快速成型综述
简述快速成型技术的应用领域。
简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,RP)是一种通过逐层堆积材料构建三维实体模型的制造技术,它可以快速、精确地制造出产品的样件或模型。
快速成型技术的应用领域非常广泛,下面将从工业设计、医疗领域、建筑设计和教育领域等方面进行简要介绍。
快速成型技术在工业设计领域得到了广泛应用。
在产品设计过程中,通过快速成型技术可以快速制造出产品的样件,供设计师进行实物验证和修正,从而加快产品开发周期。
此外,快速成型技术还可以制造出复杂形状的零部件,为工程师提供更多的设计自由度和创新空间。
快速成型技术在医疗领域也有重要的应用。
医疗器械的研发和生产需要经过严格的验证和测试,而快速成型技术可以快速制造出医疗器械的样件,用于验证其功能和可用性。
此外,快速成型技术还可以制造出个性化医疗器械,如植入式器械和义肢等,为患者提供更好的医疗服务。
快速成型技术在建筑设计领域也有广泛的应用。
传统的建筑模型制作过程需要耗费大量的时间和人力,而快速成型技术可以快速制造出建筑模型,帮助设计师和业主更好地理解和评估建筑设计方案。
此外,快速成型技术还可以制造出建筑构件,如曲面墙板和装饰雕塑等,为建筑设计提供更多的创意和可能性。
快速成型技术在教育领域也有广泛的应用。
通过快速成型技术,学生可以将自己的创意转化为实物,提升创造力和动手能力。
同时,快速成型技术还可以用于制作教学模型和实验装置,帮助学生更好地理解和掌握知识。
快速成型技术在工业设计、医疗领域、建筑设计和教育领域等方面都有广泛的应用。
随着技术的不断发展,快速成型技术将在更多的领域中发挥重要作用,为人们的生活和工作带来更多的便利和创新。
简述快速成型技术的应用
简述快速成型技术的应用快速成型技术(Rapid Prototyping,简称RP)是一种通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,直接从三维CAD模型中构建实物模型的方法。
它在工业设计、制造、医疗、艺术等领域有着广泛的应用。
快速成型技术在工业设计领域得到了广泛的应用。
传统的产品设计过程需要经历多个阶段,包括手工制作模型、校对设计、制作模具等步骤。
而使用快速成型技术,设计师可以通过CAD软件直接生成三维模型,并使用快速成型机器将其转化为实物模型。
这样不仅可以减少设计时间,还可以快速验证设计的可行性,降低产品开发的风险。
快速成型技术在制造领域也有着重要的应用。
传统的制造过程通常需要制作模具,然后再进行大规模生产。
而使用快速成型技术,可以直接从CAD模型中生成产品原型,然后再根据需要进行小批量生产。
这种灵活的生产方式可以满足个性化定制的需求,提高生产效率,降低生产成本。
快速成型技术在医疗领域也有着广泛的应用。
医生可以利用快速成型技术生成患者特定的三维模型,用于手术模拟、医疗器械设计等方面。
这种个性化的医疗模型可以帮助医生更好地了解患者的病情,制定更精确的治疗方案,提高手术的成功率。
快速成型技术还被广泛应用于艺术创作领域。
艺术家可以使用CAD 软件设计出复杂的艺术品模型,然后通过快速成型技术将其转化为实物。
这种技术不仅可以大大缩短艺术品制作的时间,还可以实现艺术家的创作理念。
同时,快速成型技术还可以帮助艺术家实现雕塑、陶瓷等多种材质的艺术品制作。
快速成型技术在工业设计、制造、医疗和艺术等领域的应用非常广泛。
它可以大大缩短产品开发周期,提高生产效率,降低生产成本。
同时,它还可以帮助医生提高诊断和治疗的准确性,艺术家实现创作理念。
随着技术的不断发展,快速成型技术将会在更多领域发挥重要作用,推动各行各业的创新和发展。
快速成型技术概述
和其他几种快速成型方法相比,该方一法也存在着许多缺点。主要有:
三、光固化成型工艺
四、叠层实体制造工艺
叠层实体制造工艺的基本原理
四、叠层实体制造工艺
2.叠层实体制造技术的特点 其主要特点如下: ( 1 )原型精度高。 ( 2 )制件能承受高达200℃ 的温度,有较高的硬度和较好的力学性能,可进行各种切削加工。 ( 3 )无须后固化处理。 ( 4 )无须设计和制作支撑结构。 ( 5 )废料易剥离。 ( 6 )可制作尺寸大的制件。 ( 7 )原材料价格便宜,原型制作成本低。
( 1 )能承受一定高温。 ( 2 )与成型材料不浸润,便于后处理。 ( 3 )具有水溶性或者酸溶性。 ( 4 )具有较低的熔融温度。 ( 5 )流动性要好。
五、熔融沉积快速成型工艺
选择性激光烧结工艺的基本原理
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。
01
1940年,Perera提出相似的方法,即沿轮廓线切割硬纸板,然后堆叠,使这些纸板形成三维地貌图。
02
1964年,Zang进一步细化了该方法,建议用透明的纸板,每一块均带有详细的地貌形态标记。
03
1972年,Matsubara使用光固化材料,光线有选择地投射或扫射到这个板层,将规定的部分硬化,没有扫描或没有一硬化的部分被某种溶剂溶化。
04
五、熔融沉积快速成型工艺
五、熔融沉积快速成型工艺
2.熔融沉积工艺的特点 熔融沉积快速成型工艺之所以被广泛应用,是因为它具有其他成型方法所不具有的许多优点。具体如下: ( 1 )由于采用了热融挤压头的专利技术,使整个系统构造原理和操作简单,维护成本低,系统运行安全。 ( 2)成型速度快。 ( 3 )用蜡成型的零件原型,可以直接用于熔模铸造。 ( 4 )可以成型任意复杂程度的零件。 ( 5 )原材料在成型过程中无化学变化,制件的翘曲变形小。 ( 6 )原材料利用率高,且材料寿命长。 ( 7 )支撑去除简单,无需化学清洗,分离容易。
