第三章 海洋的声学特性
《水声学》部分习题答案
《水声学习题集参考答案》水声工程学院水声学课程组编哈尔滨工程大学目录绪论 (1)第1章声学基础 (2)第2章海洋声学特性 (2)第3章海洋中的声传播理论 (3)第4章典型传播条件下的声场 (6)第5章声波在目标上的反射和散射 (10)第6章海洋中的混响 (14)第7章水下噪声 (17)第8章声传播起伏 (20)第9章声纳方程的应用 (20)绪 论1 略2 略3 略4 略5 环境噪声和海洋混响都是主动声呐的干扰,在实际工作中如何确定哪种干扰是主要的?解:根据水文条件及声呐使用场合,画出回声信号级、混响掩蔽级和噪声掩蔽级随距离变化的曲线,如下图,然后由回声信号曲线与混响掩蔽级、噪声掩蔽级曲线的交点所对应的距离来确定混响是主要干扰,还是噪声为主要干扰,如下图,r R <r n ,所以混响是主要干扰。
声信号级噪声掩蔽级R6 工作中的主动声呐会受到哪些干扰?若工作频率为1000Hz ,且探测沉底目标,则该声呐将会受到哪些干扰源的干扰。
解:工作中的主动声呐受到的干扰是:海洋环境噪声、海洋混响和自噪声,若工作频率为1000Hz ,干扰来自:风成噪声、海底混响、螺旋桨引起的自噪声及水动力噪声。
7 已知混响是某主动声呐的主要干扰,现将该声呐的声源级增加10dB ,问声呐作用距离能提高多少?又,在其余条件不变的情况下,将该声呐发射功率增加一倍,问作用距离如何变化。
(海水吸收不计,声呐工作于开阔水域) 解:对于受混响干扰的主动声呐,提高声源级并不能增加作用距离,因为此时信混比并不改变。
在声呐发射声功率增加一倍,其余条件不变的情况下,作用距离变为原距离的42倍,即R R 412 。
第1章声学基础1什么条件下发生海底全反射,此时反射系数有什么特点,说明其物理意义。
解:发生全反射的条件是:掠时角小于等于全反射临界角,界面下方介质的声速大于界面上方介质的声速。
发生全反射时,反射系数是复数,其模等于1,虚部和实部的比值给出相位跳变角的正切,即全反射时,会产生相位跳变。
华北理工水声学讲义02海洋的声学特性
第2章 海洋的声学特性§2.1 海洋声学参数及传播损失本讲主要内容⏹ 声速经验公式(了解) ⏹ 海洋中声速的变化(重点) ⏹ 传播衰减概述(重点)⏹ 纯水和海水的超吸收(重点) ⏹ 非均匀液体中的声衰减(了解) 一、海水中的声速 1、声速(Sound Speed):海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
流体介质中,声波为弹性纵波,声速为:式中,密度 和绝热压缩系数都是温度T 、盐度S 和静压力P 的函数,因此,声速也是Temperature 、Salinity 、Pressure 的函数。
2、声速经验公式❑ 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增大而增大。
❑ 经验公式是许多海上测量实验总结得到的。
※注:❑ 单位❑ 海水中盐度变化不大,典型值35‰; ❑ 经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
3、乌德公式4、声速测量❑ 声速剖面仪SVP ——Sound Velocity Profile❑ 温盐深测量仪CTD —Conductivity, Temperature, Depth ❑ 抛弃式温度测量仪XBT ——eXpendable BathyThermograph5、海洋中的声速变化❑ 海洋中声速的垂直分层性质❑ 声速梯度1)温度变化1度,声速变化约4m/s2)盐度变化1‰ ,声速变化约1m/ssc ρβ1=s β()P S T T c 175.03514.1037.021.414502+-+-+=()()z c z y x c =,,P P S S T T c g a g a g a dz dcg ++==ρ3)压力变化1个大气压,声速变化约0.2m/s6、海中声速的基本结构典型深海声速剖面温度垂直分布的“三层结构”:❑表面层(表面等温层或混合层):海洋表面受到阳光照射,水温较高,但又受到风雨搅拌作用。
海洋声学特征
07:06
本章目的
• 本章从声学角度讨论海洋、海洋的不均匀 性和多变性,弄清声信号传播的环境,有 助于海中目标探测、声信号识别、通讯和 环境监测等问题的解决。
07:06
3.1 海水中的声速
1、声速( Sound Speed ) 海洋中的重要声学参数,也是海洋中声传
播的基本物理参数。
07:06
3.1 海水中的声速
2、声速测量
测量仪器设备:温度深度记录仪和声速仪 。
温度深度记录仪: 通过热敏探头测量 水中温度,同时通 过压力传感器给出 深度信息,可以转 换给出声速。
07:06
3.1 海水中的声速
2、声速测量
声速仪是声学装置: •声循环原理工作:
前一个脉冲到达接收 器,触发后一个脉冲从发 射器发出,记录每秒钟脉 冲的发射次数f,发射器 和接收器的距离L已知。 •声速:c=fL。
c 1449.22 cT cS cP cSTP
上式适用范围:-3℃<T<30℃、33‰<S<37‰
1.013 105 N / m2 1个大气压 P 980 105 N / m2
07:06
3.1 海水中的声速
声速经验公式
• 海水中盐度变化不大,典型值35‰; • 经常用深度替代静压力,每下降10m水深 近似增加1个大气压的压力; • 1℃=(1oF-32)5/9。
07:06
3.1 海水中的声速
海洋中声速的基本结构 典型深海声速剖面: 温度分布“三层结构”: (1)表面层(表面等温 层或混合层):
海洋表面受到阳光照 射,水温较高,但又受到 风雨搅拌作用。
07:06
3.1 海水中的声速
海洋中声速的基本结构
(完整版)第三章海洋的声学特性
