图的广度优先遍历
图的深度广度优先遍历操作代码
一、实验目的1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构;2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用;3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。
二、实验内容实验内容1**图的遍历[问题描述]许多涉及图上操作的算法都是以图的遍历为基础的。
写一个程序,演示在连通无向图上遍历全部顶点。
[基本要求]建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。
以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。
[实现提示]设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。
通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。
[编程思路]首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。
[程序代码]头文件:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 30#define MAX_QUEUE_NUMBER 30#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define TRUE 1#define FALSE 0typedef int Status;typedef int InfoType;typedef int Status;/* 定义弧的结构*/typedef struct ArcNode{int adjvex; /*该边所指向的顶点的位置*/ struct ArcNode *nextarc; /*指向下一条边的指针*/ InfoType info; /*该弧相关信息的指针*/}ArcNode;/*定义顶点的结构*/typedef struct VNode{char data[40]; /*顶点信息*/ArcNode *firstarc; /*指向第一条依附该顶点的弧的指针*/}VNode,AdjList[MAX_VERTEX_NUM];/*定义图的结构*/typedef struct {AdjList vertices;int vexnum,arcnum; /*图的当前顶点数和弧数*/int kind; /*图的类型标志*/}Graph;/*定义队列的结构*/typedef struct{int *elem;int front, rear;}Queue;/*功能选择*/void MenuSelect(int w);/*顶点定位*/int LocateVex(Graph G,char *name);/*创建无向图*/void CreateGraph(Graph &G);/*求第一个顶点*/int FirstAdjVex(Graph G, int v);/*求下一个顶点*/int NextAdjVex(Graph G, int v, int w);/*深度递归*/void DFS(Graph G, int v) ;/*深度遍历*/void DFSTravel(Graph G,int v);/*广度遍历*/void BFSTraverse(Graph G,char *name);/*初始化队列*/Status InitQueue(Queue &Q);/*判空*/Status EmptyQueue(Queue Q);/*进队*/Status EnQueue(Queue &Q, int e);/*出队*/Status DeQueue(Queue &Q, int &e);实现文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"bool visited[MAX_VERTEX_NUM];/************************************************************ 顶点定位************************************************************/int LocateVex(Graph G,char *name){int i;for(i=1;i<=G.vexnum;i++) //从1号位置开始存储if(strcmp(name,G.vertices[i].data)==0) //相等则找到,返回位序return i;return -1;}/************************************************************ 创建无向图************************************************************/void CreateGraph(Graph &G){ArcNode *p;char name1[10],name2[10];int i,j,k;printf(" 请输入顶点数,按回车键结束:");scanf("%d",&G.vexnum);printf(" 请输入弧数,按回车键结束:");scanf("%d",&G.arcnum);printf(" 请依次输入顶点名(用空格分开且字符小于10),按回车键结束:\n");printf(" ");for(i=1;i<=G.vexnum;i++) //从1号位置开始存储{scanf("%s",G.vertices[i].data); //从一号位置开始初始化G.vertices[i].firstarc=NULL;}printf("\n\n\n\n");printf(" ………………………………………输入小提示………………………………………\n");printf(" &&&&1 为避免输入遗漏,最好从选择任意一点,输入所有相邻边\n");printf(" &&&&2 输入边时格式(用空格分开,即格式为顶点(空格)顶点(空格))\n");printf(" ………………………………………输入小提示………………………………………\n\n\n\n");for(k=0;k<G.arcnum;k++){printf("请输入相邻的两个顶点,按回车键结束:");scanf("%s%s",name1,name2);i=LocateVex(G,name1); //返回位序j=LocateVex(G,name2);p=(ArcNode *)malloc(sizeof(ArcNode)); //申请边节点p->adjvex=j; //插入到邻接表中,注意此处为逆向插入到单链表中p->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=p;//无向图,注意是对称插入结点p=(ArcNode *)malloc(sizeof(ArcNode));p->adjvex=i;p->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=p;}}/************************************************************ 