【通用版】高考数学核心考点习题集
2014年高考数学核心考点(通用版)
2014高考数学全套知识点(通用版)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
考点10 平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)
①数量积:a·b=|a||b|cosθ=x1x2+y1y2.
②模:|a|= = .
③夹角:cosθ= = .
④两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
⑤|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
,注意与平面向量平行的坐标表示区分.
3.(2021年全国高考甲卷)若向量 满足 ,则 _________.
【答案】
【分析】根据题目条件,利用 模的平方可以得出答案
【详解】∵
∴
∴ .
故答案为: .
4.(2021年全国新高考Ⅰ卷)已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
2.三个常用结论
(1)O为△ABC的重心的充要条件是 + + =0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则 + =2 ;
(3)对于平面上的任一点O, , 不共线,满足 =x +y (x,y∈R),则P,A,B共线⇔x+y=1.
注意向量共线与三点共线的区别.
3.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
【答案】D
【分析】根据所给图形,由向量的线性运算,逐项计算判断即可得解.
【详解】 + + = + =0,A正确;
+ + = + + =0,B正确;
+ + = + = + = ,C正确;
+ + = +0= = ≠ ,D错误,
故选:D.
2.(2020内蒙古鄂尔多斯市第一中学)下列结论正确的是
A.若向量 , 共线,则向量 , 的方向相同
高考数学必会50道核心考点题-答案
故取出的4个球中恰有1个红球的概率为 .
(Ⅲ)解: 可能的取值为 .由(Ⅰ),(Ⅱ)得 , ,
.从而 .
的分布列为
0
1
2
3
的数学期望 .
43.如图,在四棱锥 中, 底面 ,
, , 是 的中点.
(Ⅰ)求 和平面 所成的角的大小;
(Ⅱ)证明 平面 ;
(Ⅲ)求二面角 的大小.
解:(Ⅰ)证明:在四棱锥 中,因 底面 , 平面 ,故 .
24.设变量 满足约束条件 则目标函数 的最大值为(B)
A.4B.11C.12D.14
25.抛物线 上的点到直线 距离的最小值是(A)
A. B. C. D.
26.从圆 外一点 向这个圆作两条切线,则两切线夹角的余弦值为( B)
A. B. C. D.
二、填空题:
27.设 ,则
28.函数 对于任意实数 满足条件 ,若 则 __________。
(II)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答)。
解:(I)任取甲机床的3件产品恰有2件正品的概率为
(II)解法一:记“任取甲机床的1件产品是正品”为事件A,“任取乙机床的1件产品是正品”为事件B。则任取甲、乙两台机床的产品各1件,其中至少有1件正品的概率为:
A. B. C. D.
22.已知函数 ( 为常数, )的图象关于直线 对称,则函数 是(D)
A.偶函数且它的图象关于点 对称
B.偶函数且它的图象关于点 对称
C.奇函数且它的图象关于点 对称
D.奇函数且它的图象关于点 对称
23.设两个向量 和 ,其中 为实数.若 , 的取值范围是(A)
A.[-6,1]B. C.(- ,1]D.[-1,6]
2022年高考数学核心考点专题训练专题23 数列的通项公式与求和(含解析)
2022年高考数学核心考点专题训练专题23数列的通项公式与求和一、单选题(本大题共10小题,共50分)1.据《乾陵百迷》记载:乾陵是陕西关中地区唐十八陵之一,位于乾县县城北部的梁山上,是唐高宗李治和武则天的合葬墓.乾陵是目前保存最完好的一座帝王陵墓.1961年3月被国务院公布为第一批全国重点文物保护单位.乾陵气势雄伟,规模宏大.登乾陵需要通过一段石阶路,如图所示,石阶路共526级台阶(各台阶高度相同.......)和18座平台,宽11米,全路用32000块富平墨玉石砌成.右阶有许多象征意义.比如第一道平台的34级台阶,象征唐高宗李治在位执政34年,第二道平台的21级台阶,象征武则天执政21年……第九道平台的108级台阶,象征有108个“吉祥”现已知这108级台阶落差高度为17.69米,那么乾陵石阶路526级台阶的落差高度约为()A .86.2米B .83.6米C .84.8米D .85.8米2.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为()A .()171a r +B .()()1711a r r r ⎡⎤+-+⎣⎦C .()181a r +D .()()1811a r r r ⎡⎤+-+⎣⎦3.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x 元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y 元.则y -x 的值为()(参考数据:1.01512≈1.2)A .0B .1200C .1030D .9004.已知数列中的前项和为,对任意,,且恒成立,则实数的取值范围是A.B.C .D .5.在数列{}n a 中,11,a =当2n ≥时,其前n 项和为n S 满足()21n n n S a S =-,设22log nn n S b S +=,数列{}n b 的前n 项和为n T ,则满足6n T ≥的最小正整数n 是A .12B .11C .10D .96.已知数列{}n a 的前n 项和为n S ,且15a =,116(2)2n n a a n -=-+≥,若对任意的*n N ∈,1(4)3n p S n ≤-≤恒成立,则实数p 的取值范围为A .(2,3]B .[2,3]C .(2,4]D .[2,4]7.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为()A .5101900-米B .510990-米C .4109900-米D .410190-米8.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有132根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是()A .5B .6C .7D .89.删去正整数数列1,2,3, 中的所有完全平方数,得到一个新数列,这个数列的第2018项是A .2062B .2063C .2064D .206510.设数列{}n a 的前n 项和为n S ,123n n a a n ++=+,且1450n S =,若24a <,则n 的最大值为A .51B .52C .53D .54二、填空题(本大题共4小题,共20分)11.设数列{}n a 满足123a =,且对任意的*n N ∈,满足22n n n a a +-≤,452nn n a a +-≥⨯,则2017a =_________12.数列{}n a 满足*12121(1,)n n n n n n n n a a a a a a a a n N +++++=++≠∈,且11a =,22a =.若sin()(0,)2n a A n c πωϕωϕ=++><,则实数A =__________.13.1967年,法国数学家蒙德尔布罗的文章《英国的海岸线有多长?》标志着几何概念从整数维到分数维的飞跃.1977年他正式将具有分数维的图形成为“分形”,并建立了以这类图形为对象的数学分支——分形几何.分形几何不只是扮演着计算机艺术家的角色,事实表明它们是描述和探索自然界大量存在的不规则现象的工具.