13.2 画轴对称图形-八年级数学人教版(上)(解析版)

合集下载

八年级数学上册 画轴对称图形 人教版4

八年级数学上册    画轴对称图形   人教版4
(2)如果点P 的坐标是(-a,0),其中a>0,点P关于y轴的
对称点是 P 1 ,点 P 1 关于直线l的对称点是 P 2 ,求 P 1 P 2
的长(用含a的代数式表示).
图13-2-13
解:(1)由题意可知,A 1 (8,0),B 1 (7,0),C 1 (7,2).
如图13-2-14,A1B1C1 即为所求作的图形.
例2 如图13-2-3,在方格纸上建立的平面直角坐标
系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是__(2_,_1_)_.
图13-2-3 解析:由题图知点A的坐标是(-2,1),所以点A关于y 轴对称的对应点D的坐标是(2,1).
例3 如图13-2-4,利用关于坐标轴对称的点的坐标 特征,作出△ABC关于x轴对称的图形△A′B′C.
图13-2-4
解:∵△ABC关于x轴对称的图形为△A′B′C′,且 △ABC三个顶点的坐标分别是A(-1,4),B(-3,-3), C(2,1), ∴△A′B′C′三个顶点的坐标分别是A′(-1,-4), B′(-3,3),C′(2,-1). 如图13-2-5,△A′B′C′即为所求.
图13-2-5
图13-2-12
题型五 关于坐标轴对称的点的坐标特征的综合运用 例9 如图13-2-13,在平面直角坐标系中,直线l过点
M(3,0)且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0), C(-1,2),△ABC关于直线l的对称图形是 A1B1C1 ,作
出 A1B1C1,并写出点 A1, B1,C1 的坐标;
图13-2-14
(1) 图13-2-15 (2)
当a=3时,P(-3,0).∵点P与点P 1 关于y轴对称,∴ P 1 (3,0).

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2 画轴对称图形

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2   画轴对称图形

初中数学人教版八年级上册实用资料13.2画轴对称图形基础巩固1.(知识点2)将平面直角坐标系中的某个图形各个点的横坐标都乘-1,纵坐标不变,所得图形与原图形的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.重合2.(题型二)如图13-2-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在的直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()图13-2-1A.点AB.点BC.点CD.点D3.(知识点2)点A(-3,2)关于x轴的对称点A′的坐标为.4.(题型一)如图13-2-2,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品.图13-2-2 图13-2-35.(易错点1)图13-2-3是李华在镜中看到身后墙上的钟表,你认为实际时间是.6.(题型一)如图13-2-4,在正方形方格中,阴影部分是涂黑的7个小正方形所形成的图案.将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.图13-2-47.(题型一)如图13-2-5的3×3网格都是由9个相同的小正方形组成,每个网格图中都有3个小正方形已涂上阴影,请在剩下的6个空白小正方形中,按下列要求涂上阴影:选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形(给出三种方法)(1)(2)(3)图13-2-58.(题型一)如图13-2-6,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位长度,再向下平移5个单位长度,画出平移后得到的线段A2C2,并以它为一条边作一个格点三角形A2B2C2,使A2B2=C2B2.图13-2-69.(题型二)如图13-2-7,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).写出点D,C,B关于y轴的对称点F,G,H的坐标,并在图13-2-7中作出点F,G,H.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说明它具有怎样的性质,像我们熟知的什么图形.图13-2-710.(题型二)图13-2-8中的“鱼”是将坐标分别为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.(1)利用轴对称变换,画出原图案关于x轴的对称图形,形成美丽的“双鱼座”;(2)求两个图案的公共部分的面积(直接写结果).图13-2-8能力提升11.(题型四)如图13-2-9,将长方形纸片首先沿虚线AB按箭头方向对折,接着将对折后的纸片沿虚线CD按箭头方向对折,然后剪下一个小三角形,最后将纸片打开,则打开后的图形是()图13-2-912.(题型三)如图13-2-10,在平面直角坐标系中,线段OA与线段OA′关于直线l:y=x对称.已知点A的坐标为(2,1),则点A′的坐标为.图13-2-1013.(题型一)如图13-2-11,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出(所给的六个格纸未必全用).图13-2-1114.(题型三)如图13-2-12,在平面直角坐标系中,△ABO的顶点坐标分别为O(0,0),A (2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(2a>m>a).直线l∥y轴,交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的代数式表示).(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明理由,若能,请你说出一种平移方案(平移的长度用m,a表示).图13-2-12答案基础巩固1. C 解析:将各个点的横坐标都乘-1,纵坐标不变,即各个点的横坐标变成它的相反数,纵坐标不变,所以所得图形与原图形关于y轴对称.故选C.2. B 解析:如图D13-2-1,以B为原点建立平面直角坐标系,此时存在两个点A,C关于y轴对称.故选B.图D13-2-13.(-3,-2)4. 书解析:如图D13-2-2,这个单词所指的物品是书.图D13-2-25. 7:45 解析:由镜面对称性可知,实际时间应该是7:45.6. 3 解析:在1,2或3处(如图D13-2-3)涂黑都可得到一个轴对称图形,故涂法有3种.图D13-2-37. 解:如图D13-2-4.图D13-2-48. 解:(1)如图D13-2-5,△A1B1C1即为所求.图D13-2-5(2)如图D13-2-5,△A2B2C2即为所求.(答案不唯一)9. 解:由题意,得F(-2,-3),G(-4,0),H(-2,4).如图D13-2-6,这个图形关于y轴对称,是我们熟知的轴对称图形.图D13-2-610. 解:(1)如图D13-2-7.(2)两个图案的公共部分的面积为1/2×3×2×2+1/2×2×2=6+2=8.图D13-2-7能力提升11. D 解析:∵第三个图形中剪去的是三角形,∴将第三个图形展开,可得A项不符合题意.再展开可知三角形的短边正对着,且在内侧,∴B,C项不符合题意.故选D.12.(1,2)解析:图D13-2-8如图D13-2-8,过点A作AC⊥x轴于点C,过点A′作A′C′⊥y轴于点C′,连接AA′,交直线l于点D.∵线段OA与线段OA′关于直线l:y=x对称,∴△ODA′≌△ODA,∠C′OD=∠COD,∴∠A′OD=∠AOD,A′O=AO.∴∠A′OC′=∠AOC.在△AC O和△A′C′O中,∠AOC=∠A′OC′,∠ACO=∠A′C′O=90°,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵点A 的坐标为(2,1),∴点A′的坐标为(1,2).13解:与△ABC成轴对称且以格点为顶点的三角形如图D13-2-9.图D13-2-9`14. 解:(1)∵线段EF与CD关于y轴对称,线段EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).设CD与直线l之间的距离为x.∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-x.又∵x=m-a,∴点M的横坐标为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能重合.理由如下:由(1)知EM=2a-m-(-m)=2a=OA,EF=a+1-1=a=OB.∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:先将△ABO向上平移(a+1)个单位长度,再向左平移m 个单位长度,即可重合.。