求第一个顶点************************************************************/int FirstAdjVex(Graph G, int v){ArcNode *p;if(v>=1 && v<=G.vexnum){p=G.vertices[v].firstarc;if(p->nextarc==NULL)return 0;elsereturn (p->nextarc->adjvex); //返回第一个顶点字符}return -1;}/************************************************************ 求下一个顶点************************************************************/int NextAdjVex(Graph G, int v, int w){ //在图G中寻找第v个顶点的相对于w的下一个邻接顶点ArcNode *p;if(v>=1 && v<=G.vexnum && w>=1 && w<=G.vexnum){p=G.vertices[v].firstarc;while(p->adjvex!=w)p=p->nextarc; //在顶点v的弧链中找到顶点wif(p->nextarc!=NULL)return 0; //若已是最后一个顶点,返回0 elsereturn(p->nextarc->adjvex); //返回下一个邻接顶点的序号}return -1;}/************************************************************ 深度递归************************************************************/void DFS(Graph G, int v){int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc; //p为依附顶点的第一条边while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc; //下移指针}}/************************************************************ 深度遍历************************************************************/void DFSTravel(Graph G,int v){for(int i=1;i<=G.vexnum;i++)visited[i]=0;int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc;while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc;}}/************************************************************ 初始化队列************************************************************/Status InitQueue(Queue &Q){Q.elem = new int[MAX_QUEUE_NUMBER];Q.front = Q.rear = 0;return OK;}Status EmptyQueue(Queue Q){if(Q.front==Q.rear)return 0;elsereturn 1;}/*********************************************************** * 进队列* ***********************************************************/ Status EnQueue(Queue &Q, int e){if((Q.rear + 1)%MAX_QUEUE_NUMBER != Q.front)Q.elem[Q.rear ] = e;else ;Q.rear = (Q.rear + 1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 出队列* ***********************************************************/ Status DeQueue(Queue &Q, int &e){if(Q.rear != Q.front)e = Q.elem[Q.front];else ;Q.front = (Q.front+1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 广度遍历************************************************************/void BFSTraverse(Graph G,char *name){ArcNode *p;int v,w,u,k=0;Queue Q;int visited[20];for(v=1;v<=G.vexnum;v++) //初始化visited[v]=0;InitQueue(Q);for(v=LocateVex(G,name);k!=2;v=(v+1)%(G.vexnum-1)) //v为输入的字符转化的位序{if(v+1==LocateVex(G,name)) //从v开始走完图的所有顶点k++;if(visited[v]==0){visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点EnQueue(Q,v); // 进队while(EmptyQueue(Q)!=0){DeQueue(Q,u); //出队p=G.vertices[u].firstarc;while(p!=NULL){w=p->adjvex; //p边的下一个顶点if(visited[w]==0){printf("%s ",G.vertices[w].data);visited[w]=1;EnQueue(Q,w);}p=p->nextarc; //下移指针}}}}}主文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"/************************************************************ 界面控制************************************************************/void main(){printf("\n################################# 图的遍历#################################\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf(" 1 ------- 图的创建\n");printf(" 2 ------- 图的深度优先遍历\n");printf(" 3 ------- 图的广度优先遍历\n");printf(" 0 ------- 退出\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf("请输入选择的操作代码(0-3)按回车键结束\n");MenuSelect(1);}/************************************************************ 功能选择************************************************************/void MenuSelect(int w){int select,done;int v;Graph G; char name[10];while (done) {printf("input the operating code : ");scanf("%d",&select);switch(select){case 1: printf("根据要求创建图:\n ");CreateGraph(G);break;case 2: printf("请输入深度优先遍历开始点的名:");scanf("%s",name);v=LocateVex(G,name); //将输入字符找到在顶点数组name对应的序号Vprintf("深度优先遍历:");DFSTravel(G,v);printf("\n");break;case 3: printf("请输入广度优先遍历开始点的名:");scanf("%s",name);printf("广度优先遍历:");BFSTraverse(G,name);printf("\n");break;case 0: done=0; break;default: printf(" ERROR\n");}printf("\n");}}[实验数据与结果]测试数据:实验结果。
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。
本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。
1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。
它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。
深度优先算法的时间复杂度与图的深度有关。
在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。
2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。
与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。
广度优先算法的时间复杂度与图中边的数量有关。
在最坏情况下,广度优先算法的时间复杂度为O(V+E)。
3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。
但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。
在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。
4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。
如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。
要根据具体的问题来选择合适的算法。
5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。
通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。
数据结构实验报告图的遍历讲解
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
第7章图的深度和广度优先搜索遍历算法
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法都是图搜索中常见的算法,它们具有不同的特点和适用场景。
在进行全面评估之前,让我们先来了解一下深度优先算法和广度优先算法的基本概念和原理。
### 1. 深度优先算法(Depth-First Search, DFS)深度优先算法是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,沿着一条路径直到末端,然后回溯,继续搜索下一条路径,直到所有路径都被探索。
在实际应用中,深度优先算法常常通过递归或栈来实现。
### 2. 广度优先算法(Breadth-First Search, BFS)广度优先算法也是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,依次遍历该顶点的所有相邻顶点,然后再以这些相邻顶点作为起点,继续遍历它们的相邻顶点,以此类推,直到所有顶点都被遍历。
在实际应用中,广度优先算法通常通过队列来实现。
### 3. 深度优先算法和广度优先算法的时间复杂度在实际应用中,我们经常需要对算法的时间复杂度进行分析。
针对深度优先算法和广度优先算法,它们的时间复杂度并不相同。
- 深度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
在最坏的情况下,如果采用邻接矩阵来表示图的话,深度优先算法的时间复杂度为O(V^2);如果采用邻接表来表示图的话,时间复杂度为O(V + E)。
- 广度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
无论采用邻接矩阵还是邻接表表示图,广度优先算法的时间复杂度都是O(V + E)。
### 4. 个人理解和观点在实际应用中,我们在选择使用深度优先算法还是广度优先算法时,需要根据具体的问题场景来进行选择。
如果要寻找图中的一条路径,或者判断两个节点之间是否存在路径,通常会选择使用深度优先算法;如果要寻找最短路径或者进行层次遍历,通常会选择使用广度优先算法。
深度优先算法和广度优先算法都是非常重要的图搜索算法,它们各自适用于不同的场景,并且具有不同的时间复杂度。
【免费下载】邻接矩阵表示图 深度 广度优先遍历
图 5-2 中有向图 G1 的邻接矩阵为 M1 M1=┌ 0 1 0 1 ┐
│1010│ │1001│ └0000┘
用邻接矩阵表示法来表示一个具有 n 个顶点的图时,除了用邻接矩阵中的 n*n 个元素存储顶点间相邻关系外,往往还需要另设一个向量存储 n 个顶点的 信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量
易求得各个顶点的度。