下面我们用分形的方法来得到一系列图形,如图1,线段AB 的长度为1,在线段AB 上取两个点C ,D ,使得13AC DB AB ==,以CD 为一边在线段AB 的上方做一个正三角形,然后去掉线段CD ,得到图2中的图形;对图2中的线段EC 、ED 作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第n 个图形(图1为第一个图形)中的所有线段长的和为n S ,对任意的正整数n ,都有n S a <,则a 的最小值为__________.14.对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______.三、解答题(本大题共3小题,共30分)15.已知等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=.(1)求数列{}n a 的通项公式;(2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T .16.设数列{}n a 的前n 项和为n S ,11(1)(,,0,1)1n n a q S a q R a q q-=∈≠≠-(1)求证:数列{}n a 是等比数列;(2)若*q N ∈,是否存在q 的某些取值,使数列{}n a 中某一项能表示为另外三项之和?若能求出q 的全部取值集合,若不能说明理由.(3)若q ∈R ,是否存在[3,)q ∈+∞,使数列{}n a 中,某一项可以表示为另外三项之和?若存在指出q 的一个取值,若不存在,说明理由.17.已知无穷数列{}n a 与无穷数列{}n b 满足下列条件:①{0,1,2},n a n ∈∈*N ;②1111(1)||,24n n n n n b a a n b *++=-⋅-∈N .记数列{}n b 的前n 项积为n T .(1)若112341 ,0 , 2 ,1a b a a a =====,求4T ;(2)是否存在1234,,,a a a a ,使得1234,,,b b b b 成等差数列?若存在,请写出一组1234,,,a a a a ;若不存在,请说明理由;(3)若11b =,求2021T 的最大值.专题23数列的通项公式与求和一、单选题(本大题共10小题,共50分)1.据《乾陵百迷》记载:乾陵是陕西关中地区唐十八陵之一,位于乾县县城北部的梁山上,是唐高宗李治和武则天的合葬墓.乾陵是目前保存最完好的一座帝王陵墓.1961年3月被国务院公布为第一批全国重点文物保护单位.乾陵气势雄伟,规模宏大.登乾陵需要通过一段石阶路,如图所示,石阶路共526级台阶(各台阶高度相同.......)和18座平台,宽11米,全路用32000块富平墨玉石砌成.右阶有许多象征意义.比如第一道平台的34级台阶,象征唐高宗李治在位执政34年,第二道平台的21级台阶,象征武则天执政21年……第九道平台的108级台阶,象征有108个“吉祥”现已知这108级台阶落差高度为17.69米,那么乾陵石阶路526级台阶的落差高度约为()A .86.2米B .83.6米C .84.8米D .85.8米【答案】A【解析】解:由题意可知所求高度为17.6910852686.2÷⨯≈,所以乾陵石阶路526级台阶的落差高度约为86.2米,故选:A2.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为()A .()171a r +B .()()1711a r r r ⎡⎤+-+⎣⎦C .()181a r +D .()()1811a r r r ⎡⎤+-+⎣⎦【答案】D【解析】根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为()171a r +,同理:孩子在2周岁生日时存入的a 元产生的本利合计为()161a r +,孩子在3周岁生日时存入的a 元产生的本利合计为()151a r +,孩子在17周岁生日时存入的a 元产生的本利合计为()1a r +,可以看成是以()1a r +为首项,1r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:()()()()()()()()171716181111111111a r r a S a r a r a r r r r r ⎡⎤+-+⎣⎦⎡⎤=++++++==+-+⎣⎦-+ 故选:D3.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x 元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y 元.则y -x 的值为()(参考数据:1.01512≈1.2)A .0B .1200C .1030D .900【答案】C【解析】解:由题意知,按复利计算,设小闯同学每个月还款a 元,则小闯同学第一次还款a 元后,还欠本金及利息为10000(1 1.5%)a +-元,第二次还款a 元后,还欠本金及利息为210000(1 1.5%)(1 1.5%)a a +-+-,第三次还款a 元后,还欠本金及利息为3210000(1 1.5%)(1 1.5%)(1 1.5%)a a a +-+-+-,依次类推,直到第十二次还款后,全部还清,即12111010000(1 1.5%)(1 1.5%)(1 1.5%)(1 1.5%)0a a a a +-+-+-⋅⋅⋅-+-=,即12121 1.01510000(1 1.5%)1 1.015a -+=⋅-,解得900a ≈,故1290010800x =⨯=元,按照单利算利息,12月后,所结利息共100000.01525121830⨯⨯=元,故10000183011830y =+=元,所以11830108001030y x -=-=,故选:C4.已知数列中的前项和为,对任意,,且恒成立,则实数的取值范围是A .B .C .D .【答案】A【解析】由有,当1n =时,1111262a S a ==-++-,求得174a =-,当2n ≥时,111111(1)26(1)2(1)622nn n n n n n nn a S S a n a n ----⎡⎤=-=-++---++--⎢⎥⎣⎦,化简得1111(1)(1)22n n n n n a a +-⎡⎤+-=--+⎣⎦,当2()n k k N *=∈,1122n n a -=-+,所以2121222112,222k k k k a a -++=-+=-+,当21()n k k N *=-∈,11222n n na a -=--+,所以,因为恒成立,所以当当2()n k k N *=∈,21222211()()0,2622k k k kp a p a p ++--<∴-+<<-,即31951616p -<<,当2()n k k N *=∈,221()()0k k p a p a ---<,221172326,2244k k p p -+<<-∴-<<,综上两种情况,有72344p -<<.5.在数列{}n a 中,11,a =当2n ≥时,其前n 项和为n S 满足()21n n n S a S =-,设22log nn n S b S +=,数列{}n b 的前n 项和为n T ,则满足6n T ≥的最小正整数n 是A .12B .11C .10D .9【答案】C【解析】由()21n n n S a S =-可得()()211n n n n S S S S -=--,即1111n n S S --=,所以数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,首项为1,公差为1,则()111n n n S =+-=,解得1n S n=,所以2222log log n n n S n b S n ++==,数列{}n b 的前n 项和22222234512345log log log log log log (1231123n n n T n n ++=+++++=⨯⨯⨯⨯- ()()21212log 12n n n n n n ++++⨯=-.由6n T ≥可得()()212log 62n n ++≥,即()()7122n n ++≥,令()2231312612824f x x x x ⎛⎫=+-=+-- ⎪⎝⎭,可得函数()f x 在[)1,+∞上单调递增,而()9180f =-<,()1040f =>,若*x N ∈,则10n ≥,则满足6n T ≥的最小正整数n 是10.故选C .6.已知数列{}n a 的前n 项和为n S ,且15a =,116(2)2n n a a n -=-+≥,若对任意的*n N ∈,1(4)3n p S n ≤-≤恒成立,则实数p 的取值范围为A .