浅谈快速成型技术
浅谈快速成型技术【摘要】快速成型技术是一种集合计算机、数控、材料、激光等多学科技术于一体的全新制造技术。
文章简单介绍了快速成型技术的发展状况、分类、特点及应用,并对几种典型的快速成型工艺进行了比较。
【关键词】快速成型;发展状况;应用领域快速成型技术(Rapid Prototyping,简称RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术,是由CAD模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称。
1. 快速成型机技术的发展状况快速成型技术从产生到现在虽然只有十几年的时间,但发展十分迅速。
目前的快速成型技术与以前相比,在目标、用途、设备和工艺等方面都有了很大的变化和提高,主要体现在:以制作概念原型、制作功能测试的原型为主,制作小批量生产的模具或制造大批量生产模具的母模,向不同用途相对独立地发展[1];向大型或微型制造发展;结合各种应用要求,依赖新的成型材料特点,不断开发新的成型工艺;通过改进快速成型机的结构和控制系统,提高成型的速度、控制精度和可靠性;优化数据处理技术,开发新的模型切片方法,提高快速成型件的尺寸精度和表面质量;开发专用快速成型设备,降低设备运行成本。
2. 快速成型技术的分类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术和基于喷射的成型技术,下面对其中几种比较成熟的快速成型工艺作简单介绍:(1)光固化成型光固化成型技术的工作原理是以光敏树脂为原料,计算机控制扫描的轨迹及光线,光点打到的地方,成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化[2]。
当一层扫描完成后.升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
(2)选择性激光粉末烧结选择性激光粉末烧结的工作原理是将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接[3]。
快速成型技术及其发展综述
计算机集成制造技术与系统——读书报告题目名称:专业班级:学号:学生姓名:指导老师快速成型技术及其发展摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。
本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。
关键词:快速成型烧结固化叠加发展服务1 快速成形技术的产生快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。
快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。
查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。
同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。
与此同时,其它的成形原理及相应的成形系统也相继开发成功。
1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。
1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。
斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。
快速成型技术概述
快速成型技术概述现代科学技术的飞速进展,尤其是微电子、计算机、数控技术、激光技术、材料科学的进步为制造技术的变革与进展制造了前所未有的机遇,使得机械制造能够突破传统的制造模式,进展出一项崭新的制造技术一一,快速成型技术。
诞生背景快速成型技术的诞生主要有两方面的缘由:1)市场拉动市场全球化和用户需求共性化为先进制造技术提出了新的要求,随着市场一体化的进展,市场竞争越来越激烈,产品的开发速度成为竞争的主要冲突。
同时用户需求多样化的趋势日益明显,因此要求产品制造技术有较强的敏捷性,在不增加成本的前提下能够以小批量生产甚至单件生产产品。
2)技术推动新技术的进展为快速成型技术的产生奠定了技术基础,信息技术、计算机技术的进展、CAD/CAM技术的进展、材料科学的进展一新材料的消失、激光技术的进展为快速成型技术的产生和进展奠定了技术基础。
快速成型技术就是在这样的社会背景下在80年月后期产生于美国并快速扩展到欧洲和日本。
由于即技术的成型原理突破了传统加工中的塑性成形(如锻、冲、拉伸、铸、注塑加工等和切削成形的工艺方法,可以在没有工装夹具或模具的条件下快速制造出任意简单外形又具有肯定功能的三维实体原型或零件,因此被认为是近二十年来制造技术领域的一次重大突破。
基本原理与特征快速成型技术是一种将原型(或零件、部件)的几何外形!结构和所选材料的组合信息建立数字化描述模型,之后把这些信息输出到计算机掌握的机电集成制造系统进行材料的添加、加工,通过逐点、逐线、逐面进行材料的三维堆砌成型, 再经过必要的处理,使其在外观、强度和性能等方面达到设计要求,实现快速!精确地制造原型或实际零件、部件的现代化方法。