内蒙古鄂尔多斯市东胜区第二中学人教版八年级数学上册 13.2画轴对称图形

内蒙古鄂尔多斯市东胜区第二中学人教版八年级数学上册 13.2画轴对称图形

内蒙古鄂尔多斯市东胜区第二中学人教版八年级数学上册 13.2画轴对称图形概述在数学上,轴对称图形是指一个图形沿着某条轴进行翻转后,两个图形完全重合。

本文将介绍内蒙古鄂尔多斯市东胜区第二中学人教版八年级数学上册的第13.2节内容——画轴对称图形。

轴对称定义轴对称是指一个图形可以沿着某条线段进行镜像对称,使得图形上的每一点与其镜像对称的点对称。

轴对称图形的特点•对称轴上的任意点到图形上的点的距离相等。

•对称轴上的任意点到图形上的点的连线垂直于对称轴。

轴对称图形的例子轴对称图形的例子包括:正方形、矩形、圆等。

画轴对称图形的步骤1.首先,根据题目给出的要求,确定轴对称图形的形状和大小。

2.找到一个适当的轴线,该轴线将图形分成两部分,在轴线上选择一个点标号为A。

3.在A点的上方选择一个与A对称的点标号为A’,连接AA’。

4.选择A点和A’点的连线与轴线的交点记为B,连接OB。

5.O是轴对称图形的中点,连接OA,OA’,OA’是轴线;OB是轴对称线。

6.沿着轴线将图形倒折,使得图形的对称轴与轴线重合。

7.最后,根据步骤6的操作,继续延展画出整个轴对称图形。

轴对称图形的例题解析以一道典型的轴对称图形的例题为例,进行解析:例题:根据以下信息,画出轴对称图形。

A和A’是图形的两个对称点,OB 是对称轴的垂线,O是对称轴的中点。

解析:根据题目,我们已经知道了图形的两个对称点A和A’,以及对称轴的中点O和对称轴上的一点B。

首先,在纸上画出点O,点B,以及连接OB的线段,OB是对称轴。

然后,选择一个与A对称的点A’,连接AA’。

并选择A点和A’点的连线与轴线的交点记为B。

最后,沿着轴线将图形倒折,使得图形的对称轴与轴线重合。

总结轴对称图形是数学中的重要内容之一,它具有许多特点和规律。

通过学习轴对称图形,可以培养学生观察、分析和判断的能力,同时还可以锻炼学生的手眼协调能力。

希望通过本文对内蒙古鄂尔多斯市东胜区第二中学人教版八年级数学上册13.2 画轴对称图形的内容进行了解和学习的同学们有所帮助。

2023-2024学年八年级上学期数学:画轴对称图形(附答案解析)

2023-2024学年八年级上学期数学:画轴对称图形(附答案解析)

第 5页(共 19页)
B(2,1) , C(4,3) .
(1) ABC 的面积是

(2)把 ABC 向下平移 4 个单位长度,再以 y 轴为对称轴对称,得到△ ABC ,
请你画出△ ABC ; (3)分别写出 A , B , C 三点的对应点 A , B , C 的坐标.
11.(2022 春•辽阳期末)如图,方格纸中每个小方格都是边长为 1 的正方形, 我们把以格点的连线为边的多边形称为“格点多边形”,如图中四边形 ABCD 就 是一个“格点四边形”. (1)在图中的方格纸中画一个格点四边形,使该四边形与原四边形 ABCD 关于 直线 l 成轴对称; (2)求图中四边形 ABCD 的面积.
6.(2021 秋•盐田区校级期末)欣欣和佳佳下棋,欣欣持圆形棋子,佳佳持方形 棋子.若棋盘正中方形棋子的位置用 (2, 2) 表示,右上角方形棋子的位置用 (3,3) 表 示,要使棋盘上所有棋子组成轴对称图形,则欣欣下一枚圆形棋子的位置 是.
7.(2021 秋•砚山县期末)在平面直角坐标系中,点 P(1,5) 关于 y 轴对称点的坐
直线 AP 的对称点 B 恰好落在 x 轴上,则点 P 的坐标是 ( )
A. (8 ,0)
3
B. (4 ,0)
3
C. (2,0)
D. (3,0)
5.点 P 关于 x 轴对称点 M 的坐标为 (4, 5) ,那么点 P 关于 y 轴对称点 N 的坐标为
第 1页(共 19页)
(
)
A. (4,5)
B. (4,5)
标为 .
8.(2022•皇姑区二模)若点 A(a 2,3) 和点 B(1,b 5) 关于 y 轴对称,则点 C(a,b) 在
第 象限.

