北邮数字信号处理第三章附加习题答案

合集下载

数字信号处理 Chapter03答案

数字信号处理 Chapter03答案

11
3.2 Properties of the z-Transform
Ex. ( linearity) x(n) = [3(2n) – 4(3n)] u(n) 3 4 – 1 – 2z –1 1 – 3z –1
X(z) =
ROC: |z| > 3
12
3.2 Properties of the z-Transform
z = re

=
n =−∞
∑ x ( n )r
−n

− n − jθ n
e
X ( z) ≤
n =−∞


−1
x (n) r
+∑
n=0


x ( n) rn
x (n) rn
≤ ∑ x ( −n ) r + ∑
n n =1 n =0
7
3.1 The z-Transform
3.1.1 The Direct z-Transform
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
14
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
15
X(z) = ∑ x(n) z – n
16
3.3 Rational z-Transforms
1 2 −1 1 2 2
X ( z ) = 1+ z + (
X ( z) = 1 1− z
1 2 −1
)
z + .... + (
−2
1 n 2
)
z −n

《数字信号处理》第三版课后习题附答案

《数字信号处理》第三版课后习题附答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理第三版习题答案

数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。

它在现代通信、音频处理、图像处理等领域有着广泛的应用。

为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。

本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。

第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。

c) 离散时间信号可以通过采样连续时间信号得到。

1.2 习题答案:a) 线性系统满足叠加性和齐次性。

b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。

c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。

第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。

b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。

2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。

b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。

第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。

b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。

3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。

b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。

第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。

北京邮电大学《数字信号处理》习题及答案

北京邮电大学《数字信号处理》习题及答案

习 题1. 给定 f(t) = rect(t+2) + rect(t-2), 画出下列函数的图形。

(a) f(t)(b) g(t) = f(t-1) (c) h(t) = f(t)u(t) (d) f(t/2)2. 设 f(t) 是某一函数,a, t 0, T 为实常数,证明:(a))()()()(000t t t t f a at t f -=-δδ(b))()(1)()(000a t a f a at t f t t t -=-δδ(c))()()()(00nT t nT f TTt comb t f t tt n --+=-∑∞-∞=δ3.(a) 如 f(t) F(Ω),证明:eeetjty j tj t f dy y F F Ω-∞∞--Ω-Ω-==*Ω⎰)(2)()()(π(b) 用 (a ) 的结果,证明频域卷积定理)()(21)()(2121Ω*Ω↔F Ffft t π4. 求下图中 f(t) 脉冲的傅氏变换。

5. (a) )()()(a H H -Ω=Ω*Ωδ(b) )()()(0Ω+Ω=Ω+Ω*Ω∑∑∞-∞=∞-∞=n H n H n n δ6. 设eta t f -=)(,证明脉冲序列)()(nT t nT f n -∑∞-∞=δ的傅氏变换等于aTaT aT e T e e 22cos 211---+Ω--7.(a) 证明T n n n jnT eπδ2),(1000=ΩΩ+Ω=Ω∑∑∞-∞=∞-∞=Ω-(b) 若f(t) F(Ω),证明)()(0Ω+Ω=∑∑∞-∞=∞-∞=Ω-n F nT f Tn n jnT e习 题1. 下列系统中,y(n) 表示输出,x(n) 表示输入,试确定输入输出关系是否线性?是否非移变?(a) y(n) = 2x(n) +3(b) y(n) = x 2(n)(c) ∑-∞==nm m x n y )()(2. 确定下列系统是否因果的?是否稳定的? (a) y(n) = g(n) x(n), g(n) 有界(b) ∑-==nk n k x n y 0)()( n>n 0 (c) y(n) = x(n-n 0)(d) x(n) = a nu(n), h(n) = u(n)(e) x(n) = a n u(n), h(n) = (1/2) nu(n)3. x(n) 为输入序列, h(n) 为系统的单位取样响应序列,确定输出序列 y(n), (a) 如图 p 2.1 (a) 所示 (b) 如图 p 2.1 (b) 所示 (c) 如图 p 2.1 (c) 所示⎪⎩⎪⎨⎧=0)(a n n h⎪⎩⎪⎨⎧=-0)(0βn n x n 的卷积 y(n) = x(n) * h(n)5. 讨论具有下列单位取样响应的线性时域离散非移变系统。

数字信号处理课后答案 第3章DFT FFT.