(2,3]B .[2,3]C .(2,4]D .[2,4]【答案】B【解析】由数列的递推公式可得:()11442n n a a +-=--,则数列{}4n a -是首项为141a -=,公比为12-的等比数列,111141,422n n n n a a --⎛⎫⎛⎫-=⨯-∴=-+ ⎪⎪⎝⎭⎝⎭,分组求和可得:211432nn S n ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,题中的不等式即2111332np ⎡⎤⎛⎫≤⨯--≤⎢⎥ ⎪⎝⎭⎢⎥⎣⎦恒成立,结合恒成立的条件可得实数p 的取值范围为[]2,3本题选择B 选项.7.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为()A .5101900-米B .510990-米C .4109900-米D .410190-米【答案】D【解析】根据题意,这是一个等比数列模型,设11100,,0.110na q a ===,所以110.110010n n a -⎛⎫==⨯ ⎪⎝⎭,解得4n =,所以()4444111001*********1190a q Sq⎛⎫⎛⎫ ⎪-⎪ ⎪-⎝⎭⎝⎭==-=--.故选:D.8.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有132根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是()A .5B .6C .7D .8【答案】D【解析】设最上面一层放1a 根,一共放n (n ≥2)层,则最下一层放()11a n +-根,由等差数列前n 项和公式得:()()1211322n a n +-=,∴12642=1a n n-+,∵1N a *∈,∴n 为264的因数,且2641n n-+为偶数,把各个选项分别代入,验证,可得:n =8满足题意.故选:D9.删去正整数数列1,2,3, 中的所有完全平方数,得到一个新数列,这个数列的第2018项是A .2062B .2063C .2064D .2065【答案】B【解析】由题意可得,这些数可以写为:2221,2,3,2,5,6,7,8,3,⋯,第k 个平方数与第1k +个平方数之间有2k个正整数,而数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,去掉45个平方数后,还剩余2025451980-=个数,所以去掉平方数后第2018项应在2025后的第38个数,即是原来数列的第2063项,即为2063,故选B.10.设数列{}n a 的前n 项和为n S ,123n n a a n ++=+,且1450n S =,若24a <,则n 的最大值为A .51B .52C .53D .54【答案】A【解析】123n n a a n +∴+=+,()()()121n n a n a n +∴-+=--+,(){}1n a n -+是以1-为公比的等比数列,()()()11121n n a n a -∴-+=-⋅-,()()()1311222nn n n S a +--∴=+-⋅当n 为偶数时,()314502n n n S +==无解,当n 为奇数时,()13214502n n n S a +=+-=,()1314522n n a +∴=-,又125a a +=,2154a a ∴=-<,即11a >,即()32902n n +<,又n 为奇数,故n 的最大值为51.故选A二、填空题(本大题共4小题,共20分)11.设数列{}n a 满足123a =,且对任意的*n N ∈,满足22n n n a a +-≤,452nn n a a +-≥⨯,则2017a =_________【答案】201723【解析】∵对任意的*n N ∈,满足22n n n a a +-≤,452nn n a a +-≥⨯,∴2442252()()2252n n n nn n n n n n a a a a a a +++++⨯≤-=-+-≤+=⨯,∴452nn n a a +-=⨯.∴20172017201320132009511()()()a a a a a a a a =-+-++-+ 20132009125(222)3=⨯++++5042(116)251163⨯-=⨯+-201723=.答案:20172312.数列{}n a 满足*12121(1,)n n n n n n n n a a a a a a a a n N +++++=++≠∈,且11a =,22a =.若sin()(0,)2n a A n c πωϕωϕ=++><,则实数A =__________.【答案】【解析】由题意,数列{}n a 满足1212n n n n n n a a a a a a ++++=++且11a =,22a =,令1n =,可得123123a a a a a a =++,即33212a a =++,解得33a =,令2n =,可得234234a a a a a a =++,即44623a a =++,解得41a =,同理可得562,3,a a == ,可得数列{}n a 的周期为3,又由()sin n a A n c ωϕ=++,所以23w π=,所以23w π=,即2sin 3n a A n c πϕ⎛⎫=++⎪⎝⎭,又由12321322232333a Asin c a Asin c a Asin c πϕπϕπϕ⎧⎛⎫=++= ⎪⎪⎝⎭⎪⎪⎛⎫=++=⎨ ⎪⎝⎭⎪⎪⎛⎫=⨯++=⎪ ⎪⎝⎭⎩,解得23,233A c πϕ=-=-=,所以3A =-.13.1967年,法国数学家蒙德尔布罗的文章《英国的海岸线有多长?》标志着几何概念从整数维到分数维的飞跃.1977年他正式将具有分数维的图形成为“分形”,并建立了以这类图形为对象的数学分支——分形几何.分形几何不只是扮演着计算机艺术家的角色,事实表明它们是描述和探索自然界大量存在的不规则现象的工具.下面我们用分形的方法来得到一系列图形,如图1,线段AB 的长度为1,在线段AB 上取两个点C ,D ,使得13AC DB AB ==,以CD 为一边在线段AB 的上方做一个正三角形,然后去掉线段CD ,得到图2中的图形;对图2中的线段EC 、ED 作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第n 个图形(图1为第一个图形)中的所有线段长的和为n S ,对任意的正整数n ,都有n S a <,则a 的最小值为__________.【答案】2.【解析】设第n 个图形中新出现的等边三角形的边长为n a ,则当2n ≥时,21111333n n n a --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,设第n 个图形中新增加的等边三角形的个数为n b ,则当2n ≥时,22n n b -=,故121123n n n n S S ---⎛⎫-=⨯ ⎪⎝⎭,其中2n ≥,由累加法可得121121222123111223332313n n n S --⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=+⨯⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦- 1223n -⎛⎫=- ⎪⎝⎭,1n =时,11S =也符合该式,故1223n n S -⎛⎫=- ⎪⎝⎭,故2n S <对任意的1n ≥恒成立,故2a ≥即a 的最小值为2.故答案为:2.14.对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______.【答案】20【解析】由题可知0n S >,当1n >时,1111[()]2n n n n n S S S S S --=-+-化简可得2211n n S S --=,当22111,1n S a ===所以数列2{}n S 是以首项和公差都是1的等差数列,即2nn S n S =∴=又1n >时,22(2nS =记12121111S S S S =++一方面1]1)20S >=>另一方面11)]11)21S <+++=+= 所以2021S <<即[]20S =故答案为20三、解答题(本大题共3小题,共30分)15.