专题132画轴对称图形-2021-2022学年八年级数学上(解析版)【人教版】

专题132画轴对称图形-2021-2022学年八年级数学上(解析版)【人教版】

2021-2022学年八年级数学上册尖子生同步培优题典【人教版】专题13.2画轴对称图形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•怀柔区期末)下列图形都是由两个全等三角形组合而成,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解析】A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.(2020秋•鼓楼区校级月考)如图是由三个小正方形组成的图形,如果在图中补一个同样大小的正方形,使得补后的图形为轴对称图形,这样的补法有()种.A.2B.3C.4D.5【分析】根据轴对称图形的定义,即可求得答案.【解析】补画一个小正方形使补画后的图形为轴对称图形,共有4种补法,如图所示.故选:C.3.(2019秋•徐州期末)下列由全等的等边三角形拼成的图形中,不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出答案.【解析】A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.4.(2020春•抚州期末)如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个【分析】根据轴对称的性质画出图形即可.【解析】如图,共有10种符合条件的添法,故选:D.5.(2019秋•闵行区期末)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字()的格子内.A.1B.2C.3D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解析】如图所示,把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.6.(2019春•市南区期中)如图,点A、B、C都在6×6的方格纸的格点上,若该方格纸上还有一格点D,使得格点A、B、C、D能组成一个轴对称图形,则满足条件的格点D的个数有()A.1个B.2个C.3个D.4个【分析】分别以BC的垂直平分线,AB所在直线,BC所在直线为对称轴,即可得到满足条件的所有点D 的位置.【解析】如图所示,点D1,D2,D3即为所求.故选:C.7.下列关于轴对称性质的说法中,不正确的是()A.对应线段互相平行B.对应线段相等C.对应角相等D.对应点连线与对称轴垂直【分析】根据轴对称图形的概念和性质判断即可.【解析】关于轴对称图形特征的说法:①对应线段相等;②对应角相等;③两组对应点连线平行或在一条直线上;④对应点的连线被对称轴平分,故选:A.8.(2021•深圳模拟)如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.12【分析】根据轴对称的性质得到:AD=DE,AC=CE,结合已知条件和三角形周长公式解答.【解析】∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.9.(2020秋•长沙期中)如图,若△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AB∥EF B.AC=DF C.AD⊥l D.BO=EO【分析】根据轴对称的性质对各选项分析判断后利用排除法求解.【解析】∵△ABC与△DEF关于直线l对称,∴AC=DF,AD⊥l,BO=EO,故D、B、C选项正确,AB∥EF不一定成立,故A选项错误,所以,不一定正确的是A.故选:A.10.(2019秋•锡山区期中)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=110°,则∠ACB的度数为()A.40°B.35°C.60°D.70°【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=12∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°−12∠BAD.【解析】如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=12∠BAD=55°,又∵∠AEC=90°,∴∠ACB=∠ACB'=35°,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•鼓楼区校级月考)画轴对称图形,应该先确定对称轴,再找出对称点,最后将对称点依次连接起来.【分析】根据轴对称图形的性质填空即可.【解析】画轴对称图形,应该先确定对称轴,再找出对称点,最后将对称点依次连接起来.故答案为:对称轴.12.(2019秋•扬州校级期中)如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到2个.【分析】利用轴对称图形的性质,分别得出符合题意的图形即可.【解析】如图所示:符合题意有2个点.故答案为:2.13.(2019秋•环翠区期末)如图,在3×2的正方形网格中,已有两个小正方形被涂黑,再将其余小正方形涂黑一个,使整个图案构成一个轴对称图形的涂法有1种.【分析】利用轴对称图形的定义进而求出符合题意的图形即可.【解析】如图所示:将图中小正方形(标号为1中)涂黑,能使整个图案构成一个轴对称图形.故答案为:1.14.(2020春•青岛期末)如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有3种不同的涂法.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解析】如图所示:当将1,2,3涂成黑色可以构成一个轴对称图形,故有种不同3的涂法.故答案为:3.15.(2020秋•垦利区期中)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.【分析】画出图形即可判断.【解析】如图,有三种方案,故答案为3.16.(2019秋•绵阳期末)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC、BD相交于点O,下列结论:①∠ABC=∠ADC②BO=DO③∠ABO=∠BAO④B、D两点关于直线AC对称⑤四边形ABCD的面积S=12AC•BD.其中正确的是 ①②④⑤ (填写所有正确结论的序号)【分析】根据全等三角形的判定和性质,可作判断.【解析】在△ABC 和△ADC 中,∵{AB =ADBC =CD AC =AC,∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC ,①∠ABC =∠ADC ,正确;在△ABO 与△ADO 中{AB =AD ∠BAC =∠DAC OA =OA,∴△ABO ≌△ADO (SAS ),∴②BO =DO ,正确;③∠ABO =∠ADO ≠∠BAO ,错误;∴∠AOB =∠AOD =90°,BO =DO ,∴④B 、D 两点关于直线AC 对称,正确;∴⑤四边形ABCD 的面积S =12AC •BD .正确;故答案为:①②④⑤.17.(2019秋•南昌期末)如图,∠AOB =30°,点P 在∠AOB 的内部,点C ,D 分别是点P 关于OA 、OB 的对称点,连接CD 交OA 、OB 分别于点E 、F ;若△PEF 的周长的为10,则线段OP = 10 .【分析】首先根据对称性得出△DOC 是等边三角形,进而得出答案.【解析】连接OD,OC,∵∠AOB=30°;点D、C分别是点P关于直线OA、OB的对称点,∴∠DOC=60°,DO=OP=OC,PF=DF,PE=CE,∴△DOC是等边三角形,∵△PEF的周长的为10,∴OP=10.故答案为:10.18.(2019秋•正阳县期末)如图,∠MON内有一点P,点P关于OM的轴对称点是G,点P关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=70°.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解析】如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故答案为:70°.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•梁园区期末)如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.【分析】根据轴对称的性质画出图形即可.【解析】如图所示.20.(2020秋•海州区校级期中)下列正方形网格图中,部分方格涂上了颜色,请按照不同要求作图.(1)作出图①的对称轴;(2)将图②中的某一个方格涂上颜色,使整个图形轴对称图形;(3)将图③中的某两个方格涂上颜色,使整个图形有四条对称轴.【分析】(1)直接利用轴对称图形的性质得出答案;(2)直接利用轴对称图形的性质得出答案;(3)直接利用轴对称图形的性质得出答案.【解析】(1)如图①所示:(2)如图②所示:(3)如图③所示:21.(2020•宁波模拟)请在如图四个3×3的正方形网格中,画出与格点三角形(阴影部分)成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的四个图不能重复)【分析】直接利用轴对称图形的性质分别得出符合题意的图形.【解析】如图所示:.22.(2019秋•苍溪县期中)如图,在△ABC中,直线l交AB于点M,交BC于点N,点B关于直线l的对称点D在线段BC上,且AD⊥MD,∠B=28°,求∠DAB的度数.【分析】利用轴对称图形的性质得出MD=MB,进而得出∠AMD的度数,进而得出答案.【解析】∵点B关于直线l的对称点是点D,∴直线l是线段DB的垂直平分线,∴MD=MB,∴∠MDB=∠B=28°,∴∠AMD=∠MDB+∠B=56°,在Rt△ADM中∠DAB=90°﹣56°=34°.23.(2020秋•肇源县期末)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为多少.【分析】根据轴对称的性质得到OA垂直平分PQ,OB垂直平分PR,则利用线段垂直平分线的性质得QM=PM=2.5cm,RN=PN=3cm,然后计算QN,再计算QN+RN即可.【解析】QR=4.5cm,理由如下:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR.∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,NQ=MN﹣MQ=4﹣2.5=1.5(cm).∴QR=RN+NQ=3+1.5=4.5(cm).24.(2020秋•朝阳区校级期中)如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:AC=CD;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解析】(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.。

八年级上册数学人教版课时练《2 画轴对称图形》 试题试卷 含答案解析

八年级上册数学人教版课时练《2 画轴对称图形》 试题试卷 含答案解析

人教版数学八年级上册《13.2画轴对称图形》课时练习一、选择题1.下列说法正确的是()A.任何一个图形都有对称轴;B.两个全等三角形一定关于某直线对称;C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′;D.点A,点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B 关于直线l对称.2.已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;③若A、A′是对应点,则直线1垂直平分线段AA′;④若B、B′是对应点,则PB=PB′.其中正确的是()A.①③④B.③④C.①②D.①②③④3.已知点A(3x﹣6,4y+15),点B(5y,x)关于x轴对称,则x+y值是()A.0B.9C.﹣6D.﹣124.点(6,3)关于直线x=2的对称点为()A.(﹣6,3)B.(6,﹣3)C.(﹣2,3)D.(﹣3,﹣3)5.在平面直角坐标系中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(-a,5)B.(a,-5)C.(-a+2,5)D.(-a+4,5)6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点7.在平面直角坐标系内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.18.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知两点的坐标分别是(﹣2,3)和(2,3),则下列情况正确的有()①两点关于x轴对称②两点关于y轴对称③两点之间距离为4.A.3个B.2个C.1个D.0个10.两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(3﹣a,﹣b)D.(b+3,a)二、填空题11.点(0,-10)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是.12.点(-3,4)向右平移5个单位长度后再关于x轴对称的点的坐标是.13.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.14.在平面直角坐标系中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;……,按此规律,则点B2027的坐标是.三、作图题15.把图中的某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.16.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.四、解答题17.(1)若点(5﹣a,a﹣3)在第一、三象限角平分线上,求a的值;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围;(3)点P到x轴和y轴的距离分别是3和4,求点P的坐标;(4)已知点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,求y x的值.18.认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:______________________________________________;特征2:______________________________________________.(2)请在图(2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.参考答案1.C2.D3.C4.C5.D6.B7.D8.D9.B10.C 11.(0,10),(0,-10)12.(2,-4)13.2514.(2026,2027).15.如图所示:16.解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.12.∴S四边形BB1C1C=17.解:(1)∵点(5﹣a,a﹣3)在第一、三象限角平分线上,∴5﹣a=a﹣3,解得:a=4;(2)∵两点A(﹣3,m),B(n,4),AB∥x轴,∴m=4,n≠3的任意实数;(3)∵点P到x轴和y轴的距离分别是3和4,∴P点可能在一、二、三、四象限,∴点P的坐标为:(4,3),(﹣4,3),(﹣4,﹣3),(4,﹣3);(4)∵点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,∴,解得:,18.解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;(2)满足条件的图形有很多,只要画正确一个,都可以得满分.。