数字信号处理课后答案 第3章DFT FFT.


N 1
j
2π kn N
1 N 1 j(0 2Nπ k ) n N 1 j(0 2Nπ k ) n e e 2 j n 0 n 0
j0 N j0 N 1 1 e 1 e 2 2π j(0 - k) j(ω0 k ) 2j N N 1 e 1 e
(10) 解法一
X (k )

n 0
N 1
kn nWN
k 0, 1, , N 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因 为x(n)=nRN(n), 所以 x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n)
等式两边进行DFT, 得到
X(k)-X(k)WkN+N=Nδ(k)
k 整数 m k 整数 m
所以
k mX m X (k ) 0
k 整数 m k 整数 m
7. 证明: 若x(n)为实序列, X(k)=DFT[x(n)]N, 则 X(k)为共轭对称序列, 即X(k)=X*(N-k); 若x(n)实偶对 称, 即x(n)=x(N-n), 则X(k)也实偶对称; 若x(n)实奇对称, 即x(n)=-x(N-n), 则X(k)为纯虚函数并奇对称。
解法二
因为
由DFT共轭对称性可得同样结果。
x9 (n) cos(0 n) RN (n) Re[x7 (n)]
1 * X 9 (k ) X 7e (k ) [ X 7 (k ) X 7 ( N k )] 2
j 0 N j 0 N 1 1 e 1 e 2π 2π 2 j(0 k ) j(0 ) k N N 1 e 1 e

数字信号处理》课后作业参考答案

数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。

解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。

数字信号处理第三章习题作业答案

数字信号处理第三章习题作业答案

1 e 当 k 2, 4, 6,... 时,X 1 (k ) 0

序列3:
x3 (n) x1 (n) x1 (n 4)
根据序列移位性质可知
X 3 (k ) X1 ( k ) e j k X1 ( k ) (1 e j k )
即 x(n) 是以 n 0 对称轴的奇对称
故这三个序列都不满足这个条件
(3)由于是8点周期序列,其DFS:
nk X (k ) x(n )WN x (n )e n 0 n 0 N 1 7 j 2 nk 8
序列1:
X 1 (k ) e
n 0
3
y 解: 序列 x(n) 的点数为 N1 6 , (n) 的点数为 N 2 15, 故 x(n) y (n) 的点数应为
N N1 N 2 1 20
是线性卷积以15为周期周期延拓后取主值序列 19( N 1) 0
15 ( L)
又 f (n) 为 x(n) 与 y (n) 的15点的圆周卷积,即L=15。
第三章习题讲解
n 1, 0 n 4 h(n) R4 (n 2) 3.设 x(n) 其他n 0, h 令 x(n) x((n))6 , ( n) h((n)) 6 ,
试求 x(n) 与 h (n) 的周期卷积并作图。
解:
y ( n ) x ( m )h ( n m )
4 ( L N 1)
15 ( L)
34 ( L N 1)
混叠点数为N-L=20-15=5 n 0 ~ n 4( N L 1) 故 f (n)中只有 n 5到 n 14的点对应于 x(n) y (n)

北京邮电大学 数字信号处理第三章_3_2

北京邮电大学 数字信号处理第三章_3_2
北京邮电大学电信工程学院 7
3.11 Chirp Z 变换
nk = 1 [n2 + k 2 − (k − n)2 ]
2
∑ X
(zk
)
=
N
−1
x(n)
A−nW
n2
2W
− ( k −n)2
2W
k2 2
n=0
∑ = W
k2 2
N −1
[ x(n) A−nW
n2 2
]W
− (k −n)2 2

− n2
h(n) = W 2
3.11 Chirp Z 变换
问题: ① DFT是离散信号的离散频谱,频谱是均匀
分布在Z平面单位圆上N点处的频谱,如果我们取 样点不均匀时则很麻烦;
② 当x(n)是短时间序列时,则得到的频率 分辨率2π / N 是很低的。提高频谱密度的办法:用 补零的方法增加点数,但DFT的点数又大大增加, 使计算工作量增大;
和 zk+1,k =0,1,L)之间的夹角。
A0 ,θ 0分别为第1个取样点
(k=0)的半径和幅角,其
余取样点沿螺旋线按角度间
隔φ0 分布。周线是一条螺旋
线:W0>1,向内盘旋,朝向原 一点段;W圆0 <弧1,,若向同外时盘A旋0;=W10,=则1,
为单位圆一部分。
Z2 Z1
Z M −1
φ0 A0 Z0 θ 0 0
RN
(n)
可根据x1(n)和x2(n) 的数学表达式来计算x3(n) 。
北京邮电大学电信工程学院 26
循环卷积
例:
设 x1(n) = {1,2,2} x2 (n) = {1,2,3,4,} 计
算 4 点循环卷积