已知等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=.(1)求数列{}n a 的通项公式;(2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T .【答案】(1)12nn a ⎛⎫=- ⎪⎝⎭(2)32342(1)(2)n n T n n +=-++【解析】(1)设等比数列{}n a 的公比为q ,由23424,,S S S -成等差数列知,324224S S S =-+,所以432a a =-,即12q =-.又2341216a a a ++=,所以231111216a q a q a q ++=,所以112a =-,所以等比数列{}n a 的通项公式12nn a ⎛⎫=- ⎪⎝⎭.(2)由(1)知1()22(2)log (2)nn b n n n =-+=+,所以11111(2)22n b n n n n ⎛⎫==- ⎪++⎝⎭所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和:11111111111224511233n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111112212n n ⎡⎤=+--⎢⎥++⎣⎦32342(1)(2)n n n +=-++所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和32342(1)(2)n n T n n +=-++16.设数列{}n a 的前n 项和为n S ,11(1)(,,0,1)1n n a q S a q R a q q-=∈≠≠-(1)求证:数列{}n a 是等比数列;(2)若*q N ∈,是否存在q 的某些取值,使数列{}n a 中某一项能表示为另外三项之和?若能求出q 的全部取值集合,若不能说明理由.(3)若q ∈R ,是否存在[3,)q ∈+∞,使数列{}n a 中,某一项可以表示为另外三项之和?若存在指出q 的一个取值,若不存在,说明理由.【答案】解:(1)见详解;(2)不存在;(3)不存在【解析】(1)n=1时,11a S a ==,2n ≥时,()1111n n n n n n aa S S q q aq q ---=-=-=-(n=1也符合)()1n n a aq n N -+∴=∈,1n n aq a +∴=,即数列{}n a 是等比数列.(2)若4321n n n n a a a a =++则()3421,2n n n nq q q q q N q =++∈≥可设4321n n n n >>>,两边同除以1n q 得:3141211n n n n n n q q q -----=因为左边能被q 整除,右边不能被q 整除,因此满足条件的q 不存在.(3)若4321n n n n a a a a =++则()3421,2n n n nq q q q q N q =++∈≥可设4321n n n n >>>,3q ≥ ,334442111·33n n n n n n n q q q q q q q q --=≥≥>++,∴4321n n n n a a a a =++不成立.17.已知无穷数列{}n a 与无穷数列{}n b 满足下列条件:①{0,1,2},n a n ∈∈*N ;②1111(1)||,24n n n n n b a a n b *++=-⋅-∈N .记数列{}n b 的前n 项积为n T .(1)若112341 ,0 , 2 ,1a b a a a =====,求4T ;(2)是否存在1234,,,a a a a ,使得1234,,,b b b b 成等差数列?若存在,请写出一组1234,,,a a a a ;若不存在,请说明理由;(3)若11b =,求2021T 的最大值.【答案】(1)43128T =;(2)不存在,理由见解析;(3)()10201002021max 12T ⎛⎫= ⎪⎝⎭.【解析】(1)12211(1)||242a a b b =-⋅-=-,232321(1)||244a ab b =-⋅-=-,334433(1)||2416a ab b =-⋅-=∴43128T =(2)不存在,假设存在,设1234,,,b b b b 公差为d若10b >,则2340,0,0b b b <<>,公差210d b b =-<,430d b b =->矛盾;若10b <,则2340,0,0b b b >><,公差210d b b =->,430d b b =-<矛盾.∴假设不成立,故不存在.(3)由题意110b =>,且43424140,0,0,0,k k k k b b b b ---><<>设111||24n n n q a a +=-,113,,,1424n q ⎧⎫∈⎨⎬⎩⎭,1n n n b q b +=得1n n n b q b +=⋅,进一步得21n n n n b q q b ++=⋅⋅显然1n n q q +⋅的值从大到小依次为3911,,,,4162L(ⅰ)若11n n q q +⋅=,则111n n q q +=⎧⎨=⎩,则112(,)(2,0)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩不可能(ⅱ)若134n n q q +⋅=,则1134n n q q +=⎧⎪⎨=⎪⎩或1341n n q q +⎧=⎪⎨⎪=⎩,则112(,)(2,0)(,)(2,1)n n n n a a a a +++=⎧⎨=⎩或112(,)(2,1)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩不可能(ⅲ)若1916n n q q +⋅=,则13434n n q q +⎧=⎪⎪⎨⎪=⎪⎩,则112(,)(2,1)(,)(2,1)n n n n a a a a +++=⎧⎨=⎩不可能∴112n n q q +⋅≤(当112(,)(2,0)(,)(0,2)n n n n a a a a +++=⎧⎨=⎩或112(,)(0,2)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩取得)从而212n n b b +≤,∴1111121122111111,22222n n n n n n nb b b b b ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤⋅=≤⋅≤⋅= ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.∴2021123202113520212462020||||||T b b b b b b b b b b b b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅L L L ≤210102100911111111222222⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯⨯⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦L L 123101010091008112++++++++⎛⎫= ⎪⎝⎭L L 2101010201001122⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(当{}n a :2,0,2,0,2,0,L L 取得)又20210T >,∴()10201002021max12T ⎛⎫= ⎪⎝⎭。
考点35等差数列(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)