数学人教版八年级上第十三章13.2 画轴对称图形

数学人教版八年级上第十三章13.2 画轴对称图形

13.2 画轴对称图形1.轴对称的性质(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,所得图形与原图形全等.(2)新图形上的每一点都是原图形上的某一点关于直线l的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.理解:轴对称变换的过程是一个运动变化的过程,在这个过程中,对称轴变化时得到的图形的方向和位置也会发生变化,正是因为对称轴的不断变化,才形成了绚丽多姿的、美丽的轴对称图案.谈重点轴对称的性质的理解轴对称和平移一样,是图形变换中的一种,它也可以看成一个图形沿某条直线翻折180°得到的图形;成轴对称的两个图形中的任何一个都可以看作是另一个图形经过轴对称变换得到的;一个轴对称图形也可以看作以其中一部分为基础,经过轴对称扩展变化而成的,随着对称轴的变化,图形也在变化,根据不同需要,不断变换对称轴,就可以设计出精美的轴对称图案.【例1】在由四个相同的小正方形组成的“7”字形图中,请你添画一个小正方形,使它成为轴对称图形,并用虚线画出所得轴对称图形的对称轴.要求在图中画出三种不同的设计方案.分析:本题是一道关于添图补成轴对称图形的题目,根据图形的特征,可以从上下对折、左右对折以及斜着对折三个方面思考补图的方法.解:如图,下面给出三种不同方法.2.画已知图形的轴对称图形(1)依据:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称,据此我们通过作出已知点的对称点的方法作出已知图形的轴对称图形.(2)方法:①选择一些特殊的点;②过这些点分别作已知直线(对称轴)的垂线,并在垂线上找到一些点(截取),使得这些点到对称轴的距离分别相等,从而得到已知点的对称点;③顺次连接这些对称点得到的图形,即为已知图形的轴对称图形.解技巧作几何图形关于某条直线对称的图形由于几何图形都可以看作由若干点组成的,所以只要作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形.对于一些由直线、线段或射线组成的图形,如:三角形、平行四边形、梯形等,只要作出图形中的一些特殊点(如线段的端点、三角形的顶点等)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【例2】如图所示,已知△ABC和直线MN.求作:△A1B1C1使△A1B1C1和△ABC关于直线MN对称.分析:三点确定一个三角形,只要确定△ABC的顶点A、B、C关于MN的对称点A1、B1、C1,即可作出△A1B1C1,其中C点的对称点是它本身.解:如图所示.作法:(1)过A作MN的垂线,垂足为O,在垂线上截取A1O=AO,点A1就是A点的对称点;(2)同样做出B点关于MN的对称点B1,C的对称点C1是它本身;(3)连接A1、B1、C1,△A1B1C1即为所求.3.关于x轴、y轴对称的点的坐标的特点规律:在平面直角坐标系中,点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相同,纵坐标互为相反数;关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相同.解技巧关于坐标轴对称点的坐标关系关于x轴、y轴对称的点的坐标的特点可以简单记为“关于谁对称谁不变”,理解为关于x轴对称,横坐标x的值不变,关于y轴对称,纵坐标y的值不变.【例3】(1)点(-2,4)关于x轴对称的点的坐标是__________,关于y轴对称的点的坐标是__________;(2)如果A(a-1,3),A′(4,b-2)关于x轴对称,则a=__________,b=__________.解析:(1)直接根据平面直角坐标系中关于x轴、y轴对称的点的坐标变化规律,变换纵坐标、横坐标的值得出.(2)关于x轴对称的点的坐标特点是横坐标相同,纵坐标互为相反数,所以a-1=4,b -2=-3,解得a=5,b=-1.答案:(1)(-2,-4)(2,4)(2)5-14.平面直角坐标系中的轴对称(1)意义:根据平面直角坐标系中关于x轴、y轴对称的点的坐标变化规律,可以作出一个图形关于x、y轴的对称图形.(2)方法:先求出已知图形中一些特殊点关于x轴(或y轴)的对称点的坐标,描出这些点,并顺次连接,就可得到这个图形关于x轴(或y轴)的对称图形.【例4】如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△A1B1C1各点坐标.分析:写出△ABC 各顶点的坐标,再根据关于y 轴对称的点的坐标变化规律,分别求出点A 、B 、C 关于y 轴的对称点A 1,B 1,C 1的坐标,描出这些点,并顺次连接,即可得到△A 1B 1C 1.解:(1)由图可知,△ABC 各顶点的坐标为A (-3,2),B (-4,-3),C (-1,-1);(2)A 、B 、C 关于y 轴的对称点A 1,B 1,C 1的坐标分别是(3,2),(4,-3),(1,-1).在坐标系中描出点A 1,B 1,C 1,并顺次连接,如图所示,△A 1B 1C 1即为所求.5.轴对称图形的画法应用已知一个图形和一条直线,可以作出这个图形关于这条直线的对称图形,关键在于选择特殊的点,作出这些点的对称点,顺次连接即可得到已知图形的轴对称图形,由于几何图形是由点组成的,选择的点越多,图形越准确.随着计算机技术的推广,用几何画板、画图板、粘贴等手段能画出更准确的轴对称图形.6.平面直角坐标系中轴对称的应用平面直角坐标系中的轴对称应用主要有三种情况:①由给定的点的坐标求这点关于x 轴或y 轴的点的坐标;②已知两点关于x 轴或y 轴对称,求坐标或坐标中未知数的值;③已知坐标系中的一个图形,画出此图形关于x 轴或y 轴对称的图形.析规律 作一个图形关于x 轴、y 轴对称的图形 关于x 轴、y 轴对称的点的坐标变化规律是解决这三类问题的基础和关键,根据“关于x 轴对称的点的横坐标相同,纵坐标互为相反数;关于y 轴对称的点的横坐标互为相反数,纵坐标相同”求出坐标、描点、画出图形或列出相关式子解决问题.【例5】 如图1是由一个圆、一个半圆和一个三角形组成的图形,请你以直线AB 为对称轴,把原图补成轴对称图形.分析:半圆的对称图形还是半圆,三角形的对称点有两点在对称轴上,只要找到P 点关于AB 的对称点Q 即可.解:(1)以O 为圆心,以OC 的长为半径画半圆;(2)过P 作AB 的垂线,垂足为D ,在垂线上截取QD =PD ,连接CQ ,如图2所示即为所求.【例6-1】 已知M (a -2,b +1)与N (b -3,a +2)关于x 轴对称,求a +b 的值.分析:由关于x 轴对称的点的坐标规律,先列方程组求出a ,b 的值,再计算a +b 的值.解:由题意,得⎩⎪⎨⎪⎧ a -2=b -3,b +1=-(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1, 所以a +b =-3.点拨:也可由b +1=-(a +2)直接得a +b =-3.【例6-2】 已知点P (2m -3,3-m )关于y 轴对称的点在第二象限,试确定整数m 的值. 分析:本例并非直接利用坐标的变化规律来解题,而是考查对称点的位置,根据点所在的象限列不等式组去求解.解:由于点P 关于y 轴的对称点在第二象限,则点P 在第一象限,所以⎩⎪⎨⎪⎧2m -3>0,3-m >0, 解得32<m <3,因为m 为整数,所以m =2.7.轴对称图形设计日常生活中有很多图形是轴对称图形,这些图形给我们以美的视觉享受,使我们的生活变得更加绚丽多彩,实际上这许许多多精美的图案很多是由一些简单的图形通过轴对称变化得到的,一个简单的图形,通过不断的轴对称变换,就会变得丰富多彩,绚丽多姿,就像我们的民间剪纸艺术,也是通过折叠、剪裁、展开得到美丽图案的.对称轴不同,变化的方向和位置就不同,从而变化出各种图案.随着计算机技术的推广,我们可以通过复制、粘贴、翻折等方法制作出更复杂、美丽的轴对称图形,甚至让它们动起来.8.轴对称中的剪纸问题剪纸艺术是我国最美丽的民间艺术之一,而剪纸中的轴对称问题也是近几年中考的热点,它重点考查同学们动手操作能力、空间想象能力,同时也考查对轴对称图形有关性质的认识.此类题目大多是将长方形或正方形纸片通过折叠、剪裁,观察展开后得到的图形.此类题目往往经过多次轴对称变换,展开后变化较大,因而要注意观察,抓住主要特点识别.9.点P (x ,y )关于直线x =m ,直线y =n 对称的点的坐标轴对称是关于某条直线的对称,在平面直角坐标系中,除了关于x 轴、y 轴对称外,图形还能关于平行于x 轴、y 轴的任意一条直线轴对称,并且坐标变化规律也不尽相同.但不论关于任何一条直线轴对称,它们都是轴对称,都具备轴对称性质,我们仍然能根据轴对称性质,发现其中规律,画出轴对称图形,得出对应点的坐标.析规律 关于直线x =m 的对称点的坐标关系 点(x ,y )关于直线x =m 对称的点的坐标关系是:两对称点横坐标之和等于2m ,即所求点的横坐标x 1=2m -x ,纵坐标不变;关于直线y =n 对称的点的坐标关系是:横坐标不变,两对称点纵坐标之和等于2n ,即所求点的纵坐标y 1=2n -y .【例7】 (方案设计题)如图,在网格中有两个全等的图形(阴影部分),你能用这两个图形拼成轴对称图形吗,试分别在给出的图(1)、图(2)中画出两种不同的拼法.分析:由于对称轴不同、图形位置不同,得到的轴对称图形也不同,我们可以用不同的网格线作为对称轴,来构造不同的轴对称图案.这是一道开放题,答案不唯一,同学们可以开动脑筋发挥你的想象力,绘制出不同的图案.解:下面提供部分答案,仅供参考,不同的画法例举如下(如图所示):【例8】 (操作题)如图,将正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( ).解析:方法一:观察图形,是将正方形纸片折叠两次,因此是两次轴对称,并且裁剪部位在折叠的最中间,展开后中间应是个小正方形,另一剪裁部位在最上边沿,展开后应是原正方形上下边沿的独立缺口,所以只有B选项适合.方法二:将所给四个选项分别先竖后横依次折叠,再结合最后的剪裁综合分析,A的剪裁既有上下,也有左右,也不适合,C、D的剪裁部位不在最中间也不合适,只有选项B经过两次折叠,符合图(4)裁剪情况,故选B.答案:B【例9】如图1,作△ABC关于直线m和直线n对称的图形,并写出各对称顶点的坐标.图1图2解:(1)如图2中,△A′B′C′和△A″B″C″即为所求图形.(2)关于直线m对称的△A′B′C′各顶点的坐标分别为A′(4,4)、B′(5,0)、C′(2,1),关于直线n对称的△A″B″C″各顶点的坐标为A″(-2,-6)、B″(-3,-2)、C″(0,-3).。

