旋转所得, 故球面方程为⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin a z a y a x (0≤ϕ≤π, 0≤θ≤2π).三、空间曲线在坐标面上的投影以曲线C 为准线、母线平行于z 轴的柱面叫做曲线C 关于xOy 面的投影柱面, 投影柱面与xOy 面的交线叫做空间曲线C 在xOy 面上的投影曲线, 或简称投影(类似地可以定义曲线C 在其它坐标面上的投影).设空间曲线C 的一般方程为⎩⎨⎧==0),,(0),,(z y x G z y x F . 设方程组消去变量z 后所得的方程H (x , y )=0 ,这就是曲线C 关于xOy 面的投影柱面.这是因为: 一方面方程H (x , y )=0表示一个母线平行于z 轴的柱面, 另一方面方程H (x , y )=0是由方程组消去变量z 后所得的方程, 因此当x 、y 、z 满足方程组时, 前两个数x 、y 必定满足方程H (x , y )=0 , 这就说明曲线C 上的所有点都在方程H (x , y )=0所表示的曲面上, 即曲线C 在方程H (x , y )=0表示的柱面上. 所以方程H (x , y )=0表示的柱面就是曲线C 关于xOy 面的投影柱面. 曲线C 在xOy 面上的投影曲线的方程为:⎩⎨⎧==00),(z y x H . 讨论: 曲线C 关于yO z 面和zOx 面的投影柱面的方程是什么? 曲线C 在yO z 面和zOx 面上的投影曲线的方程是什么?例4 已知两球面的方程为x 2+y 2+z 2=1, (5)和x 2+(y -1)2+(z -1)2=1, (6)求它们的交线C 在xOy 面上的投影方程.解 先将方程x 2+(y -1)2+(z -1)2=1化为x 2+y 2+z 2-2y -2z =1,然后与方程x 2+y 2+z 2=1相减得y +z =1.将 z =1-y 代入x 2+y 2+z 2=1 得x 2+2y 2-2y =0.这就是交线C 关于xOy 面的投影柱面方程. 两球面的交线C 在xOy 面上的投影方程为⎩⎨⎧==-+002222z y y x . 例5 求由上半球面224y x z --=和锥面)(322y x z +=所围成立体在xOy 面上的投影.解 由方程224y x z --=和)(322y x z +=消去z 得到x 2+y 2=1. 这是一个母线平行于z 轴的圆柱面, 容易看出, 这恰好是半球面与锥面的交线C 关于xOy 面的投影柱面, 因此交线C 在xOy 面上的投影曲线为⎩⎨⎧==+0122z y x . 这是xOy 面上的一个圆, 于是所求立体在xOy 面上的投影, 就是该圆在xOy 面上所围的部分:x 2+y 2≤1.Ⅴ 小结与提问小结:1、空间曲线的一般方程及参数方程。

曲线方程平面方程

曲线方程平面方程

例2. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 A ? D ? 0
设所求平面方程为
By ? Cz ? 0 代入已知点 (4, ? 3, ? 1)得
化简,得所求平面方程
例3.用平面的一般式方程导出平面的截距式方程 .
三、两平面的夹角
两平面法向量的夹角 (常为锐角)称为两平面的夹角 .
设平面∏1的法向量为 n1 ? ( A1 , B1 , C1)
平面∏2的法向量为 n2 ? ( A2 , B2 , C2 )
则两平面夹角 ? 的余弦为
?2
cos? ? n1 ?n2
n1 n2
?

cos? ?
A1A2 ? B1B2 ? C1C2
A12 ? B12 ? C12 A22 ? B22 ? C22
显然方程②与此点法式方程等价 ,因此方程②的图形是
法向量为 n ? ( A, B,C)的平面, 此方程称为 平面的一般
方程 .
Ax ? By ? Cz ? D ? 0 ( A2 ? B 2 ? C 2 ? 0)
特殊情形
? 当 D = 0 时, A x + B y + C z = 0 表示 通过原点 的平面; ? 当 A = 0 时, B y + C z + D = 0 的法向量
第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
三、空间曲线在坐标面上的投影
设空间曲线 C 的一般方程为
消去 z 得投影柱面
z
则C 在xoy 面上的投影曲线 C′为
C
?H (x, y) ? 0

高等数学(二)_ 向量代数与空间解析几何2_ 空间曲线及其方程_

高等数学(二)_  向量代数与空间解析几何2_ 空间曲线及其方程_

包含曲线 C 关于 zox面 的投影柱面的柱面方程
例3 求空间曲线
z
x2 + y2 + z2 =1, C :
x2 +(y 1) +2(z 1) =12
在 xoy 面上的投影曲线方程.
C
o
1
y
x
解 消去 z 得包含曲线 C 而母线平行于z轴的柱面方程
x2 +2y2 2y = 0.
易见此方程就是曲线 C 关于 xoy 面的投影柱面方程, 因此空间曲
x2 + y2 2x = 0, 0. z =
消去 x 得 C 关于 yoz 面的投影柱面方程
z
z4 4z2 + y2 = 0.
因此空间曲线 C 在 yoz 面上的投影曲线方程为
O
y
z 4 4z 2+ y =2 0,
x
x = 0.
包含曲线 C 关于 zox 面的投影柱面的柱面方程为 z2 = 2x.
2
z2 = 2x,(0 x 2), 空间曲线 C 在 zox 面上的投影曲线方程为
四、空间立体或曲面在坐标面上的投影
空间立体或曲面在坐标面上的投影 —— 正投影.
例5 求由上半球面
和锥面