考点35等差数列(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系【知识点】1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第项起,每一项与它的前一项的差都等于,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母表示,定义表达式为.(2)等差中项由三个数a,A,b组成等差数列,则A叫做a与b的等差中项,且有2A=.2.等差数列的有关公式(1)通项公式:a n=.(2)前n项和公式:S n=或S n=.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则.(3)若{a n}是等差数列,公差为d,则a k,a k+m ,a k+2m,…(k,m∈N*)是公差为的等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.(6)等差数列{a n}的前n项和为S n,{S n n}为等差数列.常用结论1.已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列,且公差为p.2.在等差数列{a n}中,a1>0,d<0,则S n存在最大值;若a1<0,d>0,则S n存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).这里公差d =2A【核心题型】题型一 等差数列基本量的运算(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .【例题1】(2024·陕西商洛·模拟预测)已知等差数列{}n a 满足2314a a +=,且428a a -=,则首项1a =( )A .1B .2C .3D .4【变式1】(2024·四川绵阳·模拟预测)已知首项16a =-的等差数列{}n a 中,2936a a a =,若该数列的前n 项和0n S =,则n 等于( )A .10B .11C .12D .13【变式2】(2024·陕西西安·模拟预测)已知等差数列{}n a 的前n 项和为n S ,若23a =,48S =,则5a =.【变式3】(2024·陕西西安·模拟预测)记n S 为等差数列{}n a 的前n 项和,已知315S =,535S =.(1)求{}n a 的通项公式;(2)设2nn na b =,求数列{}n b 的前n 项和n T .题型二 等差数列的判定与证明判断数列{a n }是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n 项和公式法.【例题2】(2024·全国·模拟预测)已知数列{}n a 的前n 项和为n S .若1143,1n n a a n a ++=+=,则10S =( )A .110B .115C .120D .125【变式1】(2024·辽宁·一模)已知数列{}n a 满足112n n a a n ++=+,则“数列{}n a 是等差数列”的充要条件可以是( )A .21a =B .252a =C .22a =D .23a =【变式2】(23-24高三下·山东菏泽·阶段练习)已知在数列{}n a 中,111,a a +ÎN ,数列{}n a 的前n 和为n S ,n S n ìüíýîþ为等差数列,1477S =,则100S =.【变式3】(2024·河北沧州·模拟预测)已知数列{}n a 满足()*1111,212n n n a a a a n ++=-=ÎN .(1)证明:数列11n a ìüí-îþ为等差数列,并求n a ;(2)令11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n T .题型三 等差数列的性质命题点1 等差数列项的性质等差数列项的性质的关注点(1)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质.(2)项的性质常与等差数列的前n 项和公式S n =n (a 1+a n )2相结合【例题3】(2024·山西运城·三模)已知数列{}n a 是等差数列,35122a a -=,则5108a a a +-=( )A .4B .2-C .4-D .8-【变式1】(2024·广东广州·模拟预测)在等差数列{}n a 中,若25192228a a a a +++=,则12a =( )A .45B .6C .7D .8【变式2】(2024·陕西西安·模拟预测)设{}n a 是等比数列,且1231a a a ++=,2342a a a ++=,则567a a a ++=.【变式3】(2023·陕西·模拟预测)已知等差数列{}n a 中,3623a a +=,则5a = .命题点2 等差数列前n 项和的性质等差数列前n 项和的常用的性质是:在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列,且有S 2n =n (a 1+a 2n )=…=n (a n +a n +1);S 2n -1=(2n -1)a n .【例题4】(2024·山东日照·三模)设等差数列{}n b 的前n 项和为n S ,若32b =,76b =,则9S =( )A .36-B .36C .18-D .18【变式1】(2024·广东茂名·模拟预测)公差不为零的等差数列{}n a 的前n 项和为n S ,若()824k S a a =+,则k =( )A .4B .6C .7D .9【变式2】(2024·上海·模拟预测)记等差数列{}n a 的前n 项和为n S ,76a =,则13S = .【变式3】(2024·全国·模拟预测)已知正项等比数列{}n a 满足79111264,2a a a a =+是9a 与13a 的等差中项.(1)求数列{}n a 的通项公式;(2)若2log n n b a =,求数列{}n b 的前n 项和.【课后强化】【基础保分练】一、单选题1.(2024·重庆渝中·模拟预测)已知等差数列{}n a 的前15项之和为60,则313a a +=( )A .4B .6C .8D .102.(2022高三上·河南·专题练习)若数列{}n na 的前n 项和2(1)(21)n T n n n =++,则数列{}n a 的前n 项和n S =( )A .211n n+B .212322n n +C .266n n +D .2612n n-+3.(2024·北京·模拟预测)记等差数列{}n a 的公差为d ,前n 项和为n S ,若51162a a +=,且13351S =,则该数列的公差d 为( )A .3B .4C .5D .64.(2024·湖北·模拟预测)已知n S 是等差数列{}n a 的前n 项和,若2463a a a ++=-,812S =-,则数列{}n a 的首项1a =( )A .3B .2C .1D .1-二、多选题5.(2024·贵州毕节·三模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21N n n S S a a n ==+Î,则( )A .21n a n =-B .2n S n =C .数列11n n a a +ìüíýîþ的前n 项和为221n n +D .数列{}2nn a +的前n 项和为1222++-n n 6.(2024·山东泰安·二模)已知等差数列{}n a 的前n 项和为n S ,24a =,742S =,则下列说法正确的是( )A .54a =B .21522n S n n =+C .n a n ìüíýîþ为递减数列D .11{}n n a a +的前5项和为421三、填空题7.(2024·湖南邵阳·三模)已知数列{}n a 与2n a n ìüíýîþ均为等差数列()*n ÎN ,且21a =,则2024a = .8.(宁夏石嘴山·一模)已知数列{}n a 满足11a =,()22221nn n S a n S =³-,其中n S 为{}n a 的前n 项和,则2016S = .9.(2024·湖南长沙·三模)已知数列{}n a 为正项等比数列,且233a a -=,则1a 的最小值为 .四、解答题10.(2024·黑龙江·三模)已知等差数列{}n a 的公差0d >,2a 与8a 的等差中项为5,且4624a a =.(1)求数列{}n a 的通项公式;(2)设2,1,n n n n a n b n a a+ìï=íïî为奇数,为偶数,求数列{}n b 的前20项和20T .11.(23-24高三下·广东广州·阶段练习)在一条只能沿单向行驶的高速公路上,共有()2n n ³个服务区.