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0

画轴对称图形(分层作业)(解析版)-八年级数学上册

 画轴对称图形(分层作业)(解析版)-八年级数学上册

13.2.1画轴对称图形夯实基础篇一、单选题:1.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【答案】D【知识点】利用轴对称设计图案【解析】【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【分析】根据轴对称的定义,结合所给图形进行判断即可.2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A.B.C.D.【答案】C【知识点】利用轴对称设计图案;利用旋转设计图案【解析】【解答】解:A、即运用了轴对称也利用了旋转对称,故本选项错误;B、即运用了轴对称也利用了旋转对称,故本选项错误;C、没有运用旋转,也没有运用轴对称,故本选项正确;D、利用了轴对称,故本选项错误;故选C.【分析】根据轴对称及旋转对称的定义,结合各选项进行判断即可.3.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定【答案】B【知识点】作图﹣轴对称【解析】【解答】作已知点关于某直线的对称点的第一步是过已知点作一条直线与已知直线垂直,故选:B【分析】根据作图方法可得第一步是过已知点作一条直线与已知直线垂直.4.在下列图形中,只利用没有刻度的直尺将无法作出其对称轴的是()A.矩形B.菱形C.等腰梯形D.正六边形【答案】A【知识点】作图﹣轴对称【解析】【解答】解:A、没有刻度尺不能作轴对称,故本选项正确;B、连接菱形的对角线即是对称轴,故本选项错误;C、等腰梯形对称轴是两腰延长线的交点和对角线的交点的连线,故本选项错误;D、连接两个对角线即是对称轴,故本选项错误.故选A.【分析】根据轴对称的性质对各选项进行逐一判断即可.关于直线MN对称的图形,其中正确的是()5.下面是四位同学所作的ABCA.B.C.D.【答案】D【知识点】作图﹣轴对称【解析】【解答】解:A:对称点连接的直线与对称轴不垂直,故此选项错误;绕着某一点旋转得到,故此选项错误;B:△A'B'C'是由ABCC:对称点连接的直线到对称轴的距离不相等,故此选项错误;中各个对应点的连线被直线MN垂直平分,故此选项正确.D:△A'B'C与ABC故答案为:D.【分析】把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