快速成型技术的特征为:(1)可以制造出任意简单的三维几何实体;(2)CAD模型直接驱动;(3)成形设施无需专用夹具或工具;(4)成形过程中无人干预或较少干预;快速成型技术的优势(1)响应速度快:与传统的加工技术相比,RP技术实现了CAD模型直接驱动, 成形时间短,从产品CAD或从实体反求获得数据到制成原型,一般只需要几小时至几十个小时,速度比传统成型加工方法快得多"这项技术尤其适于新产品的开发,适合小批量、简单(如凹槽、凸肩和空心嵌套等)、异形产品的直接生产而不受产品外形简单程度的限制,还改善了设计过程中的人机沟通,使产品设计和模具生产并行,从而缩短了产品设计、开发的周期,加快了产品更新换代的速度,大大地降低了新产品的开发成本和企业研制新产品的风险。
快速成型技术总结_焊工个人技术总结
快速成型技术总结_焊工个人技术总结快速成型技术是一种最近兴起的技术,也被称为3D打印技术。
能够以一种快速、精确、经济的方式进行原型制作和产品制造。
快速成型技术几乎可以制造任何形状和尺寸的物品,是成本低,开发时间短,开发灵活性大的替代品。
快速成型技术的工作原理是建立在CAD模型的基础上,通过将模型分解为多个横向层,在每个层面上使用材料或成型物料,让它们逐层叠加,由计算机将每一层的草图传输给打印机,打印机使用激光或喷头将材料或成型物料逐层叠加在一起。
由于成型材料经过加热或硬化等处理,所以每一层的粘合和垂直度都非常高。
操作过程简单,可以快速进行多次修复。
目前快速成型技术主要分为三大类:光敏快速成型技术、熔融沉积快速成型技术和粉末快速成型技术。
光敏快速成型技术主要是用于小批量产品生产,因其生产效率较低;熔融沉积快速成型技术常用于生产中型、大型制品,既可生产金属制品,也可生产未硬化的塑料型材;而粉末快速成型技术主要是用来制作复杂型状和空心部件的,限制在材料的可用性上较高,在生产成本和产量方面受到限制。
快速成型技术的优点和缺点快速成型技术具有制造各种单元的品质和灵活性; 且不需要付出很高的成本。
传统型材生产的成本和生产工艺都很高,而快速成型技术无需高昂的成本即可制造欠缺的利润型材。
快速成型技术可以提高实际产品数量,减少材料的浪费率,为客户提供更大的选择空间;但同时也存在着一些缺点,快速成型技术材料的质量和强度要比传统的材料差,目前所制造的型材不能在长期内弯曲,也不能在过度使用后暴露部分裂隙,但是随着技术的不断研究和开发,这些缺点都会逐渐被克服和解决。
总而言之,快速成型技术是一项具有高度研究价值和广泛应用价值的新兴技术,对汽车、化工、电气、医学等行业都具有非常重要的意义。
虽然说目前存在的一些缺点影响它的使用范围,但是未来随着技术的不断迭代和推进,应该会越来越好。
快速成型技术的综述
快速成型技术的综述概要:快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,被认为是近20年来制造领域的一个重大成果。
不断提高RP技术的应用水平是推动RP技术发展的重要方面。
并且随着这一技术本身的发展,其应用领域将不断拓展。
关键词:引言:随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
一.RP技术的定义快速成型技术是集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
二.RP技术的基本原理快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。
1、从成形角度看,零件可视为“点”或“面”的叠加。
从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。
2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。
三.特点(1) 制造原型所用的材料不限,各种金属和非金属材料均可使用;(2) 原型的复制性、互换性高;(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;(4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;(5) 高度技术集成,可实现了设计制造一体化;三.类型3D打印技术是一系列快速原型成型技术的统称,其基本原理都是叠层制造,由快速原型机在X-Y平面内通过扫描形式形成工件的截面形状,而在Z坐标间断地作层面厚度的位移,最终形成三维制件。
快速成型技术总结_焊工个人技术总结
快速成型技术总结_焊工个人技术总结
快速成型技术,简称为RPT,意为Rapid Prototype Technology,也叫快速成形技术,是一项新型的材料制造技术。
它采用了计算机辅助设计和制造技术,可以快速地制造出具有复杂形状的三维实体模型,而无需制作刻板的模具,这也就是所谓的快速原型技术。
下面对传统RPT和新增型RPT作一个简单的介绍:
1. 传统板式RPT
传统板式RPT,是以太阳对光敏树脂成型的一种快速成型技术。
这种快速成型技术的基本原理是利用可快速成型的光学技术在数控设备上精确雕刻出一块基础模板,然后在这个模板上通过光固化技术制造出一层层薄片,直到制造完成整个物体。
优点:精度高,制造速度快。
缺点:成本高,制造材料有限。
2. 新增型RPT
新增型RPT,是一种结合了光固化和喷墨技术的快速成型技术。
这种技术的基本原理是首先制造出一个3D光学组件,利用光固化技术将光照射到成型区域,形成了一个光敏材料层。
然后,根据喷墨技术将所需颜色打印在材料表面,使整个光敏材料被完整的覆盖,然后在一次充分固化后,取下模型。