现有一辆车从第n 个服务区向第1个服务区行驶,且当它从第(1)k k n <£个服务区开出后,将等可能地停靠在第11k ~-个服务区,直到它抵达第1个服务区为止,记随机变量n X 为这辆车全程一共进入的服务区总数.(1)求3X 的分布列及期望;(2)证明:()()11n n E X E X +ìüïïíý-ïïîþ是等差数列.【综合提升练】一、单选题1.(2024·江苏徐州·模拟预测)若等差数列{}n a 满足141n n a a n ++=+,则1a =( )A .3B .32C .1D .122.(2022高三上·河南·专题练习)已知数列{}n a 的前n 项和为n S ,且13n n n S S a +=++,若39a =,则20=S ( )A .520B .530C .620D .6303.(2024·四川雅安·三模)在等差数列{}n a 中,若26510,9a a a +==,则8a =( )A .21B .24C .27D .294.(2024·广东茂名·二模)设等差数列{}n a 的前n 项和为n S ,且5425a a =+,则11S 的值是( )A .11B .50C .55D .605.(2024·河北石家庄·三模)已知等差数列{}n a 的前n 项和为195,1,627n S a S a ==+,则5S =( )A .25B .27C .30D .356.(2024·陕西·模拟预测)已知等差数列{}n a 的公差为d ,前n 项和为n S ,且()*2210n n a a n =+ÎN ,136S S =则d 的值为( )A .1B .2019C .2021D .-17.(2024·江西赣州·二模)在等差数列{}n a 中,2a ,5a 是方程280x x m -+=的两根,则{}n a 的前6项和为( )A .48B .24C .12D .88.(2024·浙江·模拟预测)已知数列{}n a 满足()()()2*1123214832,,1n n n a n a n n n n a ----=-+³Î=N ,则n a =( )A .22n -B .22n n-C .21n -D .2(21)n -二、多选题9.(2024·福建福州·模拟预测)已知等差数列{}n a 的前n 项和为25,4,35n S a S ==,则( )A .n na 的最小值为1B .n nS 的最小值为1C .n S n ìüíýîþ为递增数列D .2n a n ìüíýîþ为递减数列10.(23-24高三上·全国·阶段练习)已知数列{}n a 满足11312,1n n n a a a a +-==+,则下列说法正确的是( )A .353=a B .数列{}n a 为递减数列C .数列11n a ìüíý-îþ为等差数列D .31n n a n +=+11.(2024·全国·模拟预测)已知数列{}n a 满足()*1,n n a a f n n ++=ÎN ,则下列说法中正确的是( )A .若()2f n n =,则存在1a ,使得{}n a 是等差数列B .若()2f n n =,则存在1a ,使得{}n a 是等比数列C .若()0f n =,则存在1a ,使得{}n a 是等差数列D .若()0f n =,则存在1a ,使得{}n a 是等比数列三、填空题12.(2024·陕西商洛·模拟预测)已知等差数列{}n a 的前n 项和为n S ,且2856S =,则121314151617a a a a a a +++++=.13.(2024·河南开封·三模)记n S 为等差数列{}n a 的前n 项和,若18a =,460a a +=,则5S = .14.(2024·黑龙江大庆·模拟预测)已知等差数列{}n a 的前n 项和为n S ,公差为d ,且{}n S 单调递增,若55a =,则公差d 的取值范围为 .四、解答题15.(2024·四川·模拟预测)已知数列{}n a 满足132a =,112n n a a ++=.(1)证明数列11n a ìüíý-îþ是等差数列,并求{}n a 的通项公式;(2)若数列{}n b 满足,()()111n n n b a a +=--,求{}n b 的前n 项和n S .16.(2023·江西·模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足36933a a a ++=,749=S .(1)求{}n a 的通项公式;(2)若数列{}n b 满足2n n n b a =×,求{}n b 的前n 项和n T .17.(2024·四川成都·模拟预测)已知等差数列{}n a 的首项10a ¹,公差为(0)n d d S ¹,为{}n a 的前n 项和,n n S a ìüíýîþ为等差数列.(1)求1a 与d 的关系;(2)若11n a T =,为数列11n n a a +ìüíýîþ的前n 项和,求使得89n T <成立的n 的最大值.18.(2024·河北沧州·模拟预测)设正项数列{}n a 的前n 项和为n S12n a +=.(1)求数列{}n a 的通项公式;(2)设2nn n a b S n=-,求数列{}n b 的前n 项和n T .19.(2024·山东潍坊·三模)已知正项等差数列{}n a 的公差为2,前n 项和为n S ,且12311S S S ++,,成等比数列.(1)求数列{}n a 的通项公式n a ;(2)若()1,1sin ,2n n n n S b n S n p ìïï=í-ï×ïî为奇数,为偶数,求数列{}n b 的前4n 项和.【拓展冲刺练】一、单选题1.(2024·河北保定·三模)已知在等差数列{}n a 中,11a =,公差0d >.若数列24n a n ìü-íýîþ也是等差数列,则d =( )A .1B .2C .3D .42.(2024·广东广州·模拟预测)已知等差数列{}n a 的前n 项和为n S ,若88S =,则63a a +=( )A .1B .2C .4D .63.(2024·重庆·三模)等差数列{}n a 的前n 项和为n S ,若()723570,80S a a a =+=,则公差d =( )A .12B .2C .3D .44.(2024·广西河池·模拟预测)记单调递增的等差数列{}n a 的前n 项和为n S ,若12a =且1523a a a a =,则10S =( )A .70B .65C .55D .50二、多选题5.(2024·辽宁·一模)等差数列{}n a 中,10a >,则下列命题正确的是( )A .若374a a +=,则918S =B .若150S >,160S <,则2289a a >C .若125a a +=,349a a +=,则7817a a +=D .若810a S =,则90S >,100S <6.(2024·全国·一模)已知数列{}n a :1,1,2,1,3,5,1,4,7,10,L ,其中第1项为1,接下来的2项为1,2,接下来的3项为1,3,5,再接下来的4项为1,4,7,10,依此类推,则( )A .2021a =B .2(1)222n n a n n +=-+C .存在正整数m ,使得m a ,1m a +,2m a +成等比数列D .有且仅有3个不同的正整数m ,使得12156m m m a a a ++++=三、填空题7.(2024·四川凉山·二模)设等差数列{}n a 的前n 项和为n S ,若3510a a +=,4950a a =,则6S = .8.(2024·四川攀枝花·三模)等差数列{}n a 的前n 项和为352,7,7n S a S a ==,则6a = .9.(2023·福建·模拟预测)已知数列{}n a 的首项不为零,满足321n n n n a a a a +++-=-,313a a =,则12023a a = .四、解答题10.(2022·福建厦门·模拟预测)等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S £.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .11.(2024·广东·模拟预测)已知数列{}n a 与{}n b 为等差数列,23a b =,112a b =,{}n a 前n 项和为2192n n +.(1)求出{}n a 与{}n b 的通项公式;(2)是否存在每一项都是整数的等差数列{}n c ,使得对于任意N n +Î,n c 都能满足22n n n nn n n n n a b a b a b a b c +--++-££.若存在,求出所有上述的{}n c ;若不存在,请说明理由.。