围成的立体在 xoy 面上的投影.
z
解 两曲面的交线C的方程为
C
o y
x
消去 z 得包含曲线 C 而母线平行于z轴的柱面方程
设空间曲线 C 的一般方程为 ②
消去 z 得 ③
此方程表示包含曲线 C 且母线平行于 z 轴的柱面.
以C为准线,母线平行于 z 轴(即垂直于 xoy 面)的柱面称为 曲线C关于 xoy 面的投影柱面. 投影柱面与 xoy 面的交线C ′叫做

高数期末复习资料(第八章,第九章)

高数期末复习资料(第八章,第九章)

第八章;向量代数与空间解析几何 1.向量及其线性运算1.1向量概念及线性运算1.2 向量的方向角,方向余弦,在某轴的投影例:(,,)OA x y z =,则,cos ||||x x OA r α==,cos ||||y y OA r β==,cos ||||z z OA r γ== 投影||cos ba a Prj ϕ=2.向量的数量积,向量积,混合积:||||cos a b a b θ⋅= ,||||||sin a b a b θ⨯=,xy z xyzi j ka b a a a b b b ⨯=()xy z xy z x yza a a abc b b b c c c ⨯⋅=3.平面 3.1 平面方程(1) 平面的点法式方程:000()()()0A x x B y y C z z -+-+-= (2) 平面的一般方程:0Ax By Cz D +++=(3) 平面的截距式方程:1x y za b c++= (知三点求平面方程:利用任意两点做差乘得法向量,在利用另一点用点法式可得)3.2两平面的夹角11111:0A x B y C z D ∏+++=22222:0A x B y C z D ∏+++=夹角余弦:cos θ=121212120A A B B C C ∏⊥∏⇐⇒++=11112222//A B C A B C ∏∏⇐⇒==4.空间直线4.1 空间直线的方程(1)一般式:可看作两平面交线 (2)对称式:000x x y y z z m n p---== (3)参数式:000x x mt y y nt z z pt=+⎧⎪=+⎨⎪=+⎩4.2空间直线的位置关系121212120L L m m n n p p ⊥⇐⇒++=;11112222//m n p L L m n p ⇐⇒==5.点线面距离:66设()()()000011112222,,,,,,,,M x y z M x y z M x y z === (1)两点间距离公式:12M M =(2)点线距离,直线过M1,方向向量为v ,|1|||MM v d v ⨯=(3)两直线间距离:设L1,L2 分别过M1,M2, 且方向向量分别为1s ,2s, 则()1212|1||MM s s d s s ⋅⨯=⨯ 6.曲面及其方程6.1旋转曲面:平面曲线绕其坐标轴旋转时,则该坐标轴对应的变量不变,另一变量改为该变量与第三个变量平方和的正负平方根,如设有曲线(,)0:0f x y L z =⎧⎨=⎩其绕x 轴旋转形成的旋转曲面方程为:(,0f x =绕Y 轴旋转形成的旋转曲面方程为:()0f y =例:球面:2221x y z ++= 圆锥面:222x y z +=旋转双曲面:2222221x y z a a c+-=6.2柱面: 平行于定直线并沿定曲线C 移动的直线L 所形成的曲面,这条定曲线叫柱面的准线,动直线叫柱面的母线. (曲面方程缺一个变量) 例:圆柱面:222x y R += 抛物柱面:22(0)x pyp =>椭圆柱面:22221x y a b+=6.3二次曲面(1)椭球面:2222221x y z a b c++=(2) 椭圆抛物面:(3)马鞍面:2222x y z p q-+=(4)单叶双曲面2222221x y z a b c +-=(5)双叶双曲面:2222221x y z a b c --=(6)双曲抛物面2222x y z a b-=(马鞍面)(7)椭圆锥面:22222x y z a b+=(z=xy 为马鞍面)7. 空间曲线方程,投影(1)空间曲线的一般方程:(,,)0(,,)0F x y zG x y z =⎧⎨=⎩(2)空间曲线的参数方程:()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩(3) 曲线在xoy 面上的投影曲线为:(,)0H x y z =⎧⎨=⎩练习题:1. 椭圆222210y z b c x ⎧+=⎪⎨⎪=⎩绕oy 轴旋转而成的曲面方程为( )。

曲面曲线方程

曲面曲线方程
xoy 面上的投影曲线所围之域 . 二者交线
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .
2 2
C
x
o
1
y
思考与练习
1. 指出下列方程的图形:
方 程
x5
x y 9
y x 1
2 2
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) 半径为 3 的圆 斜率为1的直线 以 z 轴为中心轴的 圆柱面 平行于 z 轴的平面
2.画出图形
x 1 (1) y2
z 4 x y (2) yx0
z
2
2
z
2 y
1
o o
o x
2y
x
(3)
x z a
2
2
2
x2 y2 a2
z
a
o
a
y
x
y 5x 1 (4) y x3
z
y 5x 1 y x3
o
y
z
x2 y2 1 (5) 4 9 y3
及 x 1.
z
(1,1)
x
y2 x
o 1
(1,1)
y
x2 y2 z
x 1 z0
(1)范围:
2
2
2
x a,
y b,
z c
y2 z2 1 , b2 c2 x0 x2 z 2 1 a 2 c 2 y0
(2)与坐标面的交线:椭圆
x2 y2 1, 2 2 a b z0
x y z 2 2 1 ( a, b, c 为正数) 2 a b c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档