(也可以采用更多的喷墨技术,如喷墨打印,使得模型的表面更光滑细腻)
优点:成本低,材料多样化。
缺点:精度不高,时间长。
因此,各种RPT技术的应用范围不同,使用方式不同,具体应看具体情况和成本。
在制造过程中,技术优劣决定了制造成果,其具体应用还需要根据不同的产品和工艺采取不同方案,切勿一刀切。
快速成型技术简介
快速成型技术简介作者:中科院广州电子技术有限公司快速成型(Rapid Prototyping) 是近年来发展起来的直接根据CAD模型快速制作样件或零件的技术,它集成了计算机辅助设计(CAD) 技术、数控技术、激光技术和材料技术等现代科技,是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD 几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统方法相比具有独特的优越性和特点:◆产品制造过程几乎与零件的复杂性无关。
◆产品的单价几乎与批量无关,特别适合于新产品的开发和单件小批量零件的生产。
◆采用非接触加工,没有工具更换和磨损之类的问题,可以做到无人值守。
◆无切割、噪音和振动等,有利于环保。
◆生产过程数字化,与CAD 模型具有直接的关联,零件可大可小,所见即所得,可随时修改,随时制造。
◆与传统方法结合,可实现快速铸造,快速模具制造,小批量零件生产等功能,为传统制造方法注入新的活力。
快速成型技术的应用快速成型应用的领域几乎包括了制造领域的各个行业,在医疗、人体工程、文物保护等行业也得到了越来越广泛的应用。
目前主要是应用于新产品开发的设计验证和模拟样品的试制上,即完成从产品的概念设计→造型设计→结构设计→基本功能评估→模拟样件试制这段开发过程。
对某些以塑料结构为主的产品还可以进行小批量试制,或进行一些物理方面的功能测试、装配验证、实际外观效果审视,甚至将产品小批量组装先行投放市场,达到投石问路的目的。
快速成型技术的主要应用各行业的应用状况如下:◆汽车、摩托车: 外形及内饰件的设计、改型、装配试验,发动机、汽缸头试制。
◆家电: 各种家电产品的外形与结构设计,装配试验与功能验证,市场宣传,模具制造。
◆通讯产品: 产品外形与结构设计,装配试验,功能验证,模具制造。
快速成型技术综述
快速成型技术综述机械设计制造及其自动化机械1202 马也(3120301052)【摘要】快速成型(Rapid Prototyping简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。
本文主要介绍了快速成型技术的起源及特点,技术原理,类型、特点及适用范围,阐述了快速成型技术在各领域的应用以及,快速成型机的工艺,探讨了快速成型技术在今后的发展方向。
【关键词】快速成型技术;特点;原理;分类;特点;应用;意义;发展方向【引言】(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发的能力成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
所以我们要掌握该技术,才能在未来的商业或国际竞争中立于不败之地。
一:RP的起源快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
快速成型技术概述
逆 向 工 程 技 术 及 其 应 用
( 4 )具有较低的熔融温度。
( 5 )流动性要好。
六、选择性激光烧结工艺
1.选择性激光烧结工艺的基本原理 采用铺粉辊将一层粉末材料平铺在己成形零件的上表面。 加热至恰好低于该粉末烧结点的某一温度,控制系统控 制激光束按照该层的截面轮廓在粉层上扫描,使粉末的 温度升至熔化点,进行烧结并与下面已成形的部分实现 粘接。 当一层截面烧结完后,工作台下降一个层的厚度,铺料 辊又在上面铺上一层均匀密实的粉末,进行新一层截面 的烧结,直至完成整个模型。 在成型过程中,未经烧结的粉末对模型的空腔和悬臂部 分起着支撑作用。
逆 向 工 程 技 术 及 其 应 用
四、叠层实体制造工艺
1、叠层实体制造工艺的基本原理
逆 向 工 程 技 术 及 其 应 用
四、叠层实体制造工艺
2.叠层实体制造技术的特点 其主要特点如下: ( 1 )原型精度高。 ( 2 )制件能承受高达200℃ 的温度,有较高的硬度和较 好的力学性能,可进行各种切削加工。 ( 3 )无须后固化处理。 ( 4 )无须设计和制作支撑结构。 ( 5 )废料易剥离。 ( 6 )可制作尺寸大的制件。 ( 7 )原材料价格便宜,原型制作成本低。
逆 向 工 程 技 术 及 其 应 用
四、叠层实体制造工艺
表面涂覆的具体工艺过程如下: ( 1 )将剥离后的原型表面用砂纸轻轻打一磨。 ( 2 )按规定比例配制环氧树脂,并混合均匀。 ( 3 )在原型上涂刷一薄层混合后的材料,因材料的粘度 较低,材料会很容易浸入纸基的原型中。 ( 4 )再次涂覆同样配合比的环氧树脂材料以填充表面的 沟痕并长时间固化。 ( 5 )对表面已经涂覆了坚硬的环氧树脂材料的原型再次 用砂纸进行打磨,打磨之前和打磨过程中应注意测量原 型的尺一寸,以确保原型尺寸在要求的公差范围之内。 ( 6 )对原型表面进行抛光,喷涂,以增加表面的外观效 果,
第4章 快速成型概述 ppt课件[1]
直接用LOM制造的模具型芯和型腔接
2020/10/28
31
LOM模具的特点是:
(1)模具翘曲变形小,成型过程无需设计和制作支 撑结构。
(2)有较高的强度和良好的力学性能,但薄壁件的 抗拉强度和弹性不够好。