对于有向图,顶点 Vi 的出度 OD(Vi)为邻接矩阵第 i 行元素之和,顶点 Vi 的入度 ID(Vi)为第 i 列元素之和。即 n n OD(Vi)=∑A[i,j], OD(Vi)=∑A[j,i]) j=1 j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若<Vi,Vj>或(Vi,Vj) A[i,j]={ ∞ , 否则。 其中 Wij 为<Vi,Vj>或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型 定义应作如下的修改: adj:weightype ; {weightype 为权类型}
2、图的遍历: *深度优先搜索
深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初 始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点 V 出 发,访问此顶点,然后依次从 V 的未被访问的邻接点出发深度优先遍历图,直 至图中所有和 V 有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问, 则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访 问到为止。
以图中无向图 G4 为例,深度优先遍历图的过程如图所示。假设从顶点 V1 出 发进行搜索,在访问了顶点 V1 后,选择邻接点 V2。因为 V2 未曾访问,则从 V2 出发进行搜索。依次类推,接着从 V4,V8,V5 出发进行搜索。在访问了 V5 之后, 由于 V5 的邻接点已都被访问,则搜索回到 V8。由于同样的理由,搜索继续回到 V4,V2 直至 V1,此时由于 V1 的另一个邻接点为被访问,则搜索又从 V1 到 V3,再
广度优先遍历非递归算法
广度优先遍历非递归算法
广度优先遍历(BFS)是一种图的遍历算法,用来遍历图中所有的节点。
以下是广度优先遍历的非递归算法:
1. 创建一个队列,用来存放待访问的节点。
2. 将起始节点放入队列中。
3. 创建一个集合,用来存放已经访问过的节点。
4. 将起始节点加入到已访问节点的集合中。
5. 循环执行以下步骤,直到队列为空为止:
5.1. 从队列中取出一个节点。
5.2. 访问该节点。
5.3. 获取该节点的所有相邻节点。
5.4. 对于每个相邻节点,如果它没有被访问过,则将其加入到队列和已访问节点的集合中。
通过以上步骤,可以按广度优先的顺序遍历整个图。
这种非递归算法利用队列的先进先出(FIFO)特性,保证了相邻节点的访问顺序是按照它们与起始节点的距离逐渐增加的顺序进行的,从而实现了广度优先遍历。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
算法设计:深度优先遍历和广度优先遍历
算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。
它们对无向图和有向图均适用。
注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。
2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。
在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。
为了避免重复访问同一个顶点,必须记住每个已访问的顶点。
为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。
--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。
若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。
图的深度广度优先遍历C语言程序
scanf("%d",&L->num);
printf("请输入各顶点的信息(单个符号):");
for(i=0;i<L->num;i++)
{
fflush(stdin);
scanf("%c",&L->vexs[i]);
}
printf("请输入边权矩阵的信息:");
{ *e=sq.data[(sq.front)]; return 1;}
}
/*******************************************************************பைடு நூலகம்*********/
int QueueIn (SEQQUEUE *sq,DATATYPE x)
for(v2=0;v2<g.num;v2++)
{
if(g.arcs[v1][v2]!=0&&mark[v2]==0)
{
QueueIn(&q,v2);
mark[v2]=1;
printf("%c ",g.vexs[v2]);
}
}
//如果顺序循环队列sq为空,成功返回1,否则返回0
{
if (sq.rear==sq.front)
return(1);
else
return(0);
}
/*****************************************************************************/
浅析深度优先和广度优先遍历实现过程、区别及使用场景
浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
图的遍历(深度优先遍历和广度优先遍历)
遍历规则 从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为: 访问v0; 对v0的各个出点v01,v02,…,v0m,每次从它们中按一定方式(也可任选)选取一个未被访问过的结点,从该结点出发按深度优先遍历方式遍历。 然,因为我们没有规定对出点的遍历次序,所以,图的深度优先遍历结果一般不唯一。
20.2 深度优先遍历
例如,对图 20‑1给出的有向图与无向图,一些遍历结果(结点访问次序)为: 左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5 右图:从a出发:a,b,c,d;或a,b,d,c; … …
A 如果不想让visited或top做为函数参数,也可以在函数中将其定义为static型量。但是,这样的程序是不可再入的,即函数再次被调用时,static型的量也不重新初始化,造成错误!
上面函数中的参数visited和top实质上是中间变量,只是为了避免在递归调用时重新初始化而放在参数表中,造成使用的不方便,为此,做个包装程序: long DFS1(int g[][CNST_NumNodes], long n, long v0, long *resu ) { char *visited; long top=0; visited = new char[n]; for (long i=0; i<n; i++) visited[i]=0; long num=DFS1( g, n, v0, visited, resu, top ); delete visited; return num; }
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0)
单击此处可添加副标题
图的遍历实验报告