2020版高考数学理科人教通用版核心讲练大一轮复习-10.8第八节 二项分布、正态分布及其应用
1
P(AB)= P(A)
4 1
=1 2
.
2
4
2
2.从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结 果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75), [75,85]内的频率之比为4∶2∶1. (1)求这些产品质量指标值落在区间[75,85]内的频率. (2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中 质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.
512
乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音
乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200 分).设每次击鼓出现音乐的概率为 1 ,且各次击鼓出现音乐相互独立.
2
(1)设每盘游戏获得的分数为X,求X的分布列.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
因为X的所有可能取值为0,1,2,3,
且P(X=0)=C30 ×0.60×0.43=0.064, P(X=1)=C13 ×0.61×0.42=0.288, P(X=2)=C32 ×0.62×0.41=0.432, P(X=3)=C33 ×0.63×0.40=0.216, 所以X的分布列为
X
0
1
P
0.064 0.288
A. 2 B. 4
9
9
C. 2
D. 7
3
9
【解析】选D.甲不跑第一棒共有 A13gA=3318(种)情况, 甲不跑第一棒且乙不跑第二棒共有两类:
(1)乙跑第一棒,共有 A=336(种)情况; (2)乙不跑第一棒,共有 A12 gA=12 g8A(22种)情况,所以在甲不跑第一棒的条件下, 乙不跑第二棒的概率为 6 8=7 .
1271_2023年新高考数学一轮复习核心考点习题:七种零点问题(原卷版)_0
七种零点问题方法技巧1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下:(1)确定内层函数()u g x =和外层函数()y f u =;(2)确定外层函数()y f u =的零点()1,2,3,,i u u i n == ;(3)确定直线()1,2,3,,i u u i n == 与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、L 、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++ .能力拓展题型一:零点存在定理法判断函数零点所在区间一、单选题1.(2022·河南河南·三模(理))若实数a ,b ,c 满足13log 4a =,37b =,2ln c c=,则()A .a b c <<B .b c a<<C .a c b <<D .b a c<<2.(2022·黑龙江·双鸭山一中高三期末(理))函数1()2ln 3f x x x=--的零点所在的区间为()ln 20.693,ln 3 1.099,ln 5 1.609≈≈≈()A .3,4()B .4,5()C .5,6()D .8,9()3.(2022·北京密云·高三期末)心理学家有时使用函数()()1e kt L t A -=-来测定在时间()t min 内能够记忆的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生有200个单词要记忆,心理学家测定在5min内该学生记忆20个单词.则记忆率k 所在区间为()A .1(0,20B .11(,)2015C .11(,)1510D .1(,1)104.(2022·河南焦作·一模(理))设函数()23xxf x =+的零点为0x ,则0x ∈()A .()4,2--B .()2,1--C .()1,2D .()2,45.(2021·江苏·泰州中学高三阶段练习)已知2log 3a =,函数()e ln 4=+-xf x x 的零点为b ,()3212g x x x x =--的极小值点为c ,则()A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f b f c f a >>D .()()()f c f a f b >>6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为()A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭二、多选题7.(2022·湖北·荆州中学高三开学考试)函数4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭在区间0,2π⎛⎫⎪⎝⎭的最小值为1-,且在区间,2ππ⎛⎫⎪⎝⎭唯一的极大值点0x .则下列说法正确的有()A .1a =B .03,24x ππ⎛⎫∈ ⎪⎝⎭C .03,4x ππ⎛⎫∈ ⎪⎝⎭D .()01f x <8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是()A .函数()xf x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是()A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<<三、填空题10.(2022·全国·高三专题练习)下列命题中,正确的是___________.(写出所有正确命题的编号)①在ABC 中,A B >是sin sin A B >的充要条件;②函数2(1)1y x x x =+<-的最大值是1+③若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;④若函数2()(0)f x ax bx c a =++>,(1)2af =-,则函数()f x 在区间(0,2)内必有零点.11.(2022·全国·高三专题练习)已知函数()()2e xf x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:①存在实数a ,使得导函数()f x '为增函数;②当0a >时,函数()f x 不单调;③当21a -<≤-时,函数()f x 在R 上单调递减;④当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______.12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.13.(2022·全国·高三专题练习)已知a ,b 均为正实数,且满足21log 2aa ⎛⎫⎪=⎝⎭,122log bb =,则下面四个判断:①n 0()l a b ->;②21b a -<;③11a b->-;④22log 0log a b >>.其中一定成立的有__(填序号即可).14.(2020·湖南邵阳·三模(理))在数学中,布劳威尔不动点定理是拓朴学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石,简单来讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使()00f x x =,那么我们称该函数()f x 为“不动点”函数,给出下列函数:①()224f x x x =+-;②()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩③()()21xf x e x =+-;④()ln f x ax x a =--(01a <<);⑤()2f x x x =+;其中为“不动点”函数的是_________.(写出所有满足条件的函数的序号)15.