(3)适用于制造中大型模具。
(4)后续打磨处理耗时费力,模具制造周期增加, 成本提高
2020/10/28
迫成型。多用于毛坯制造。但也有直接用于最
终零件成型,精密铸造、精密锻造属净成型或
近净成型。
2020/10/28
7
堆积成型: 把材料(气、液、固相)有序地
堆积起来的成型。RP属于堆积成型 (先离散再堆积)近净成型工艺。
2020/10/28
8
生长成型:
利用材料的活性进行成型的方 法。自然界中的生物(植物、动物) 个体发育均属于生长成型。这是最 高层次的成型方法。
数字模型可视化,可以进行设计评价、干涉检验,
甚至某些功能测试,将设计缺陷消灭在初步设计阶
段,减少损失。
2020/10/28
20
1. 概念模型的可视化、零件的观感评价 2. 结构设计验证与装配效验 3. 性能和功能测试
2020/10/28
21
应用一: 概念模型的可视化、零件的观感评价
2020/10/28
▪ 粉末烧结与粘结:原材料是固态粉末,分别通 过激光烧结或用粘结剂粘结把材料粉末连接起 来
2020/10/28
16
▪ 丝材、线材熔化粘结:原材料为固态的丝材、或线 材,通过升温使其熔化并按指定的路线堆砌出需 要的形状
▪ 膜、板材层合:原材料是固态的板或膜,通过粘 结把各片簿层板粘结在一起,或者是利用塑料膜 的光聚合作用而把各层膜片粘结起来。
快速成型技术概述
快速成型技术概述
快速成型技术是一种用于生产快速成型零件的制造技术,它能够使用多种不同的材料,在短时间内产生复杂形状的平面或立体物品。
快速成型技术可以大大减少制造时间,提高生产效率,大大降低成本,并提供更多的可能性来实现复杂的设计。
快速成型技术主要有三类:3D打印,热成型和激光熔融成形。
3D打印技术是一种基于数字模型的直接成型技术,用于制造复杂的塑料零件。
它是一种层层堆积的3D打印技术,通过连续堆积多层薄膜的方式在物料上建立3D零件的模型,从而直接制作出3D零件。
热成型技术是用热力加工膜材,使材料形状发生变形,从而制造出所需的三维形状的一种成型技术。
它是一种快速、简单、经济的加工技术,热成型技术用于制造塑料、橡胶、金属、纤维等多种材料的形状。
激光熔融成型技术是一种采用激光技术,将金属粉末逐层熔融成形的成型加工技术。
它通过激光产生高温熔融,从而将金属粉末熔融到形状模具中,形成三维零件。
快速成型介绍
快速成型一、快速成型简介设计是一种思维活动。
设计师在设计过程中需要面临创新和风险的平衡:设计过程一方面意味着进行技术创新的机会:一个产品的技术含量、技术性能、制造成本,以及市场销售收益,在很大程度上取决于设计。
设计过程另一方面又意味着一种风险:走弯路的风险、走错路的风险、甚至是失败的风险。
产品的复杂程度越高,这种风险也就越大。
设计者在设计过程中不能不考虑这种风险,常常为了避开风险而舍弃了创新。
怎样才能充分利用创新的机会,提高设计质量,降低设计成本,同时又最大限度地降低风险,提高产品开发的一次成功率;此外,激烈的市场竞争还要求以最短的周期完成设计开发工作,提高对市场需求的响应速度。
设计师面临的要求越来越严格。
随着设计对象复杂程度的提高,随着旨在提高设计效率、缩短设计周期和提高一次成功率的并行工程的实施,在设计过程早期对模型的要求显得越来越迫切。
目前,广泛应用的CAD技术在一定程度上帮助设计师掌握创新和风险之间的平衡。
CAD模型具有很多优点:采用CAD生成的三维CAD模型,可以进行结构、性能分析,可以进行模拟装配,可以进行外观造型的渲染,甚至可以在虚拟现实环境下进行操作和使用。
但是,CAD模型的出现,无法、也不可能完全替代其它形式的模型,特别是具有三维实体形态的实体模型。
例如:在产品的造型设计中,不仅要考察产品的外形、色彩效果,甚至要考察其手感;在航空、航天器的设计中,没有因为三维CAD的采用而放弃采用空气动力学的“风洞”试验,同样,汽车工业中任一新车型开发过程中也不能不进行结构安全性的“碰撞”试验;尽管有十分详尽的军事地图,在大型战役的指挥中,“沙盘”仍是不可缺少的。
这一切都源于CAD模型的缺限:CAD模型无法提供产品的全部信息(如手感);CAD模型只能模拟我们已知的环境条件;三维空间中的实体模型比二维屏幕上的CAD模型更具有“真实感”和“可触摸性”;CAD模型本身也需要接受实际验证。
因此,在大力研究和应用三维CAD基础上的拟实设计、拟实制造的同时,还要积极研究和采用同样是在三维CAD基础上产生和发展起来的快速成型(RP)技术。
直写快速成型机文献综述
直写快速成型机目前,国内外直写快速成型机的成型方法有很多种。
根据使用材料的形态(气态、液态、固态或粉末)和成型机理不同,快速成型有下列几种比较成熟的方法:1.立体光刻技术立体光刻成型(Stereo Lithography Apparatus.简称SLA)技术是目前世界上研究最深入、技术最成熟、应用最广泛的实用化技术。
该技术采用紫外激光束硬化光敏树脂生成二维物体。
在液槽中盛满液态的光敏树脂,树脂可以在紫外激光照射下进行聚合反应,发生相变,由液态变为固态。
成型开始时,工作台下降至液面以下一个层高的距离,在计算机控制下的激光束以预先确定的各个分层截面的轮廓为轨迹逐点快速扫描,被扫描区域固化,从而形成一个固态薄截面。
然后升降机构带动工作台再下降一个层高,其上又覆盖上一层液态树脂,以便进行第二层扫描固化,新固化的一层牢固地粘在前一层上,如此重复,直到加工出整个模型。
SLA技术的常用原料是热固性光敏树脂,主要用于制造各种模具和模型等。
还可以通过在光敏树脂中加入其他的材料成型,用制造出的原型代替熔模精密铸造中的蜡模等。