实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。
度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。
其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤:(1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。
(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。
所以,下面只考虑从某一顶点出发遍历图的问题。
(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。
(4)这就是遍历次序的问题,图的遍历通常有深度优先遍历和广度优先遍历两种方式,这两种遍历次序对无向图和有向图都适用。
广度优先算法和迪杰斯特拉算法
一、引言在计算机科学领域,广度优先算法和迪杰斯特拉算法是两种常用的图算法。
它们分别用于解决不同类型的问题,但都是优化路径的算法。
本文将首先介绍广度优先算法和迪杰斯特拉算法的基本原理和特点,然后比较两种算法的异同点,最后分别探讨它们在实际应用中的使用场景和注意事项。
二、广度优先算法的原理和特点1. 广度优先搜索算法,简称BFS(Breadth-First Search),是一种用于图中节点搜索的算法。
它从图的起始节点开始,逐层遍历图中的节点,直到找到目标节点为止。
2. BFS算法是以队列的方式进行遍历,先访问当前节点的所有邻居节点,然后再以同样的方式访问邻居节点的邻居节点,以此类推,直到找到目标节点或者遍历完整个图。
3. 广度优先算法适用于解决无权图中的最短路径问题,因为它能够确保在遍历过程中找到的路径是最短的。
4. 由于广度优先算法需要记录和遍历所有已经访问过的节点,因此对于大规模的图来说,它的空间复杂度较高。
三、迪杰斯特拉算法的原理和特点1. 迪杰斯特拉算法,简称Dijkstra算法,是一种用于解决带权图中最短路径问题的算法。
它是以图中某一节点为起始点,求解该节点到其它所有节点的最短路径。
2. Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的最短距离,并通过贪心思想逐步更新最短距离。
3. 迪杰斯特拉算法的时间复杂度为O(V^2),其中V为图中节点的数量。
当图中的节点数量较大时,该算法的效率会有所下降。
4. 与广度优先算法相比,迪杰斯特拉算法的空间复杂度相对较低,因为它只需记录起始节点到其他节点的最短距离。
四、广度优先算法与迪杰斯特拉算法的比较1. 适用范围:广度优先算法适用于解决无权图中的最短路径问题,而迪杰斯特拉算法适用于解决带权图中的最短路径问题。
2. 时间复杂度:广度优先算法的时间复杂度为O(V+E),其中V为图中节点的数量,E为图中边的数量;而迪杰斯特拉算法的时间复杂度为O(V^2)或O(ElogV)。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
图的遍历的概念
图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。
在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。
图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。
常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。
深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。
DFS通过递归或者使用栈来实现。
从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。
DFS的过程可以看作是沿着树的深度进行遍历的过程。
DFS的一个经典应用是在迷宫中找到一条路径。
广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。
BFS通过使用队列实现。
从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。
BFS的过程可以看作是树的层次遍历的过程。
BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。
在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。
在实际应用中,图的遍历可以用来解决许多问题。
比如在地图应用中,我们可以用图的遍历算法来查找最短路径。
在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。
在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。
在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。
然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。
在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。
为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。
深度优先算法与广度优先算法
深度优先算法与⼴度优先算法深度优先搜索和⼴度优先搜索,都是图形搜索算法,它两相似,⼜却不同,在应⽤上也被⽤到不同的地⽅。
这⾥拿⼀起讨论,⽅便⽐较。
⼀、深度优先搜索深度优先搜索属于图算法的⼀种,是⼀个针对图和树的遍历算法,英⽂缩写为DFS即Depth First Search。
深度优先搜索是图论中的经典算法,利⽤深度优先搜索算法可以产⽣⽬标图的相应拓扑排序表,利⽤拓扑排序表可以⽅便的解决很多相关的图论问题,如最⼤路径问题等等。
⼀般⽤堆数据结构来辅助实现DFS算法。
其过程简要来说是对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个节点只能访问⼀次。
基本步奏(1)对于下⾯的树⽽⾔,DFS⽅法⾸先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。
(2)从stack中访问栈顶的点;(3)找出与此点邻接的且尚未遍历的点,进⾏标记,然后放⼊stack中,依次进⾏;(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进⾏;(5)直到遍历完整个树,stack⾥的元素都将弹出,最后栈为空,DFS遍历完成。
⼆、⼴度优先搜索⼴度优先搜索(也称宽度优先搜索,缩写BFS,以下采⽤⼴度来描述)是连通图的⼀种遍历算法这⼀算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim最⼩⽣成树算法都采⽤了和宽度优先搜索类似的思想。