第三章海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中 目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:1 c ----------s式中,密度 和绝热压缩系数 s 都是温度T 、盐度S 和静压力P 的函数,因此,声速也是 T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (C)、盐度S (%。
)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式:c ST p S 35 1.197 10 3T 2.61 10 4P 1.96 10 1P 2 2.09 10 6 PT P 2.796 10 4T 1.3302 10 5T 2 6.644 10 8T 3 P 22.391 10 1T 9.286 10 10T 21.745 10 10 P 3T上式适用范围:-3C <T<30 C 、33%<S<37%。
、1.013 105N /m 2 1 个大气压 注意I :海水中盐度变化不大,典型值 35% ;经常用深度替代静压力,每下降1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很 大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单 的经验公式。
许多文献资料,都给出较为简单的声速经验公式,这里介绍|乌德公式|:式中,压力P 单位是大气压,1atm 1.013 105N/m 2 。
c 1449.22c TC sCPc STPc T4.6233T5.4585 10 2T 2 2.822 10 4T 3 5.07 10仃4C s 1.391 S 35 7.8 10 2 S 35 2c P1.60518 10 1P 1.0279 10 5P 2 3.451 10 9 P 3 3.503 10 12 P 4式中,52P 980 105N/m 2。
2.1.2海洋的声学特性 - 海水的声速
第2章 海洋的声学特性第一讲 海水的声速2.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:sc ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STPP S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
注意:海水中盐度变化不大,典型值35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单的经验公式。
第三章海洋的声学特性
7
声速测量
声速剖面仪SVP—— 声速剖面仪 Sound Velocity Profile 温盐深测量仪CTD— 温盐深测量仪 Conductivity, Temperature, Depth 抛弃式温度测量仪 XBT —— eXpendable BathyThermograph
College of Underwater Acoustic Engineering
College of Underwater Acoustic Engineering 25
吸收系数
均匀介质的声吸收 介质切变粘滞的声吸收(经典声吸收) 切变粘滞的声吸收 介质切变粘滞的声吸收(经典声吸收) 介质热传导声吸收(经典声吸收) 热传导声吸收 介质热传导声吸收(经典声吸收) 驰豫吸收 超吸收) 吸收( 驰豫吸收(超吸收)
College of Underwater Acoustic Engineering
12
海中声速的基本结构
Caution: :ቤተ መጻሕፍቲ ባይዱ在主跃变层 和深海等温 层之间, 层之间,有 一声速极小 声道轴 值—声道轴
典型深海声速剖面
College of Underwater Acoustic Engineering 13
Z
第二类 表面声道声速分布
20
College of Underwater Acoustic Engineering
声速分布分类
右图为反声道声速分布,特点: 右图为反声道声速分布,特点:
•声速随深度单调下降。 声速随深度单调下降。 声速随深度单调下降
c
形成原因: 形成原因:
•海洋上部的海水受到太阳强烈照 •海洋上部的海水受到太阳强烈照 射的结果。 射的结果。
《水声学》部分习题答案
线的交点所对应的距离来确定混响是主要干扰,还是噪声为主要干扰,如下图,
rR<rn,所以混响是主要干扰。
声信号级
回声信号级
混响掩蔽级
噪声掩蔽级
rR rn
距离r
6 工作中的主动声呐会受到哪些干扰?若工作频率为 1000Hz,且探测沉底目
标,则该声呐将会受到哪些干扰源的干扰。
解:工作中的主动声呐受到的干扰是:海洋环境噪声、海洋混响和自噪声,若工
水声工程学院
8
水声学课程组
哈尔滨工程大学国家级精品课程——《水声学习题集参考答案》
解:早晨时声呐作用距离远,因为此时可能存在表面声道,而下午一般不会形成 表面声道。即使不出现表面声道时,早晨的负梯度也小于下午的负梯度,所以早 晨的作用距离远于下午,这就是下午效应。 9 画出深海声道声速分布,应用射线理论说明声波在深海声道中远距离传播的
7
水声学课程组
哈尔滨工程大学国家级精品课程——《水声学习题集参考答案》
第 4 章 典型传播条件下的声场
1 邻近海面的水下点源声场中的声压振幅随距离变化具有哪些规律? 2 表面声道的混合层中的声线传播具有那些特点? 3 什么是反转深度?什么是临界声线和跨度? 4 什么是会聚区和声影区?二者之间声强大小如何?会聚增益是如何定义的?