2.分层实体造型分层实体造型(Laminated Object Manufacturing,简称LOM)技术是近年来发展起来的又一种直写快速成型机,它是通过对原料纸进行层合与激光切割来形成零件。
这种工艺采用激光器按照CAD分层模型所获得的数据,用激光束将单面涂有热溶胶的薄膜材料或其他材料的箔带切割成预制原型在该层平面的内外轮廓,再通过加热辊加热,使刚刚切好的一层与下面己切割层粘接在一起。
这样通过逐层切割、粘合,最后将不需要的材料录」离,得到预制的原型。
LOM技术常用的材料是纸、金属箔、陶瓷膜、塑料膜等,除了制造模具、模型以外,还可以制造结构件。
但是制件的粘结强度与所选的基材和胶种密切相关,废料的分离比较费时,边角废料多。
3.熔丝沉积造型熔丝沉积造型(Fused Deposition Modeling,简称FDM)技术是采用热熔喷嘴,将半流动的材料按CAD分层数据控制的路径挤压并沉积在指定位置凝固成型,逐层沉积、凝固后形成整个原型或零件。
快速成型技术总结
快速成型技术总结《快速成型技术总结》是一篇好的范文,觉得应该跟大家分享,希望对网友有用。
篇一:快速成型总结报告快速成型总结报告一、快速成型技术的发展及原理快速成形技术(,简称)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术是由模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在向将其按一定厚度进行离散(习惯称为分层),把原来的三维模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的原理:快速成型技术()的成型原理是基于离散-叠加原理而实现快速加工原型或零件这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性二、快速成型技术的分类快速成型技术-分类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(),例如:光固化成型()、最全面的范文写作网站分层实体制造()、选域激光粉末烧结()、形状沉积成型()等;基于喷射的成型技术(),例如:熔融沉积成型()、三维印刷()、多相喷射沉积()。
下面对其中比较成熟的工艺作简单的介绍。
技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
、(光固化成型)工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
快速成型总结报告
快速成型总结报告一、快速成型技术的发展及原理快速成形技术(RapidPrototyping,简称RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术.是由CAD模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、CAD模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的原理:快速成型技术(RP)的成型原理是基于离散-叠加原理而实现快速加工原型或零件.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用.而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.二、快速成型技术的分类快速成型技术- 分类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(LaserTechnology),例如:光固化成型(SLA)、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。
下面对其中比较成熟的工艺作简单的介绍。
SLA技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
1、SLA(光固化成型)SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
快速成型(资料
快速成型(Rapid Prototyping):快速成形技术(简称RP)是由三维模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型,然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形系统成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的特点:与传统材料加工技术相比,快速成型具有鲜明的特点:1.数字化制造。
2.高度柔性和适应性。
可以制造任意复杂形状的零件。
3.直接CAD模型驱动。
如同使用打印机一样方便快捷。
4.快速。
从CAD设计到原型(或零件)加工完毕,只需几十分钟至几十小时。
5.材料类型丰富多样,包括树脂、纸、工程蜡、工程塑料(ABS等)、陶瓷粉、金属粉、砂等,可以在航空,机械,家电,建筑,医疗等各个领域应用。
主要工艺:RP技术结合了众多当代高新技术:计算机辅助设计、数控技术、激光技术、材料技术等,并将随着技术的更新而不断发展。
自1986年出现至今,短短十几年,世界上已有大约二十多种不同的成形方法和工艺,而且新方法和工艺不断地出现。
目前已出现的RP技术的主要工艺有:1.SL工艺:光固化/立体光刻。