人教数学八上13.2画轴对称图形.pdf

人教数学八上13.2画轴对称图形.pdf

㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀13.2㊀画轴对称图形一㊁旧知链接1.轴对称图形和轴对称的定义是什么?2.轴对称或轴对称图形具有什么样的性质?3.如何找出轴对称图形的对称轴?二㊁新知速递1.在 线段㊁锐角㊁三角形㊁等边三角形 这四个图形中ꎬ其中是轴对称图形的有㊀㊀㊀㊀个ꎬ其中对称轴最多的是㊀㊀㊀㊀.2.点M(3ꎬ1)和点N(3ꎬ-1)关于㊀㊀㊀㊀轴对称.3.点M(3ꎬ-4)关于x轴的对称点的坐标是㊀㊀㊀㊀ꎬ关于y轴的对称点的坐标是㊀㊀㊀㊀.4在平面直角坐标系中ꎬ点A(1ꎬ2)关于y轴对称的点为B(aꎬ2)ꎬ则a=㊀㊀㊀㊀.5.在平面直角坐标系中ꎬ点A(xꎬ-5)与点B(1ꎬy)关于x轴对称ꎬ则x=㊀㊀㊀㊀ꎬy=㊀㊀㊀㊀.1.小华在镜中看到身后墙上的钟ꎬ你认为实际时间最接近8点的是(㊀㊀).A.B.C.D.2.如图13-2-25ꎬәABC的三个顶点分别为A(2ꎬ3)㊁B(3ꎬ1)㊁C(-2ꎬ-2).(1)请在图中画出әABC关于y轴对称的图形әDEF(A㊁B㊁C的对应点分别是D㊁E㊁F)ꎻ(2)请写出D㊁E㊁F的坐标.图13-2-253.已知点M(2a-bꎬ5+a)ꎬN(2b-1ꎬ-a+b).(1)若M㊁N关于x轴对称ꎬ试求aꎬb的值ꎻ(2)若M㊁N关于y轴对称ꎬ试求(b+2a)2009的值.1基础训练1.已知A㊁B两点的坐标分别是(-2ꎬ3)和(2ꎬ3)ꎬ则下面四个结论:①A㊁B关于x轴对称ꎻ②A㊁B关于y轴对称ꎻ③A㊁B关于原点对称ꎻ④若A㊁B之间的距离为4ꎬ其中正确的有(㊀㊀).A.1个B.2个C.3个D.4个2.已知两条互不平行的线段AB和AᶄBᶄ关于直线l对称ꎬAB和AᶄBᶄ所在的直线交于点Pꎬ下面四个结论:①AB=AᶄBᶄꎻ②点P在直线l上ꎻ③若A㊁Aᶄ是对应点ꎬ则直线l垂直平分线段AAᶄꎻ④若B㊁Bᶄ是对应点ꎬ则PB=PBᶄꎬ其中正确的是(㊀㊀).A.①③④B.③④C.①②D.①②③④3.下列说法正确的是(㊀㊀).A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若әABC与әAᶄBᶄCᶄ成轴对称ꎬ则әABCɸәAᶄBᶄCᶄD.点Aꎬ点B在直线l两旁ꎬ且AB与直线l交于点Oꎬ若AO=BOꎬ则点A与点B关于直线l对称4.已知点A(3ꎬ2)ꎬ则点A关于x轴对称点Aᶄ在第㊀㊀㊀㊀象限.5.已知点A(aꎬ5)与点B(3ꎬb)关于y轴对称ꎬ则a+b=㊀㊀㊀㊀.拓展提高6.已知点P(a-1ꎬ5)和点Q(2ꎬb-1)关于x轴对称ꎬ则(a+b)2015=㊀㊀㊀㊀.7.已知P(a+1ꎬ2a-1)关于x轴的对称点在第四象限.则a的取值范围为㊀㊀㊀㊀.图13-2-278.如图13-2-27ꎬ四边形ABCD是长方形.(1)作әABC关于直线AC对称的图形ꎻ(2)试判断(1)中所作的图形与әACD重叠部分的三角形形状ꎬ并说明理由.9.如图13-2-28所示的正方形网格中ꎬ每个小正方形的边长为1ꎬәABC的三个顶点都在格点上.(1)写出әABC顶点A的坐标ꎬ作出әABC关于x轴对称的әAᶄBᶄCᶄ.(2)画出әABC关于直线m对称的图形әAᵡBᵡCᵡꎬ并写出点Aᵡ的坐标.(3)计算出әABC的面积.图13-2-2810.如图13-2-29ꎬ已知点A的坐标为(-2ꎬ2)ꎬ点B是点A关于y轴的对称点ꎬ点C与点B关于x轴对称.(1)画出直角坐标系ꎻ(2)写出BꎬC两点的坐标ꎻ(3)求әOBC的面积(O为坐标原点).图13-2-292发散思维11.如图13-2-30是2ˑ2的方格ꎬ在格点处有一个әABCꎬ仿照图例在备用图中画出三种与әABC成轴对称的 格点三角形 AᶄBᶄCᶄ.图13-2-303。

人教版数学八年级上册 13.2 画轴对称图形

人教版数学八年级上册  13.2 画轴对称图形

13.2 画轴对称图形第1课时作轴对称图形1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.4.通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.5.通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题 1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.第2课时用坐标表示轴对称1.能在直角坐标系中画出已知点关于坐标轴对称的点.2.能求出已知点关于坐标轴对称的点的坐标,求出已知点关于平行于坐标轴的直线对称的点的坐标.3.在找关于坐标轴对称的点的坐标之间规律并检验其正确性的过程中,培养学生的语言表达能力、归纳能力.4.在找点,绘图的过程中使学生体验数形结合思想、体验学习乐趣,养成良好的科学研究方法.【教学重点】能求出已知点关于坐标轴对称的点的坐标.【教学难点】找对称点的坐标之间的关系,规律.一、情境导入,初步认识用多媒体展示北京城风光图片,及北京城形象地图.问题1 老北京的地图(教材图13.2-3)中,西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,很方便确定一个地方的位置.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2(1)在直角坐标系中画出下列已知点:A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点,并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【归纳结论】点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.二、典例精析,掌握新知例1 已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2012的值为( ).A.0B.-1C.1D.(-3)2012出示新问题:1.如图,分别作出△PQR关于直线x=1和直线y=1对称的图形.2.试找出它们对应点的坐标.3.猜想:如果作关于直线x=3和直线y=-4对称的图形,试找出它们对应点的坐标,并总结出一般性规律.点(x,y)关于直线x=m对称点的坐标是(2m-x,y),即若两点(x1,y1),(x2,y2)关于直线x=m 对称,则m=221x x +,y 1=y 2. 点(x,y)关于直线y=n 对称点的坐标是(x,2n-y),即若两点(x 1,y 1),(x 2,y 2)关于直线y=n 对称,则x 1=x 2,n=221y y +. 例2 如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【分析】已知点D 与点A 关于y 轴对称,点B 和点C 关于y 轴对称,由此可推知点D,点C 的坐标.解:∵点D 与点A(-3,3)关于y 轴对称,∴点D 的坐标为(3,3).同理点C 的坐标为(2,0).故AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S 梯形=21 (AD+BC)·OE=21×(6+4)×3=15. 【教学说明】由以上例题,应让学生掌握:1.平行于x 轴的两点之间的距离等于两点横坐标差的绝对值.2.求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便.三、运用新知,深化理解1.说出下列各点关于x 轴,y 轴对称的点的坐标.(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形关于x 轴和y 轴对称的图形.3.在坐标系中描出点A(-1,3),B(5,-4),C(-3,-1),D(-1,1),E(-3,5),F(5,8),连接AB,BC,AC,DE,EF,DF,请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴.【教学说明】教师指导学生完成上述问题的解答,提示学生解题过程中注重画图找答案,体验数形结合的作用.同时,鼓励学生从实际解题中总结题中所隐含的规律.【答案】1.2.略3.图略.所得图形是轴对称图形,对称轴是y=2.四、师生互动,课堂小结教师引导学生总结本节课用坐标表示轴对称的主要解题方法和解题思路.1.已知点关于某条直线对称的点的坐标可以通过寻找线段间关系来求.2.学生表述关于x轴,y轴对称的点的坐标规律.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.。