数字信号处理习题第三章

数字信号处理习题第三章

第3章频域中的离散时间信号3.16 求下面每个序列的DTFT:(a) x1[n]=αnμ[n−1],|α|<1(b) x2[n]=nαnμ[n],|α|<1(e) x5[n]= αnμ[−n−1],|α|>1答案:(a)X1(e jω)=∑αn e−jωn∞n=1=∑(αe−jω)n=∞n=1∑(αe−jω)n−1=αe−jω1−αe−jω∞n=0(b)X2(e jω)=j dX(e jω)dω=j ddω(11−αe−jω)=αe−jω(1−αe−jω)2(e)X5(e jω)=∑αn e−jωn=∑α−m e jωm=∑α−m e jωm−1=∞m=0∞m=1−1n=−∞e jωα−e jω3.17 求下面每个序列的DTFT:(a) xa[n]= μ[n+2]−μ[n−3](b) xb[n]=αn(μ[n−1]− μ[n−4]),|α|<1(c) xc[n]= 2nαnμ[n],|α|<1答案:(a)设μ[n]的DTFT变换为:μ(e jω)=11−e−jω+∑πδ(ω+2kπ)∞k=−∞Xa(e jω)=(e j2ω−e−j3ω)μ(e jω)=(e j2ω−e−j3ω)[11−e−jω+∑πδ(ω+2kπ)]∞k=−∞(b)设x[n]= αnμ[n],|α|<1,其DTFT变换为:X(e jω)=11−αe−jωXb (e jω)=e−jωX(e jω)−e−j4ωX(e jω)=e−jω−e−j4ω1−αe−jω(c)xc[n]= 2nαnμ[n]=2(n+1)αnμ[n]−2αnμ[n],|α|<1X C (e jω)=2(1−αe−jω)2−21−αe−jω=2αe−jω(1−αe−jω)23.21 求下面每个DTFT的逆DTFT:(a) Xa (e jω)=∑δ(ω+2πk)∞k=−∞(b) Xb (e jω)=e jω(1−e jωN)1−e jω(c) Xc (e jω)=1+2∑cosωιNι=0(d) Xd (e jω)=−αe−jω(1−αe−jω)2,|α|<1答案:(a) xa [n]=12π∫δ(ω)e jωn∞−∞dω=1(b ) X b (e jω)=e jω(1−e jωN )1−e jω=e jω∑ejωnN−1n=0 令m =−n X(ejω)=∑e−jωm −N+1m=0 x[n]={1,−(N −1)≤n ≤00,其他X b (e jω)=e jω∑e−jωm−N+1m=0=e jωX(e jω) X b [n]=x[n+1]={1,−N ≤n ≤−10,其他(c )X c (e jω)=1+2∑cosωιN ι=0=2+∑e−jωιN ι=−N , x c [n]={3,n =01,0<|n |<N 0,其他(d )X 0(e jω)=11−αe −jω x o [n]=αn μ[n]X d (ejω)=−αe −jω(1−αe −jω)2=dX0(e jω)dωx d [n]=n x o [n]=nαn μ[n]3.26 X (e jω)是实序列x[n]的DTFT 。

数字信号处理习题库选择题附加答案

数字信号处理习题库选择题附加答案

第1章选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 B 。

A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.数字信号的特征是( B )A .时间离散、幅值连续B .时间离散、幅值量化C .时间连续、幅值量化D .时间连续、幅值连续3.下列序列中属周期序列的为( D )A .x(n) = δ(n)B .x(n) = u(n)C .x(n) = R 4(n)D .x(n) = 14.序列x(n)=sin ⎪⎭⎫ ⎝⎛n 311的周期为( D ) A .3 B .6 C .11 D .∞5. 离散时间序列x (n )=cos(n 73π-8π)的周期是 ( C ) A. 7 B. 14/3 C. 14 D. 非周期6.以下序列中( D )的周期为5。