声线曲率半径 R = c0 ,所以水平传播距离 g
x = R 2 − (R − d )2 = 2Rd − d 2
水声工程学院
6
水声学课程组
哈尔滨工程大学国家级精品课程——《水声学习题集参考答案》
一般情况下,声速垂直梯度 g 为远小于 1 的量 所以曲率半径较水深大得多 x ≈ 2Rd = (2c0d / g)1/ 2
解:1)声速绝对梯度 g = dc = 1500 −1450 = −0.5s −1
(整理)《水声学》课程配套习题参考答案.
《水声学》部分习题参考答案绪论1略2略3略4略5环境噪声和海洋混响都是主动声呐的干扰,在实际工作中如何确定哪种干扰是主要的?解:根据水文条件及声呐使用场合,画出回声信号级、混响掩蔽级和噪声掩蔽级随距离变化的曲线,如下图,然后由回声信号曲线与混响掩蔽级、噪声掩蔽级曲线的交点所对应的距离来确定混响是主要干扰,还是噪声为主要干扰,如下图,r R<r n,所以混响是主要干扰。
声信号级噪声掩蔽级R6工作中的主动声呐会受到哪些干扰?若工作频率为1000Hz,且探测沉底目标,则该声呐将会受到哪些干扰源的干扰。
解:工作中的主动声呐受到的干扰是:海洋环境噪声、海洋混响和自噪声,若工作频率为1000Hz,干扰来自:风成噪声、海底混响、螺旋桨引起的自噪声及水动力噪声。
7已知混响是某主动声呐的主要干扰,现将该声呐的声源级增加10dB,问声呐作用距离能提高多少?又,在其余条件不变的情况下,将该声呐发射功率增加一倍,问作用距离如何变化。
(海水吸收不计,声呐工作于开阔水域)解:对于受混响干扰的主动声呐,提高声源级并不能增加作用距离,因为此时信混比并不改变。
在声呐发射声功率增加一倍,其余条件不变的情况下,作用距离变为原距离的42倍,即R R 412 。
第一章 声学基础1 什么条件下发生海底全反射,此时反射系数有什么特点,说明其物理意义。
解:发生全反射的条件是:掠时角小于等于全反射临界角,界面下方介质的声速大于界面上方介质的声速。
发生全反射时,反射系数是复数,其模等于1,虚部和实部的比值给出相位跳变角的正切,即全反射时,会产生相位跳变。
2 略3 略第二章 海洋声学特性1 海水中的声速与哪些因素有关?画出三种常见的海水声速分布。
解:海水中的声速与海水温度、密度和静压力(深度)有关,它们之间的关系难以用解析式表达。
CCC2 略3 略4 略5 略6 声波在海水中传播时其声强会逐渐减少。
(1)说明原因;(2)解释什么叫物理衰减?什么叫几何衰减?(3)写出海洋中声传播损失的常用TL 表达式,并指明哪项反映的主要是几何衰减,哪项反映的主要是物理衰减;(4)试给出三种不同海洋环境下的几何衰减的TL 表达式。
主动声纳方程期末总结-水声学讲义
College of Underwater Acoustic Engineering
29
第六章 声波在目标上的反射和散射
本章主要内容
目标强度参数定义 刚性大球目标强度计算理论推导 常见声纳目标的目标强度值和特性 目标强度测量方法 目标回波组成及其特征 壳体目标的回波信号特征
College of Underwater Acoustic Engineering
College of Underwater Acoustic Engineering
25
作业点评
聚集因子F是如何定义的,它有什么物理意义? 举出二个F>1的场合。
解:聚集因子 F Ix, z/ I0 ,其中I是非均匀介
质中的声强,I0是按球面波衰减的声强,若 F>1,表示该处衰减小于球面波规律,反之, 则表示该处衰减大于球面波规律。会聚区和焦 散线上F>1。
声信号级
回声信号级 混响掩蔽级 噪声掩蔽级
rR rn
距离r
College of Underwater Acoustic Engineering
22
作业点评
第四章
声线弯曲满足的基本条件是什么?并定性说明它们 之间的规律。
海水中声速值从海面的1500m/s均匀减小到100m深处 的1450m/s。求(1)速度梯度;(2)使还表面的水平 声线达到100m深处时所需要的水平距离;(3)上述 声线到达100m深处时的角度。