初中数学人教版八年级上册 第十三章 13.2画轴对称图形

初中数学人教版八年级上册 第十三章  13.2画轴对称图形

初中数学人教版八年级上册第十三章13.2画轴对称图形一、单选题(共6题;共12分)1. ( 2分) 已知点P(a,3)和点Q(4,b)关于x轴对称,则(a+b)2019的值()A. 1B. -1C.D.2. ( 2分) 已知点与点关于x轴对称,m=(),n=( ).A. B. C. D.3. ( 2分) 在平面直角坐标系中,点(1,﹣3)关于y轴对称的点的坐标为()A. (﹣1,3)B. (﹣1,﹣3)C. (1,3)D. (-3,1)4. ( 2分) 点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A. 关于直线x=2对称B. 关于直线y=2对称C. 关于x轴对称D. 关于y轴对称5. ( 2分) 在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(-2,3),则点N的坐标为()A. (-3,2)B. (2,3)C. (2,-3)D. (-2,-3)6. ( 2分) 在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1).B(1,﹣1).C(﹣1,﹣1).D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为()A. (0,2)B. (2,0)C. (0,﹣2)D. (﹣2,0)二、填空题(共3题;共5分)7. ( 1分) 已知点和点关于轴对称,则的值为________.8. ( 1分) 已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b=________.9. ( 3分) 平面直角坐标系中有一点A(1,1)对点A进行如下操作:第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;……则点A2的坐标为________,点A2015的坐标为________;若点A n的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式________.三、解答题(共5题;共34分)10. ( 5分) 如图,有两个的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:①线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上;②将梯形分成两个图形,其中一个是轴对称图形;③图1、图2中分成的轴对称图形不全等.11. ( 10分) 如图,在平面直角坐标系中,A(0,1),B(﹣2,3),C(4,4).(1)在图中作出△ABC关于x轴的对称图形△A′B′C′;(2)写出△A′B′C′三个顶点的坐标.12. ( 5分) 如图,△ABO关于x轴对称,点A的坐标为(1,-2),写出点B的坐标.13. ( 4分) 如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为________点B关于y轴对称的点坐标为________点C关于原点对称的点坐标为________(2)若网格上的每个小正方形的边长为1,则△ABC的面积是________.14. ( 10分) 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:(1)画出△ABC关于y轴对称的△A1B 1C1,并写出点A1的坐标:(2)在x轴上找一点P,使A1P+AP的和最小.四、作图题(共1题;共5分)15. ( 5分) 如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.答案解析部分一、单选题1.【答案】A【考点】关于坐标轴对称的点的坐标特征【解析】【解答】∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,∴(a+b)2019=12019=1,故答案为A.【分析】根据平面直角坐标系中,关于x轴对称的点的坐标特征,求出a,b的值,进而即可求解.2.【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:由点A(m+3,2)与点B(1,n-1)关于x轴对称,得m+3=1,n-1=-2,解得m=-2,n=-1,故答案为:B.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.3.【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】点(1,﹣3)关于y轴对称的点的坐标为(﹣1,﹣3).故答案为:B.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,就可求出已知点关于y轴对称点的坐标。

人教版八年级数学上册 13.2画轴对称图形(包含答案)

人教版八年级数学上册 13.2画轴对称图形(包含答案)

13.2画轴对称图形知识要点:1.找特殊点对画轴对称图形极为重要,除线段的端点外,线与线的交点也是画图过程中的特殊点.2.对称轴上任一点的对称点是它本身.3.关于谁对称谁不变,即若关于x轴对称,则横坐标x的值不变,简记为“横同纵反”;若关于y轴对称,则纵坐标y的值不变,简记为“纵同横反”.4.在坐标系中画关于坐标轴对称的图形的“四字诀”(1)找:在直角坐标系中,找出已知图形中的一些特殊点(如多边形的顶点)的坐标.(2)求:求出其对应点的坐标.(3)描:根据所求坐标,描出对应点.(4)连:根据原图形的连接方式顺次连接这些对应点,就可以得到与这个图形关于坐标轴对称的图形.一、单选题1.如图,在3×2的正方形网格中,已有两个小正方形被涂上了阴影,再将图中其余小正方形任意一个涂上阴影,使整个阴影部分构成一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【答案】C2.如图所示是由同样大小的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上,在网格上画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A.5个B.4个C.3个D.2个【答案】A3.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个【答案】C4.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.3【答案】A5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A.2个B.3个C.4个D.5个【答案】C6.如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜想整个图形是( )A.三角形B.长方形C.五边形D.六边形【答案】D7.如图,△COB是由△AOB经过某种变换后得到的图形,请同学们观察A与C两点的坐标之间的关系,若△AOB内任意一点P的坐标是(a,b),则它的对应点Q的坐标是( ).A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)【答案】D8.点(4,3)与点(4,-3)的关系是A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系【答案】B9.下列所示的四个银行的行标图案中,不是利用轴对称设计的图案是【】A.A B.B C.C D.D【答案】A10.已知点A的坐标为(-2,3),点B的坐标为(0,1),则点A关于点B的坐标为()A.(-2,2 )B.(2,-3 )C.(2,-1 )D.(2,3 )【答案】C11.下列图形中,线段AB和A’B’ (AB=A’B’)不关于直线l对称的是()A.B.C.D.【答案】A12.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是( )A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C【答案】A二、填空题13.点A(-1,-3)关于x轴对称点的坐标是_______ ;关于原点对称的点坐标是__________.【答案】(-1,3)(1,3)14.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是______.【答案】(16,1+√3).15.已知点M(-12,3m)关于原点对称的点在第一象限,那么m的取值范围是____________.【答案】m<016.已知点P(a,3)和P’(-4,b)关于原点对称,则(a+b)的值为__________.【答案】117.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】318.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),则点M和点N的坐标分别为M__________,N _________.【答案】(-1,-3)、(1,-3)19.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则a+b的值为_____.【答案】1三、解答题20.如图,是一个轴对称图形,请画出它的对称轴.解:所作对称轴如图所示.21.在图中分别以△AOB的两边所在直线为对称轴,画出点P的对称点.如图所示,点P′,P″即为所求.22.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.【答案】A′(8,3),B′(8,5),C′(2,5)小红旗关于y轴的轴对称图形如图所示:()()(),,,'83,'85,'25.A B C23.如图,在正方形网格上有一个△ABC.(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(1)如图所示:(2)S=6×4-12×4×2-12×4×1-12×6×3=9.24.已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若△BAC=2△MPC,请你判断△F与△MCD的数量关系,并说明理由.解:(1)证明:∵∵ABM与∵ACM关于直线AF成轴对称,∵∵ABM∵∵ACM,∵AB=AC,又∵∵ABE与∵DCE关于点E成中心对称,∵∵ABE∵∵DCE,∵AB=CD,∵AC=CD;(2)∵F=∵MCD.理由:由(1)可得∵BAE=∵CAE=∵CDE,∵CMA=∵BMA,∵∵BAC=2∵MPC,∵BMA=∵PMF,∵设∵MPC=α,则∵BAE=∵CAE=∵CDE=α,设∵BMA=β,则∵PMF=∵CMA=β,∵∵F=∵CPM−∵PMF=α−β,∵MCD=∵CDE−∵DMC=α−β,∵∵F=∵MCD.。