A .)853cos()(ππ+=n n x B. )853sin()(ππ+=n n x C. )852()(π+=n j e n x D. )852()(ππ+=n j en x 7.下列四个离散信号中,是周期信号的是( C )。

A .sin100n B. n j e 2C. n n ππ30sin cos +D. n j n j e e5431π- 8.以下序列中 D 的周期为5。

A.)853cos()(π+=n n x B.)853sin()(π+=n n x C.)852()(π+=n j e n x D.)852()(ππ+=n j e n x 9.离散时间序列x (n )=cos ⎪⎭⎫ ⎝⎛+353ππn 的周期是( C ) A.5 B.10/3C.10D.非周期10.离散时间序列x(n)=sin (5n 31π+)的周期是( D ) A.3 B.6C.6πD.非周期11.序列x (n )=cos ⎪⎭⎫ ⎝⎛n 5π3的周期为( C ) A.3B.5C.10D.∞ 12.下列关系正确的为( C )A .u(n)=∑=n k 0δ (n) B .u(n)=∑∞=0k δ (n) C .u(n)=∑-∞=nk δ (n) D .u(n)=∑∞-∞=k δ (n)13.设系统的单位抽样响应为h(n),则系统因果的充要条件为( C )A .当n>0时,h(n)=0B .当n>0时,h(n)≠0C .当n<0时,h(n)=0D .当n<0时,h(n)≠014.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(4) 令x1(n)=xe(n)+xo(n), 将x1(n)与x(n)进行比较, 你能得
第 1 章 时域离散信号和时域离散系统
解:(1) x(-n)的波形如题4 (2) 将x(n)与x(-n)的波形对应相加, 再除以2, 得到xe(n)。 毫无疑问, 这是 一个偶对称序列。 xe(n)的波形如题4解图(二)所示。 (3) 画出xo(n)的波形如题4解图(三)所示。
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=
R4(m)R5(n-m)

北邮信号与系统课后答案第3章部分1

北邮信号与系统课后答案第3章部分1

为功率信号
(d) P lim 1 T0 u t 2 dt lim 1 T0 1dt 1
T0
2T0 T0
T0 2T0 0
2
为功率信号。
【知识点】能量信号、功率信号 3-3 对信号 f (t) 在数值和时间两方面进行运算变成 af (bt)
(1)如果在全部时间
t
内, f (t) 是具有能量为 W 的能量信号,
f1 t 1
f2 t 1
0
1
2
3t
0
1
2
3t
锯齿形脉冲
正弦脉冲
题 3-6 图
解:
3
0 f1 t f2 t d t
31 t sin
tdt
- t cos
t - 3 sin
3
t
03 3
3
2 30
3
3
sin
2
tdt
31 1 - cos 2 t d t 3
03
02
3
2
C12 2
t2
fe t
- sin t
3
3
3 t - 2 sin t sin tdt
sin 2
1t
4
3 cos 2 1 t 4
15 cos 4 1 t 4
...
2
A 1 T A
sin 2
1t
2
2A 3 cos 2 1t
2A 15 cos 4 1t 2 ...
AA
2A
2A
cos 2
1t
3 cos 2 1t
15 cos 4 1t
...
9
随着T , C12 ,当T
时使得 C12 0 。

数字信号处理答案第三章

数字信号处理答案第三章
1 . Note the pole-zero cancellation at z = 2
= = =
0 0 1 j 2πn e 10 , n = 1, 2, . . . , k. 2
3.3
(a) X1 (z ) = = = = The ROC is (b)
1 3 ∞ 0
1 1 ( )n z −n − 1 ( )n z −n + 3 2 n=−∞ n=0 1
1 −1 1− 3 z
+ +
1 ( )n z n − 1 2 n=0 1 − 1, 1− 1 2z −1 2 z)

1
1−1 −1 3zFra bibliotek(1 −
5 6 1 −1 )(1 3z
< |z | < 2. X2 (z ) = = = 1 ( )n z −n − 2n z −n 3 n=0 n=0 1 1−
1 −1 3z ∞ ∞
nan cosw0 nz −n nan ejw0 n + e−jw0 n −n z 2 60
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.