30
第六章 声波在目标上的反射和散射
本章主要内容
刚性球体散射声场计算及其特性 弹性球体散射声场计算 弹性球体散射声场特性 求解散射声场的理论方法
College of Underwater Acoustic Engineering
第二讲海洋的声学特性共60页
一、海水中的声速
声速经验公式
海洋中的声速c(m/s)随温度T(℃)、盐度S (‰)、压力P(kg/cm2)的增大而增大。
经验公式是许多海上测量实验的总结得到的, 常用的经验公式为:
c 1. 2 4 c 2 T 4 c S 9 c P c STP
上式适用范围:-3℃<T<30℃、33‰<S<37‰
度,此梯度随季节而异。
夏、秋季节,跃变层明
显;冬、春(北冰洋)季
节,跃变层与表面层合并
在一起。
2021/
一、海水中的声速
海洋中声速的基本结构 典型深海声速剖面: (3)主跃变层:
温度随深度巨变的层, 特征是负的温度梯度或负 声速梯度,季节对它的影 响微弱。
2021/
一、海水中的声速
海洋中声速的基本结构 典型深海声速剖面: (4)深海等温层:
在深海内部,水温比 较低而且稳定,特征是正 声速梯度。
在主跃变层(负)和深海 等温层(正)之间,有一 声速极小值—声道轴。
2021/
一、海水中的声速
海洋中声速的基本结构 温度的季节变化、日变化和纬度变化: (1)季节变化:
百慕大海区温度随月份的变化情况,夏季既有表面 等温层,又有表面负梯度层;冬季有很深的表面混合 层。季节变化对海洋深处的温度影响较小。
2021/
一、海水中的声速
2、声速测量
– 声速剖面仪SVP—— Sound Velocity Profile
– 温盐深测量仪CTD— Conductivity, Temperature, Depth
– 抛弃式温度测量仪 XBT ——eXpendable BathyThermograph
2021/
海洋生物的生物声学与声纳通信
海洋生物的生物声学与声纳通信声音在海洋中传播速度快,能够穿透水层,因此声音成为海洋生物重要的交流方式。
海洋生物的声学特性和声纳通信机制受到了科学家们广泛的关注和研究。
本文将介绍海洋生物的生物声学和声纳通信的基本原理,并探讨其在生态学、行为学和保护学等领域的应用。
一、生物声学的基本原理生物声学是研究生物体产生、接收和解读声音的学科。
海洋中的生物体通过声音来交流信息、找寻伴侣、寻找食物、警示危险等。
海洋生物可以产生多种类型的声音,如鸣叫、鸣笛、鸣啸等。
这些声音有着不同的频率、时长和波形,可以传达不同的信息。
海洋生物产生声音主要通过生物体内的特殊器官和机制。
例如,鲸类通过鲸腔和声门产生强大的低频声音;虾类和鱼类则通过摩擦和振动产生高频声音。
海洋中的声音还受到水温、盐度和压力等环境因素的影响,这些因素会改变声音的传播速度和频率分布。
二、声纳通信的原理与应用声纳通信是利用声音进行信息交流和定位的技术。
在海洋生物中,一些物种通过自身特有的声纳机制进行通信。
最著名的例子是鲸类和海豚,它们通过鼻孔发出声音,利用声音的回声来判断周围环境和搜索食物。
声纳通信在海洋科学研究和资源开发中具有广泛的应用价值。
科学家们利用声纳设备来研究海洋生物的行为习性、迁徙路径和栖息地选择等。
同时,在海洋资源勘探和海底地质勘测方面,声纳技术也起到了重要的作用。
三、海洋生物声学的保护与管理海洋生物声学的研究对于保护海洋生态系统和管理海洋资源具有重要意义。
随着人类活动的增加,包括船舶噪音、声纳探测和海底爆破等,海洋生物面临着威胁。
这些人为声音会对海洋生物的行为、迁徙和繁殖产生不利影响。
为了保护海洋生物,国际社会采取了一系列的保护措施。
包括限制声纳设备的使用、建立海洋保护区、控制船舶噪音等。
此外,科学家们还在研发新的声纳技术,以减少对海洋生物的干扰。
这些举措旨在维护海洋生态系统的平衡和可持续发展。
结语海洋生物的生物声学与声纳通信是一个复杂而精彩的研究领域。
2.1.3海洋的声学特性 - 海洋的声学特性