2.FDM工艺:熔融沉积成形。
3.SLS工艺:选择性激光烧结。
4.LOM工艺:分层实体制造。
5.3DP工艺:三维印刷。
6.PCM工艺:无木模铸造第四军医大学全军骨科研究所引进北京殷华公司MEM-300-E熔融挤压快速成型设备。
具体步骤一般如下(1)给病人做CT或MRI等影像采集的CT断层扫描DICOM格式数据(2)利用软件在计算机上进行病变区域的数字化三维重建,转化成STL文件(3)利用Aurora软件(北京殷华公司自主开发的分层软件)分层,输入快速成型设备,制作出骨的实体模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速成型综述快速成型(Rapid Prototyping简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。
快速成型系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。
而以RP系统为基础发展起来并已成熟的快速模具工装制造(Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。
快速成型技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用材料累加法制造零件原型,其原理是先将CAD 生成的三维实体模型通过分层软件分成许多细小薄层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液态光敏树脂,使其固化,以逐层固化的薄层累积成所设计的实体原型,激光快速成型技术较之传统的诸多加工方法展示了以下的优越性:产品设计评估与校审快速成型技术将CAD的设计构想快速、精确、而又经济地生成可触摸的物理实体。
显然比将三维的几何造型展示于二维的屏幕或图纸上具有更高的直观性和启示性。
正可谓“一图值千言,一物值千图”。
因此,设计人员可以更快,更易地发现设计中的错误。
更重要的是,对成品而言,设计人员可及时体验其新设计产品的使用舒适性和美学品质。
RP生成的模型亦是设计部门与非技术部门交流的更好中介物。
有鉴于此,国外常把快速成型系统作为CAD系统的外围设备,并称桌上型的快速成型机为“三维实体印刷机(3D Solid Printer)”。
产品工程功能试验在RP系统中使用新型光敏树脂材料制成的产品零件原型具有足够的强度,可用于传热、流体力学试验,用某些特殊光敏固化材料制成的模型还具有光弹特性。
可用于产品受载应力应变的实验分析。
例如,美国GM在为其97年将推出的某车型开发中,直接使用RP生成的模型进行其车内空调系统、冷却循环系统及冬用加热取暖系统的传热学试验,较之以往的同类试验节省费用40%以上。
Chrysler则直接利用RP制造的车体原型进行高速风洞流体动力学试验,节省成本达70%。
厂家与客户或订购商的交流手段在国外,RP原型成为某些制造厂家争夺订单的手段。
例如位于Detroit的一家仅组建两年的制造商,由于装备了2台不同型号的快速成型机及以此为基础的快速精铸技术,仅在接到Ford 公司标书后的4个工作日内便生产出了第一个功能样件,从而在众多的竞争者中夺到了为Ford公司生产年总产值达300万美元发动机缸盖精铸件的合同;零一方面,客户总是更乐意对着实物原型“指手划脚”,提出其对产品的修改意见。
因此,RP模型是设计制造商就其产品与客户交流沟通的最佳手段。
快速模具制造以RP生成的实体模型作模心或模套,结合精铸、粉末烧结或电极研磨等技术可以快速制造出企业生产所需要的功能模具或工装设备,其制造周期较之传统的数控切削方法可缩短30%~40%以上,而成本却下降35%~70%。
模具的几何复杂程度愈高,这种效益愈显著。
据一家位于美国Chicago的模具供应商(仅有20名员工)声称,其车间在接到客户CAD设计文件后1周内可提供任意复杂的注塑模具,而实际上80%模具则可在24~48小时内完工。
快速直接制造快速成型技术利用材料累加法亦可用来制造塑料、陶瓷、金属及各种复合材料零件。
由于RP技术给工业界带来巨大的效益。
因而,它被誉为近十年来工业界的一项重大(革命性与突破性)的科技发展,1992年以前全世界总共装机为300台,而到1995年世界装机为1000台,分布于六大洲的40多个国家,这期间几乎以每年50%的速度增长而从1995年到1996年4月,具美国Dayton国际RP技术研讨会上一份报告统计台数增长为40%以上,而在设计开发,制造中使用过RP技术的厂商数目增长率为52%。
鉴于这种形势,我国政府在“九·五”的第一年就将该技术列入“九·五”攻关项目,同时,“九·五”国家科技攻关中,把先进制造技术列为重点资助的领域之一,而先进制造技术中的几项重要内容,如:精密成型、CAD推广应用、并行设计和并行工程、敏捷制造、虚拟制造等技术方面都与RP有关,甚至主要以RP作技术支撑。
快速成形技术优越性和特点:产品制造过程几乎与零件的复杂性无关。
产品的单价几乎与批量无关,特别适合于新产品的开发和单件小批量零件的生产。
采用非接触加工,没有工具更换和磨损之类的问题,可以做到无人值守。
无切割、噪音和振动等,有利于环保。
生产过程数字化,与CAD 模型具有直接的关联,零件可大可小,所见即所得,可随时修改,随时制造。
与传统方法结合,可实现快速铸造,快速模具制造,小批量零件生产等功能,为传统制造方法注入新的活力。