数字信号处理课后习题答案(全)1-7章PPT课件

数字信号处理课后习题答案(全)1-7章PPT课件
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
T[ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn) =aT[x1(n)]+bT[x2(n)]
故系统是线性系统。
第 1 章 时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明 理由。
(1) y(n)=
1 x(Nn-1 k)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)

数字信号处理 答案 第三章

数字信号处理 答案 第三章

解: x1 ( n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x( n) 。 (1)绘出 x( n) 与 x( n) 的线性卷积结果的图形。 (2)绘出 x( n) 与 x( n) 的 4 点循环卷积结果的图形。 (3)绘出 x( n) 与 x( n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷 积之间的关系。
j [(2π k /10) + (π /10)]
={
3.7
N ,k=m或 k=−m 2 0,其 他
图 P3.7 表示的是一个有限长序列 x( n) ,画出 x1 ( n) 和 x2 (n) 的图形。 (1) x1 ( n) = x ⎡ ⎣( n − 2 ) ⎤ ⎦ 4 R4 (n)
(2) x2 ( n) = x ⎡ ⎣( 2 − n ) ⎤ ⎦ 4 R4 (n)
解: (1) X ( k )
= ∑ δ (n)WNnk = δ (0) = 1, 0 ≤ k ≤ N − 1
n=0
N −1
(2) X ( k ) =
∑ δ [(n − n )]
n =0 0
N −1
N
RN (n)WNnk = WNn0 k , 0 ≤ k ≤ N − 1
(3) (4)
X (k ) = ∑ a W
− jω N
−j
N ω 2
j
N ω 2
−j
N ω 2
⎛N ⎞ sin ⎜ ω ⎟ N −1 ) ⎝ 2 ⎠ e− j 2 ω = sin
ω
2
⎛N ⎞ sin ⎜ ω ⎟ ⎝ 2 ⎠ , ϕ (ω ) = − N − 1 ω | X (e jω ) |= ω 2 sin 2

数字信号处理课后答案第3和4章

数字信号处理课后答案第3和4章
用DFT/FFT对序列进行频谱分析, 频谱分析范围为π; 用DFT/FFT对模拟信号进行频谱分析, 频谱分析范围为采 样频率的一半, 即0.5Fs。
用DFT/FFT对信号进行谱分析的误差表现在三个方面, 即混叠现象、 栅栏效应和截断效应。 截断效应包括泄漏和 谱间干扰。
第3章 离散傅里叶变换(DFT)及其快速算法
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
[例3.4.2] 已知 x(n)=R8(n), X(ejω)=FT[x(n)]
对X(ejω)采样得到X(k),
X(k)X(ej)|2πk, k0,1, ,5 6
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当然, 截取信号的长度要足够长。 但如果截取的长度 不够长, 而依靠在所截取的序列尾部加零点, 增加变换区 间长度, 也不会提高分辨率。 例如, 分析周期序列的频谱, 只观察了一个周期的1/4长度, 用这些数据进行DFT, 再通 过尾部增加零点, 加大DFT的变换区间N, 也不能分辨出是 周期序列, 更不能得到周期序列的精确频率。
令m=N-1-n, 则上式可写成
0
N1
X(k) x(m )W N k(n1) x(m )W N km
m N1
m 0
W N k(N 1 )X ( (k)N )R N (k)
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当 k N 时(N为偶数), 2
因为
X N 2 W N N 2(N 1 )X N 2 NW N N 2(N 1 )X N 2

数字信号处理第三章习题答案

数字信号处理第三章习题答案
1 最小记录时间 ; 2 最大取样间隔 ; 3 最少采样点数 ; (4)在频带宽度不变的情况下, 将频率分辨率提高一倍的N值。
解 (1) 已知F=50Hz (2) (3)
(4)频带宽度不变就意味着采样间隔T不变, 应该使记录时间 扩大一倍为0.04s实现频率分辨率提高1倍(F变为原来的1/2).