其别名⼜叫BFS,属于⼀种盲⽬搜寻法,⽬的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为⽌。
基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。
如果所有节点均被访问,则算法中⽌。
⼀般⽤队列数据结构来辅助实现BFS算法。
基本步奏(1)给出⼀连通图,如图,初始化全是⽩⾊(未访问);(2)搜索起点V1(灰⾊);(3)已搜索V1(⿊⾊),即将搜索V2,V3,V4(标灰);(4)对V2,V3,V4重复以上操作;(5)直到终点V7被染灰,终⽌;(6)最短路径为V1,V4,V7.作者:安然若知链接:https:///p/bff70b786bb6来源:简书简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
第6章分支限界法
堆的定义: 若n个元素的序列{a1 a2 … an} 满足 ai ≤ a2i ai ≤ a2i+1 或 ai ≥ a2i ai ≥ a2i+1
则分别称该序列{a1 a2 … an}为小根堆 和大根堆。 从堆的定义可以看出,堆实质是满足如下性质的完 全二叉树: 二叉树中任一非叶子结点均小于(大于)它的孩子结点
问题定义:在n×n的国际象棋棋盘上摆下n个皇后,使所有 的皇后都不能攻击到对方,找出所有符合要求的情况。 分析: n后问题的解空间树是一棵排列树,解与解之间不存在优 劣的分别。直到搜索到叶结点时才能确定出一组解。 采用回溯法可以系统地搜索问题的全部解。
分支限界法的基本思想
既可以采用回溯法也可以采用分支限界法解决
4
B G H I H I E J C D
(0,0)
0
D
0
E
0
(5,15)
F
0
1
G M
(0,0)
1
1
1
0
H
10 0
I
J
15 10 5
K
0
L
N
15 0
O
15 10 20 5
B C D E F G I K L M N O
20 0 35 20 15 0 35 20 40 15 25 0 当前最优解 当前最优解
举例:0-1背包问题
n=3时0-1背包问题的一个实例:w=[16, 15, 15],p=[45, 25, 25],
的问题 — 0-1背包问题
问题定义:给定若干物品的重量和价值,以及 一个背包的容量上限。求出一种方案使得背包 中存放物品的价值最高。
分析:0-1背包问题的解空间树是一棵子集树, 所要求的解具有最优性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1
v1
v4
v6
v5
v7
v2
v3
v2
v2
v8
v8
v1
v2
v3
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v2
v3
v2
v2
v8
v8
v1
v2
v3
v3
v3
v7
v6
v4
v5
0
v7
v3
v4
v2
v2
v2
v8
v8
v1
v2
v3
v4
v5
v3
v3
v7
v6
V2的邻接点v5没 有被访问过,访 问之,且入队列
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v3
v4
v5
v2
v2
v2
v8
v8
v1
v2
v3
v4
v5
v3
v3
v1
v1
v4
v6
v5
v7
v1 取队头元素
v2
v2
v8
v8
v1
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v1 V1的邻接点v2没 有被访问过,访 问之,且入队列
v2
v2
v8
v8
v1
v2
v3
v3
v7
v6
v4
v5
v4
v6
v5
v7
v3
v4
v5
v2
v2
v8
v8
v1
v2
v3
v4
v5
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v4
v5
v2
v2
v8
v8
v3
v1
v2
v3
v4
v5
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v8
v7
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
V7的邻接点v3、 v6已经被访问过 不再访问
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
0
v1
v1
v4
v6
v5
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
V8的邻接点v4、 v5已经被访问过 不再访问
v3
v1
v1
v4
v6
v5
v7
v2
3 V3 4 V4
v2
v2
v8
v8
v4
v5
v6
v7
5 v5 6 v6 7 v7 8 v8
v8
v3
v3
v7
v6
v4
v5
演示开始,以v1为遍历的起点
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v2
v2
If(visited[w]==false) { Visited[w]=True;cout<<w;Queue.push(w); }
}
}
当图的存储结构为邻接表时,广度优先算法可以表示如下: void BFS (ALGraph mg,int x) { bool visited[100]={false}; queue<int> q; cout<<mg.vexs[x].data <<" ";visited[x]=true;q.push(x); while(q.empty()==false){ int v=q.front(); q.pop(); for(int w=::FirstAdjVex(mg,v);w>0;w=::NextAdjVex(mg,v,w)){ if(visited[w]==false){ cout<<mg.vexs[w].data<<" "; visited[w]=true; q.push(w); } } } }
v5
v7
v6
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v6
v7
v8
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
0
队列
1 v1
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v2
v2
v2
v8
v8
v1
v1
v2
v3
v3
v7
v6
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
v2
v2
v2
v8
v4
v5
0
队列
1 v1
v2
v3
2 v2 3 V3 4 V4
5 v5 6 v6 7 v7 8 v8
v1
v1
v4
v6
v5
v7
队列为空,算法结束
v2
v2
v8
v8
v1
v2
v3
v4
v5
v6
v7
v8
v3
v3
v7
v6
v4
v5
3.算法实现
从演示过程可以看出,我们必须知道顶点 是否已经被访问过。在具体实现时,我们 用一个数组visited[]来记录顶点是否被访问 过。如果visited[i]的值为True,则顶点vi已 经被访问,否则没有被访问。