第2章 海洋的声学特性第二讲 海底和海面的声学特性2.3 海底海底结构、地形和沉积层是影响声波传播的重要因素,它对声波的吸收、散射和反射等声学特性,关系到水声设备作用距离底远近。
实验研究表明,海底声波反射系数与海底地形有明显的依赖关系。
对于高于几千赫频率的声波,海底粗糙度是影响声波反射的主要作用。
右图给出不同频率,深海平原的反向散射强度与入射角的关系。
反向散射强度s m :单位界面上单位立体角中所散射出去的功率与入射波强度之比。
注意:朝声源方向上的声散射。
规律:✧在小入射角θ时,散射强度随θ的减小而增加。
✧在入射角 5>θ时,散射强度s m lg 10近似与θ2cos 成正比。
✧在小入射角时,散射强度一般与频率无关;✧在大入射角时,散射强度可能与频率的四次方乘正比。
右图为非常粗糙海底上的反向散射强度与入射角的关系:✧反向散射强度基本上与入射角和频率无关。
1、海底沉积层海底沉积层:覆盖海底之上的一层非凝固态(处于液态和固态之间)的物质。
下面介绍海底沉积层的物理性质:沉积物密度(质饱和容积密度)等于:()sw n n ρρρ-+=1式中,孔隙度n 是指沉积物体积中含有水分体积的百分数;w ρ为孔隙水密度,也可认为与海底的海水密度相等,取3/024.1cm g w =ρ;s ρ为无机物固体密度。
孔隙度n 大小有许多因素决定,如无机物的大小、形状和分布,矿物成分,沉积物构造和固体颗粒的紧密程度等。
常识:深海平原和丘陵,粉砂粘土是主要沉积物类型,深海平原3/333.1cm g ≈ρ,深海丘陵3/344.1cm g ≈ρ。
沉积层中有压缩波速度(声速)c 和切变波速度s c 两种:ρG E c 34+= ρG c s =式中,E 和G 为沉积层的弹性模量和刚性(切变)模量。
孔隙度是可以测量和计算的量,因此可以预报声速值。
ρ与n 呈线性关系,因此声速和ρ之间关系与声速和n 之间关系相同。
Hamilton 给出三种不同类型沉积物的声速、密度和孔隙度的实验值。
2.1.2海洋的声学特性-海水的声速
2.1.2海洋的声学特性-海⽔的声速第2章海洋的声学特性第⼀讲海⽔的声速2.1 海⽔中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:sc ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压⼒P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压⼒P (kg/cm 2)的增加⽽增加。
经验公式是许多海上测量实验的总结得到的,常⽤的经验公式为:较为准确的经验公式:STPP S T c c c c c ++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---?-?+?-=?()()2235108.735391.1-?--=-S S c S ?4123925110503.310451.3100279.11060518.1P P P P c P ----?-?+?+?=?()[][][]TP T T P T T T P PT P P T S c STP31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------?-?+?-+?-? +?-+?-?-?+?--=?上式适⽤范围:-3℃注意:海⽔中盐度变化不⼤,典型值35‰;经常⽤深度替代静压⼒,每下降10m ⽔深近似增加1个⼤⽓压的压⼒。
声速c 的数值变化虽然微⼩,但它对长距离传播声线的分布、射程、传播时间等量的影响很⼤,因此需要有准确的声速数值。
但上式计算⽐较繁琐,在精度要求不太⾼时,可使⽤⽐较简单的经验公式。
许多⽂献资料,都给出较为简单的声速经验公式,这⾥介绍乌德公式:()PS T T c 175.03514.1037.021.414502+-+-+=式中,压⼒P 单位是⼤⽓压, 25/10013.11m N atm ?=。
最新海洋中的声、光传播
研究过程:
19世纪初,人们在进行海洋调查时,用一个直径30cm的白色圆盘 (透明度盘)垂直沉入海水中,直到刚刚看不见为止时的深度,这一 深度叫海水的透明度。将透明度盘提升至透明度一半深度处,俯视 透明度盘之上水柱的颜色,称为海水的水色。
19世纪末,海洋学工作者把海水光学性质的研究和海洋初级生产 力结合起来,并测量了海洋的辐照度。
如果发射器有方向性,声波在其间传播,除海面波浪和气泡的 散射外,能量损失较小,因此传播距离相对增加。其它季节里, 多数海区出现温度跃层。在中国近海黄海海区夏季可形成强的 温跃层,其它如渤海、东海也有弱的温跃层。春季出现的温跃 层较弱,跃层的深度也较浅,秋季跃层逐渐变弱,至冬季上层 变为混合层或弱的负梯度,此种传播条件形成了浅海表面声道。
2 海洋的光学性质
主要研究海洋水体的光学性质、光在海中的传播 规律、激光与海水的相互作用以及光学波段探测 海洋的方法与技术。
核心问题:海洋辐射传递的研究或光在海洋中传 播规律的研究成为海洋光学基础研究。
海洋光学调查的主要目的就是调查海洋的光学性 质或光在海中的传播规律,同时由海洋光学参数 的测量获取各类海洋学参数,以便进行海洋光学 的各种研究。
深海水下声道
声的超远距离传播称为声道现象。世界各大洋区都有水下声道。用射线的概 念,很容易解释水下声道现象。大洋中各层海水的温度、盐度、静压力不同, 各层的声速也相应不同。
在温带和热带的大洋深水区,由于水温随深度增加而下降,在某个深度上压 力对声速有显著影响,使c(z)曲线有极小值。若将声源置于声速极小值所在 处,从声源向各方向辐射的声线束将按图10-10(图略)中的路径向声速极 小值所在的水层弯曲。此时声速极小值上下的水层有类似透镜聚焦的作用, 将声能的大部分限制在此水层间。声速极小值所在的深度为声道轴。
海洋的声学特性课件
声呐技术有多种类型,包括主 动声呐和被动声呐,以及用于 不同探测目的的特殊声呐。
声学多普勒测流技术
声学多普勒测流技术是一种利用声波测量水流速度和方向的无损测量技术 。
该技术基于多普勒效应原理,通过测量声波在水流中的频率变化来推算水 流的速度和方向。
声学多普勒测流技术广泛应用于海洋学、河流水文学等领域,为研究水流 动力学和环境变化提供了重要手段。
声学温度测量技术
声学温度测量技术是一种利用声 波测量水下温度场的方法。
该技术通过测量声波在水中传播 的速度,结合已知的声速与温度 之间的关系,推算出水下的温度
分布。
声学温度测量技术对于研究海洋 热力学、气候变化等领域具有重
要意义。
海洋声学测量技术的发展趋势
海洋声学测量技术不断发展,未来将朝 着高精度、高分辨率、高效率的方向发 展。
在海洋考古研究中的应用
声波成像
利用声波成像技术探测海底沉船、古迹等文化遗产,为海洋考古研究提供新的 方法和手段。
声学测年
通过测量海底沉积物的声学特性,确定沉积物的年代和历史,为海洋历史和考 古研究提供重要依据。
05
未来展望与挑战
BIG DATA EMPOWERS TO CREATE A NEW
ERA
20世纪初
声呐技术开始应用于军事领域。
20世纪中叶
声学在海洋资源探测和环境监测方面 的应用逐渐普及。
21世纪
高分辨率和高灵敏度声学技术的发展 ,推动了海洋声学研究的深入。
海洋声学的研究意义
促进海洋科学的发展
声学技术为海洋科学研究提供 了重要的工具和方法。
保障国家安全
军事应用领域的声呐技术对于 国家安全具有重要意义。
在海洋环境监测中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单式中,压力P 单位是大气压, 25/10013.11m N atm ⨯=。
2、声速测量常用的测量仪器设备为:温度深度记录仪和声速仪。
温度深度记录仪通过热敏探头测量水中温度,同时通过压力传感器给出深度信息,这样就可以转换给出声速。
声速仪是声学装置,它是通过测量发射高频短脉冲次数。
它用“声循环”原理工作:前一个脉冲到达接收器,触发后一个脉冲从发射器发出,记录每秒钟脉冲的发射次数f ,发射器和接收器的距离L 已知,则声速为:c=fL 。
