医学统计学重点简答题和名词解释
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学。
总体(population):大同小异的研究对象全体。更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。
样本(sample):来自总体的部分个体,更确切的说,应该是部分个体的观察值。样本应该具有代表性,能反映总体的特征。利用样本信息可以对总体特征进行推断。
抽样误差(sampling error)在抽样过程中由于抽样的偶然性而出现的误差。表现为总体参数与样本统计量的差异,以及多个样本统计量之间的差异。可用标准误描述其大小。
标准误(Standard Error) 样本统计量的标准差,反映样本统计量的离散程度,也间接反映了抽样误差的大小。样本均数的标准差称为均数的标准误。均数标准误大小与标准差呈正比,与样本例数的平方根呈反比,故欲降低抽样误差,可增加样本例数
区间估计(interval estimation):将样本统计量与标准误结合起来,确定一个具有较大置信度的包含总体参数的范围,该范围称为置信区间(confidence interval,CI),又称可信区间。
参考值范围描述绝大多数正常人的某项指标所在范围;正态分布法(标准差)、百分位数法,参考值范围用于判断某项指标是否正常
置信区间揭示的是按一定置信度估计总体参数所在的范围。t分布法、正态分布法(标准误)、二项分布法。置信区间估计总体参数所在范围
参数统计(parametric statistics)
非参数统计(nonparametric statistics)是指在统计检验中不需要假定总体分布形式和计算参数估计量,直接对比较数据(x)的分布进行统计检验的方法。变异(variation):对于同质的各观察单位,其某变量值之间的差异
同质(homogeneity):研究对象具有的相同的状况或属性等共性。
回归系数有单位,而相关系数无单位
β为回归直线的斜率(slope)参数,又称回归系数(regression coefficient)。线性相关系数(linear correlation coefficient):又称Pearson积差相关系数(Pearson product moment coefficient),是定量描述两个变量间线性关系的密切程度与相关方向的统计指标。
参数(parameter):描述总体特征的统计指标。
统计量(statistic):描述样本特征的统计指标。
实验设计的基本原则
对照(control) 对受试对象不施加处理因素的状态。在确定接受处理因素的实验组时,要同时设立对照组
重复(replication)相同实验条件下进行多次实验或多次观察。整个实验的重复;观察多个受试对象(样本量);同一受试对象重复观察。作用是估计变异大小和降低变异
随机化(randomization) 采用随机的方式,使每个受试对象都有同等的机会被抽取或分配到试验组和对照组。
I类错误(假阳性错误)真实情况为H0是成立的,但检验结果为H0不成立,这样的错误称为I类错误。其发生的概率用 表示。在假设检验中作为检验水准。一般取0.05或0.01。
II类错误(假阴性错误)真实情况为H1是成立的,但检验结果为H1不成立,这样的错误称为II类错误。其发生的概率用 表示。由于其取值取决于H1 ,因此在假设检验中无法确定。
变异指标是用于描述一组观察值围绕中心位置散布的范围,即描述离散趋势的统计指标。数值越大,说明数据越离散,反之越集中。极差(range);四分位数间距(quartile range);方差(variance);标准差(standard deviation);变异系数(coefficient of variation
平均数指标用于描述一组同质观察值的集中趋势,反映一组观察值的平均水平。算术均数(arithmetic mean);几何均数(geometric mean);中位数(median);众数(mode)
单纯抽样将调查总体的全部观察单位编号,从而形成抽样框架,在抽样框架中随机抽取部分观察单位组成样本。每个观察对象都有相同的机会被抽中
系统抽样又称机械抽样。按照某种顺序给总体中的个体编号,然后随机地抽取一个号码作为第一个调查个体,其他的调查个体则按照某种确定的规则“系统”地抽取。最常用的方法是等距抽样
分层抽样先将总体中全部个体按某种特征分成若干“层”,再从每一层内随机抽取一定数量的个体组成样本。分层特征与研究目的有关。按各层比例抽样。为减少抽样误差,要求层内误差最小,层间误差最大。
整群抽样先将总体分成若干“群”,从中随机抽取几个群,抽取群内的所有观察单位组成调查样本。“群”的确定与研究目的无关。为减少抽样误差,需多抽几个“群”。
一、统计表有哪些要素构成的?制表的注意事项有哪些?
一般来说,统计表由标题、标目、线条和数字、备注五部分组成。但备注并不是必需的内容,可以根据需要出现。
1简明扼要,重点突出:最好一张表突出一个中心,不易太多中心,如果需要说明多个中心,可分成多张统计表。
2合理安排主语和谓语的位置:对于表中任意一行,从左至右,通过简短的连接词,可连成成一句通顺的句子。
3表中数据要认真核对,保证准确可靠
二、为什么不宜用t 检验对多组均数进行比较?
如果用t检验进行多个样本均数的两两比较,则会增加犯I 类错误的概率。经检验得到拒绝H0 ,认为两组之间有差别的结论可能犯I类错误的概率为α,不犯I类错误的概率为1- α .每次判断均不犯I类错误的概率为(1- α)k, k为比较的次数,上例α=0.05, k=3,则均不犯错误的概率为( 1- 0.05)3 =0.86. 至少有一次判断犯I类错误的概率为1-(1- α)k
三、方差分析的基本思想是什么?
按实验设计的类型,将全部观察值间的变异分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较(每个部分的变异可由某因素的作用来解释),以判断各部分的变异是否具有统计学意义,从而推断不同样本所代表的总体均数是否相同。
四、简述标准差与标准误的区别与联系
均数标准误大小与样本标准差大小成正比,与样本含量的平方根成反比。标准误越小,说明样本均数作为总体均数估计值的准确性越大。