快速成型的作业流程无论是新的概念设计还是产品仿制,快速成型的过程是生成三维CAD 模型或曲面模型文件,将CAD 数据转换成STL 文件格式,并利用软件从STL 文件“ 切”(Slice) 出一定厚度的一系列的片层,或者直接从CAD 文件切出一系列的片层,得到这一系列片层的过程称为数据转换。
将每一片层的资料传到快速成型设备中去,依次将每一层扫描出来,直到完成整个零件。
判断得到的零件实物是否满足要求,如果满足要求,就可以对其进行进一步测试和研究,也可以进行小批量的生产,模具开发过程结束。
如果不满足要求,则需要修改CAD 数据甚至重新设计得到CAD 数据,重复上述步骤,直到合乎要求为止。
快速成型技术工艺方法熔融堆积成型(Fused Deposition Modeling,FDM)FDM成型工艺原理:FDM(Fused Depostion Modeling) 工艺由美国学者Dr. Scott Crump于1988年研制成功,并由美国Stratasys 公司推出商品化的3D Modeler 1000、1100和FDM1600、1650等规格的系列产品,最新产品是制造大型ABS原型的FDM8000、Quantum等型号的产品。
清华大学开发了与其工艺原理相近的MEM(Melted Extrusion Manufacturing)工艺及系列产品。
FDM工艺一般使用热塑性材料,如蜡、ABS、尼龙等。
材料在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料以丝状挤出;材料迅速凝固,并与周围的材料凝结。
如果热熔性材料的温度始终稍高于固化温度,而成型的部分温度稍低于固化温度,就能保证热熔性材料挤喷出喷嘴后,随即与前一个层面熔结在一起。
一个层面沉积完成后,工作台按预定的增量下降一个层的厚度,再继续熔喷沉积,直至完成整个实体造型。
FDM工艺不用激光器件,因此使用、维护简单,成本较低。
用蜡成形的零件原型,可以直接用于失蜡铸造。
用ABS制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用。
由于以FDM工艺为代表的熔融材料堆积成形工艺具有一些显著优点,该类工艺发展极为迅速。
其缺点是表面粗糙度较高,需后处理;成形时间较长;材料昂贵。
叠层实体制造(Laminated Object Manufacturing,LOM)LOM成型工艺原理LOM (Laminated Object Manufacturing)工艺最早是由美国Helisys公司开发的。
该项技术将特殊的薄片材料一层一层地堆叠起来,激光束只须扫描和切割每一层的边沿,而不必象SL那样,要对整个表面层进行扫描。
它是将单面涂有热溶胶的箔材(涂覆纸-涂有粘接剂覆层的纸、涂覆陶瓷箔、金属箔等)通过热辊加热粘接在一起,使激光束在片材平面内沿确定轨迹扫描而形成平面模型。
平面模型逐层堆叠在并在滚压辊的滚压下粘接逐步形成整体物理模型,去除废料后即成型。
废料部分切成网络是为了便于消除。
目前最常用的材料是一种在一个面上涂布了热熔树脂胶的纸。
在LOM成型机器里,材料由一个供料卷筒被拉出,胶面朝下平整地经过造型平台,由位于另一方的收料卷筒收卷起来。
每敷覆一层纸,就由一个热压辊压过纸的背面,将其粘合在平台上或前一层纸上。
这时激光束开始沿着当前层的轮廓进行切割。
激光束经准确聚焦,使之刚好能切穿一层纸的厚度。
在模型四周和内腔的纸被激光束切割成细小的碎片以便后期处理时可以除去这些材料。
同时,在成型过程中,这些碎片可以对模型的空腔和悬臂结构起支撑的作用。
一个薄层完成后,工作平台下降一个层的厚度,箔材已割离的四周剩余部分被收料卷筒卷起,拉动连续的箔材进行下一个层的敷覆。
如此周而复始,直至整个模型完成。
LOM工艺的后处理加工包括去除模型四周和空腔内的碎纸片,必要的时候还可以通过加工去除模型台阶状表面。
LOM模型相当坚固,它可以进行机加工、打磨、抛光、绘制、加涂层等各种形式的加工。
目前用于LOM技术的箔材主要有涂覆纸、覆膜塑料、覆蜡陶瓷箔、覆膜金属箔等。
这种工艺的优点是尺寸精度较高;只须对轮廓线进行切割,制作效率高;无需设计支撑;制成的样件有类似木质制品的硬度,稍作处理后可在200℃以下环境中使用,可进行一定的切削加工;所用二氧化碳激光器寿命达20000小时;构形材料价格便宜。
缺点是不能直接制作塑料件;表面粗糙度较高,工件表面有明显的台阶纹,成型后要进行打磨;易吸湿膨胀,成形后要尽快表面防潮处理;工件缺少弹性。
LOM工艺由美国Helisys公司的Michael Feygin于1986年研制成功,该公司已推出LOM-1050和LOM-2030两种型号成型机。
类似LOM工艺的RP工艺有日本Kira公司的SC(Solid Center)、瑞典Sparx公司的Sparx、新加坡Kinergy精技私人有限公司的ZIPPY等。
立体光固化成型(Stereo Lithography Apparatus,SLA)SLA成型工艺原理:SL(Stereolithography)工艺由Charles Hull在1984年获美国专利;1988年美国3D System公司推出商品化样机SLA―1,这是世界上第一台快速成型技术成型机。
SL各型成型机占据着RP设备市场的较大份额,除了美国3D System公司的SLA系列成型机外,还有日本CMET公司的SOUP系列、D-MEC(JSR/Sony) 公司的SCS系列和采用杜邦公司技术的Teijin Seiki公司的Solidform,在欧洲有德国EOS公司的STEREOS、Fockele & Schwarze公司的LMS以及法国Laser 3D公司的Stereophotolithography(SPL)。