3、海洋中的声速变化 (一)海洋中声速的垂直分层性质和声速梯度实测海洋的等温线和等盐度线几乎是水平平行的,也就是说,声速近似为水平分层变化。
因此,在海洋中声速()()z c z y x c =,,,z 为垂直坐标,x 、y 为水平坐标。
声速梯度:P P S S T T c g a g a g a dzdc g ++== 式中,T g 、S g 、P g 分别为温度梯度、盐度梯度和压力梯度;T a 、S a 、P a 分别为声速对温度、盐度和压力的变化率(偏微分);根据乌德公式,则得:T a T 0074.021.4-=(m/s )/℃14.1=S a (m/s )/‰175.0=P a (m/s )/atm声速梯度:()P S T c g g g T g 175.014.10074.012.4++-=(二)海中声速得基本结构(1)典型深海声速剖面温度垂直分布的“三层结构”:✧ 表面层(表面等温层或混合层):海洋表面受到阳光照射,水温较高,但又受到风雨搅拌作用。
✧ 季节跃变层:在表面层之下,特征是负的温度梯度或声速梯度,此梯度随季节而异。
夏、秋季节,跃变层明显;冬、春(北冰洋)季节,跃变层与表面层合并在一起。
✧ 主跃变层:温度随深度巨变的层,特征是负的温度梯度或声速梯度,季节对它的影响微弱。
✧ 深海等温层:在深海内部,水温比较低而且稳定,特征是正声速梯度。
注意:在主跃变层(负)和深海等温层(正)之间,有一声速极小值。
解释一下深海的温度分布。
(2)温度的季节变化、日变化和纬度变化温度的季节变化和日变化主要发生在海洋上层。
图为近百慕大海区温度随月份的变化情况,夏季既有表面等温层,又有表面负梯度层;冬季有很深的表面混合层。
季节变化对海洋深处的温度影响较小。
日变化:高风速——中午表面温度,受高风速的作用,出现明显的混合层;低风速——表面呈现负温度梯度,在早晨,可能出现正温度梯度。
在低纬度海域,主跃变层的深度较深;在高纬度海域,声速正梯度一直延伸到接近海洋表面。
(3)浅海声速剖面浅海声速剖面分布具有明显的季节特征。
在冬季,大多属于等温层的声速剖面,夏季为负跃变层声速梯度剖面。
(三)海水温度的起伏变化前面,我们将温度和声速看成不遂时间变化,只随深度变化,这是海洋描述声速变化的粗略近似,等温层是宏观而言,微观而言温度随时间起伏变化的。
一般,温度起伏在下午和靠近海面到达最大。
温度起伏的原因多种多样:湍流、海面波浪、涡旋和海中内波等因素。
在水声学中,经常将声速表示称为确定性的声速垂直分布与随机不均匀声速起伏的线性组合:()c z c c ∆+=。
宏观而言,声速分布分成四类:(1)深海声道声速分布图中(a )和(b )为深海声道典型声速分布,在某一深度m z 处有一声速最小值。
而这不同之处:图(a )表面声速小于海底声速;图(b )表面声速大于海底声速。
(2)表面声道声速分布图中(c )为表面声道声速分布,在某一深度m z 处有一声速极大值。
形成原因:在秋冬季节,水面温度较低,加上风浪搅拌,海表面层温度均匀分布,在层内形成正声速梯度分布。
(3)反声道声速分布图中(d )为反声道声速分布,声速随深度单调下降。
形成原因:海洋上部的海水受到太阳强烈照射的结果。
(4)浅海常见声速分布图中(e )为浅海常见声速分布,声速随深度单调下降。
形成原因:海洋上部的海水受到太阳强烈照射的结果。
图(e )与图(d )不同之处:前者是浅海中的负速度分布,需计入海底对声传播的影响。
3.2 海水中的声吸收1、传播衰减概述声波传播的强度衰减(传播损失)原因:(1)扩展损失(几何衰减):声波波阵面在传播过程中不断扩展引起的声强衰减。
(2)吸收损失:均匀介质的粘滞性、热传导性以及其它驰豫过程引起的声强衰减。
(3)散射:介质的不均匀性引起的声波散射和声强衰减。
包括:海洋中泥沙、气泡、浮游生物等悬浮粒子以及介质本身的不均匀性和海水界面对声波的散射。
(一)扩展损失在理想介质中,沿x 轴方向传播的简谐平面波声压可写成为:()[]kx t i p p -=ωexp 0平面波声压幅值0p 和声强20p I ∝均不随距离x 变化的常数,因而,平面波波阵面不随距离扩展,没有扩展损失。