人教版数学八年级上册 13.2 画轴对称图形

人教版数学八年级上册 13.2  画轴对称图形

的坐标分别为
A(-5,1),B(-2,1),A C(-2,5),D(-5,4),A″
分别画出与四边形
ABCD 关于 y 轴和 x
轴对称的图形.
D″
C y C′
B
B′
B″ O
C″
D′
A′ x
知识要点 在坐标系中作已知图形的对称图形
对于这类问题,只要先求出已知图形中的一些 特殊点(如多边形的顶点)的对应点的坐标,描出并 连接这些点,就可以得到这个图形的轴对称图形.
(1) 认真观察,左脚印和右脚印
有什么关系?
P
P'
成轴对称.
(2) 对称轴是折痕所在的直线,
即直线 l,它与图中的线段 PP′
是什么关系?
l
直线 l 垂直平分线段 PP′.
知识要点
由一个平面图形可以得到与它关于一条直线 l 对称 的图形,这个图形与原图形的形状、大小完全相同(位 置、朝向可能不同);新图形上的每一点都是原图形上 的某一点关于直线 l 的对称点;连接任意一对对应点的 线段被对称轴垂直平分.
轴的对称点 A′ 吗?
y
A (2,3)
你能说出点 A 与点 A' 坐
标的关系吗?
O
x
A′(2,-3)
做一做:在平面直角坐标系中画出下列各点关于 x 轴
的对称点.
(x,y)
y C'(3,4)
关于
B(-4,2)
x轴 对称
( x,-y)
O B'(-4,-2)
x C(3,-4)
知识归纳 关于 x 轴对称的点的坐标的特点是:
7. 已知△ABC 的三个顶点的坐标分别为 A (-3,5),
B (-4,1),C (-1,3),作出 △ABC 关于 y 轴对称的图形.

13.2画轴对称图形+课件+-2024—-2025学年人教版八年级数学上册

13.2画轴对称图形+课件+-2024—-2025学年人教版八年级数学上册

探究新知
活动2:反过来,给你一个图形和一条直线,如何画出与这个图形 关于这条直线对称的图形?
例1 画出点A关于直线l的对称点A′.
l
作法: (1)过点A作l的垂线,垂足为点O.
A
A′
﹒ ﹒
(2)在垂线上截取OA′=OA. 点A′就是点A关于直线l的对称点.
探究新知 想一想:如何画一条直线的对称图形? 例2 已知线段AB,画出AB关于直线l的对称线段.
归纳 作 图 步 骤
1、找特征点(特殊点) 2、作垂线 3、截取等长 4、依次连线
针对训练
1.如图,把下列图形补成关于直线l的对称图形.
2.如图,画△ABC关于直线m的对称图形.
m (A ′) A
C′
C
B
B′
探究新知
老北京的地图中,西直门和东直门是 关于中轴线对称的.如果以天安门为 原点,分别以长安街和中轴线为x轴 和y轴建立平面直角坐标系,对应于 如图所示的东直门的坐标,你能找到 西直门的位置和坐标吗?
针对训练
1.点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为_(_-_5__, _-_6_)__.
2.点M(a, -5)与点N(-2, b)关于x轴对称,则a=__-_2__, b =__5___.
3.已知点P(a-1, 5 )和Q(2, b-1)关于x轴对称, 则(a+b)2021
的值为( B )
标为( C )
A.(1,2)
B.(2,2)
C.(3,2)
D.(4,2)
综合训练 1.已知点P(2a+b,-3a)与点P′(8,b+2). 若点P与点P′关于x轴对称,则a=__2___, b=___4____. 若点P与点P′关于y轴对称,则a=__6___ ,b=__-_2_0___. 2.若|a-2|+(b-5)2=0,则点P (a,b)关于x轴对称的点的坐标为__(_2_,-_5_)__.

8年级数学人教版上册同步练习-轴对称和画轴对称图形(含答案解析)

8年级数学人教版上册同步练习-轴对称和画轴对称图形(含答案解析)

第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).12.3 角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21BAC B∠∠,AD是∠BAC的角平分线,DE⊥AB∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线, ∴BAD CAD =∠∠. 在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥. 2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO∴(ASA)BDO CEO △≌△.∴OB =OC . 3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°, 又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB , ∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BED AED B DAE∴△DAE ≌△DBE (AAS ), ∴3BE AE == cm .4.C 解析:根据角平分线的性质,集贸市场应建在∠A 、∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等 6.解:作两个角的平分线,交点P 就是所求作的点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称
13. 2画轴对称图形
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,在3×3方格图中,在其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有
A.1种B.2种C.3种D.4种
【答案】C
【解析】共有3种,如图.
故选C.学科&网
2.点(4,3)与点(4,-3)的关系是
A.关于原点对称B.关于x轴对称
C.关于y轴对称D.不能构成对称关系
【答案】B
【解析】根据平面直角坐标系的特点,可知点(4,3)与点(4,-3)的关系是关于x轴对称.故选B.3.已知点P关于y轴的对称点1P的坐标是(2,3),则点P坐标是
A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)
【答案】B
4.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)
【答案】A
【解析】∵点B的坐标是(4,-1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.5.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是
A.-5 B.-3 C.3 D.1
【答案】D
【解析】∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,解得:m=2,n=-1,所以m+n=2-1=1,故选D.学科&网
6.如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为
A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)
【答案】B
【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.
二、填空题:请将答案填在题中横线上.
7.点A(-5,-6)与点B(5,-6)关于__________对称.
【答案】y轴
8.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A的对应点D的坐标是__________.
【答案】(2,1)
【解析】∵点A的坐标为(-2,1),∴点A关于y轴对称的点D的横坐标为2,纵坐标为1,
∴点A关于x轴对称的点D的坐标是(2,1),故答案为:(2,1).学科&网
9.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有__________个.
【答案】5
三、解答题:解答应写出文字说明、证明过程或演算步骤.
10.在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:
①1条对称轴;
②2条对称轴;
③4条对称轴.
【解析】①如图1所示:②如图2所示:③如图3所示:
11.如图,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.。

相关文档
最新文档