(a)、(b)、(c)所示。
分别如题3解图
x1(n) (a)
x2(n) (b)
y (n)
(a)
(b)
(c) (c)
5.如果X(k)=DFT[ x(n)], 证明DFT的初值定 理 证明 由IDFT定义式
可知
14.两个有限长序列x(n)和y(n)的零值区间为 x(n)=0, n<0, 8≤n y(n)=0, n<0, 20 ≤ n
对每个序列作20点DFT, 即
X (k)=DFT [x(n)],
Y(k)=DFT [y(n)],
如果
F(k)=X(k)▪Y(k),
k=0,1,…,19 k=0,1,…,19 k=0,1,…,19
f(n)=IDFT [F(k)], k=0,1,…,19
试问在哪些点上f(n)=x(n)*y(n)?为什么?
解 如前所述, 记
,而
fl(n)长度为27,f(n)长度为20.前面已推出二者的关系为
只有在如上周期延拓序列中无混叠的点上, 才满足f(n)=fl(n)7
21-47
41-67
1-7
21-27
8-20
7-19 当从0开始时候
15.用微处理器对实数序列作谱分析, 要求谱分辨率F≤50Hz, 信号最高频率为1kHz, 试确定以下各参数;
教材第三章习题解答
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.利用DFT矩阵计算序列 的4点DFT。
解:
2.利用上述序列4点DFT结果和频域内插公式计算该序列在频点 处的DTFT结果;直接利用DFT计算上述序列在 处DTFT结果。
解:
另,
3.以2400Hz为采样频率对一模拟信号进行采样,得到序列 ;已知序列DTFT结果在频点 处的幅度为 ,求采样信号在5400Hz处的幅度;另,对序列作8点DFT,求 。
(2)按照你选择 、 的对 进行采样,得到 ,进行 ,得到 。画出 曲线,并标出 各自的峰值对应的 分别是多少?
解答:
(1) 或
(2)
的DFT为复序列;
9.已知序列 的2点结果为 , 4点DFT结果为 ;令 ,求 。
解:对两序列作4点循环卷积;结果中,当 时,与线性卷积相同。
故如下处理:
10.有限长序列 在范围 之外为0;另,有限长序列 在范围 之外为0;现令 为两者的线性卷积结果, 为两者100点循环卷积结果;问 取何值有 。
解:由题可知 的长度为129,于 范围内;对两序列作100点的循环卷积,等同于 ,所以在 范围内 。
18.求计算 值 的Goertzel算法的差分方程和系统函数。
解答:
19.已知某信号的最高频率不大于2kHz,现利用DFT分析其频谱,要求:1)DFT点数为2的整数次幂;2)频率分辨率不大于8Hz。求:最大的取样间隔;DFT点数。
解答:
20.设
式中 。
(1)如果采用 对 进行频谱分析,采样频率 和采样点数 应如何选择,才能精确地求出 的中心频率,为什么?
解答:
15.考虑如下差分方程描述的IIR系统:
描述使用 算法计算频率响应 的步骤。
解答:
16.已知 和 分别是两个 点时序列 和 的 点 ,若要求 和 ,为提高运算效率,试设计用一次 点 来完成。
解答:
17.设 是长度为 的有限长时序列, 为 的 点 。若已知 ,试设计用一次 点 求 的 点 。
解答:
解:
所以,采样信号在5400Hz处的幅度为 。
另,
4.一FIR数字滤波器,其传递函数为 ;利用DFT求该系统在 处的频率响应。
解:
其单位冲激响应为:

而 为所需结果,计算如下:
5.对一实序列作8点DFT,已知:
求 。
解:
6.若 为N点实序列,且有 ,求证该类序列的N点DFT变换可按如下方式完成:
证:因 为N点实序列,且有
故存在如下关系:
故:
7.若 为N点实序列,且有 ;现对 作N点DFT,并由 、 表示其实部和虚部,求证由下列结果:
证:如题,有:
8.判断在下列序列中,哪些序列的DFT为实序列;哪些序列的DFT为纯复序列。
解:若 为实序列,则有 ;
若 为纯复序列,则有 ;
有上述关系可知:
、 的DFT为实序列;
的DFT为纯复序列;
11.从定义开始推导基2 DIT IFFT变换算法,并画出 的流图。
解答:
12.从定义开始推导基2 DIF IFFT变换算法,并画出 的流图。
解答:
13.开发一个基3按时间抽选FFT算法,其中 ,并画出 的流图。需要多少次复数乘法?其中的操作可以原位完成吗?
解答:
14.当算法为按频率抽取时,重做上题。
相关文档
最新文档