传播损失表示声传播衰减:()()()dB x I I TL 01lg10==即在理想介质中,平面波的TL 等于0dB 。
在理想介质中,沿r 方向传播的简谐球面波声压可写成为:()[]kx t i rp p -=ωexp 0 平面波声压幅值r p 0和声强220r p I ∝均随距离r 变化,因而,球面波TL : ()()()dB r x I I TL lg 201lg 10== 一般,可以把扩展损失写成:()dB rn TL lg 10⋅=根据不同的传播条件,n 取不同的数值: (1)0=n 适用管道中的声传播,平面波传播,0=TL 。
(2)1=n 适用表面声道和深海声道,柱面波传播,r TL lg 10=,相当于全反射海底和全反射海面组成的理想波导中的传播条件。
(3)23=n 适用计及海底声吸收时的浅海声传播,r TL lg 15=,相当于计入界面声吸收所引起的对柱面波的传播损失的修正。
(4)2=n 适用于开阔水域(自由场),球面波传播,r TL lg 20=。
(5)3=n 声波通过浅海声速负跃变层后的声传播,r TL lg 30=。
(6)4=n 适用偶极子声源或计及平整海面虚源干涉的远场声传播,r TL lg 40=,相当于计入声波干涉后,对球面波传播损失的修正。
在介质中,声吸收和声散射引起的声传播损失经常同时存在,很难区分开来。
假设平面波传播距离d x 后,由于声吸收而引起声强降低d I ,则Idx dI β2-=式中,0>β是比例常数,负号表示dI 是声强的负标量(0<dI )。
积分得声强:()x e I x I β20-=对上式取自然对数得()⎥⎦⎤⎢⎣⎡=x I I x 0ln 21β 也可表示为: ()⎥⎦⎤⎢⎣⎡=x p p x 0ln 1β声压振幅的自然对数衰减为无量纲量,称为奈贝(Neper )。
上式为单位距离的奈贝数,Neper/m 。
实际上,经常将声强写成下式:()10010x I x I α-=则有()()⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=x p p x x I I x 00lg 20lg 10α 式中,α称为吸收系数。
声强之比的以10为底的对数为贝尔(Bel ),贝尔值的10倍称为分贝(dB )。
吸收系数α单位是单位距离的分贝数,dB/m 。
()ββα68.8lg 20ln lg 200==⎥⎦⎤⎢⎣⎡⋅=e x p p e x 即1Neper=8.68dB 。
声吸收引起的传播损失为(吸收系数乘上传播距离):()()()()111lg 10>>=-==x x x x I I TL αα 总传播损失(扩散加吸收)等于r r n TL α+⋅=lg 10均匀介质的经典声吸收:k αααη+=,其中ηα为介质切变粘滞的声吸收系数;k α为介质热传导声吸收系数。
实际吸收系数的测量值远大于经典吸收系数理论值,两者差值称为超吸收。
2、纯水和海水的超吸收(一)纯水的超吸收1947年,Hall 提出了水的结构驰豫理论,成功解释了水介质的超吸收原因。
图中曲线A (Hall 理论计算曲线)和B (经典声吸收)垂直坐标之差为纯水的超吸收。
注意:详细理论见何祚镛编著《声学基础》(P378-380)(二)海水的超吸收海水声吸收系数随频率变化的测量值见下图,海水超吸收原因:海水中含有溶解度较小的MgSO 4,它的化学反应的驰豫过程引起超吸收。
常识:在海中声波作用下,MgSO 4的化学反应的平衡被破坏,达到新的动态平衡,这种化学的驰豫过程,导致声波的吸收。
Schulkin 和Marsh 根据2~25kHz 频率范围内所作的大量测量结果,归纳的半经验公式:km dB f f B f f f Sf A T T T /22++=α式中,21089.1-⨯=A ;21072.2-⨯=B ;S 为盐度(‰);f为声波频率(kHz );T f 为驰豫频率(kHz ):27315206109.21+-⨯=T T f式中,T 为摄氏温度(℃)。