(2020·全国·高三专题练习(理))函数f (x )=1+x -22x +33x ,g (x )=1-x +22x -33x ,若函数F (x )=f (x +3)g (x -4),且函数F (x )的零点均在[a ,b ](a <b ,a ,b ∈Z )内,则b -a 的最小值为________.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点;(2)若()f x 在其定义域上单调递减,求a 的取值范围.17.(2022·贵州遵义·高三开学考试(理))已知函数()22()33e (0)22xa af x x x x ax x =-+-+->.(1)讨论()f x 的导函数()f x ¢零点的个数;(2)若()f x 的最小值为e ,求a 的取值范围.题型二:方程法判断零点个数一、单选题1.(2022·福建福州·三模)已知函数()2cos 1xf x x π=+,以下结论中错误的是()A .()f x 是偶函数B .()f x 有无数个零点C .()f x 的最小值为12-D .()f x 的最大值为12.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为()A .1个B .2个C .3个D .4个3.(2022·安徽·芜湖一中一模(理))声音是由物体振动产生的声波,我们听到的声音中包含着正弦函数.若某声音对应的函数可近似为1()sin sin 22f x x x =+,则下列叙述正确的是()A .2x π=为()f x 的对称轴B .3,02π⎛⎫⎪⎝⎭为()f x 的对称中心C .()f x 在区间[]0,10上有3个零点D .()f x 在区间57,33ππ⎡⎤⎢⎥⎣⎦上单调递增4.(2022·全国·高三专题练习)已知函数,则函数()||y f x x =-零点个数为()A .0B .1C .2D .3二、多选题5.(2022·海南海口·模拟预测)已知函数()1x f x x+=,则()A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在()0,+∞上单调递减D .()f x 有两个零点6.(2022·全国·高三专题练习)已知函数()(sin cos )sin cos f x x x x x =+⋅-,下列说法正确的是().A .()f x 是周期函数B .若12()()2f x f x +=,则122k x x π+=(k Z ∈)C .()f x 在区间[,]22ππ-上是增函数D .函数()()1g x f x =+在区间[0,2]π上有且仅有一个零点7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是()A .22x x +B .1x +C .cos xe D .ln(||1)x +8.(2022·全国·高三专题练习(理))关于函数()sin |||cos |f x x x =+有下述四个结论,则()A .()f x 是偶函数B .()f x 的最小值为1-C .()f x 在[2,2]ππ-上有4个零点D .()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增三、填空题9.(2022·福建·模拟预测)已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.10.(2022·河南·襄城县教育体育局教学研究室二模(文))已知函数()23,0,1,01x x m x f x mx x x ⎧++≤⎪=⎨+->⎪+⎩有3个零点,则实数m 的取值范围为______.四、解答题11.(2022·全国·模拟预测(文))已知函数()()2e xf x ax x a =-+.(1)讨论()f x 的单调性;(2)当102a <<时,证明()f x 在R 上有且仅有两个零点.12.(2022·四川省高县中学校模拟预测(文))已知函数()()3211132f x ax a x =+-.(1)当3a =时,判定()f x 的零点的个数;(2)是否存在实数a ,使得当(),2x ∈-∞时,()0f x ≤恒成立?若存在,求出a 的取值范围;若不存在,请说明理由.题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩,则下列关于函数()f x 的描述中,其中正确的是().①当0a =时,函数()f x 没有零点;②当02a <<时,函数()f x 有两不同零点,它们互为倒数;③当2a =时,函数()f x 有两个不同零点;④当2a >时,函数()f x 有四个不同零点,且这四个零点之积为1.A .①②B .②③C .②④D .③④2.(2022·河南安阳·模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足()A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =3.(2022·安徽·模拟预测(文))已知函数()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩,若()()g x f x a =-有4个零点,则实数a的取值范围是()A .()0,1B .(]0,1C .[]0,1D .[)1,+∞4.(2022·河南河南·三模(理))函数()112e e 1x xf x x --=---的所有零点之和为()A .0B .2C .4D .6二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是()A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k ∈N ;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;6.(2022·江苏·南京市宁海中学模拟预测)已知()f x 是定义在R 上的偶函数,且对任意x ∈R ,有()()11f x f x -=-+,当[]0,1x ∈时,()22f x x x =+-,则()A .()f x 是以2为周期的周期函数B .点()3,0-是函数()f x 的一个对称中心C .()()202120222f f +=-D .函数()()2log 1y f x x =-+有3个零点三、填空题7.(2022·四川·成都七中三模(文))已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.8.(2022·内蒙古呼和浩特·一模(理))下面四个命题:①已知函数()f x 的定义域为R ,若()2f x +为偶函数,()21f x +为奇函数,则()30f =;②存在负数k ,使得()lg 2f x x kx =--恰有3个零点;③已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则15a =;④设一组样本数据12,,,n x x x 的方差为0.01,则数据1210,10,,10n x x x 的方差为0.1其中真命题的序号为___________.9.(2022·四川成都·二模(文))定义在R 上的奇函数f (x )满足()()2f x f x =-,且当[]0,1x ∈时,()2f x x =.则函数()()27x g x f x -=-的所有零点之和为______.10.(2022·全国·高三专题练习)已知()lg 2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点;(2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点.以上正确结论的序号是__.四、解答题11.(2022·北京·高三学业考试)给定集合(,0)(0,)D =-∞+∞ ,()f x 为定义在D 上的函数,当0x <时,24()4xf x x =+,且对任意x D ∈,都有___________.从条件①、条件②、条件③这三个条件中选择一个作为已知,补充在横线处,使()f x 存在且唯一确定.条件①:()()1f x f x -+=;条件②:()()1f x f x -⋅=;条件③:()()1f x f x --=.解答下列问题:(1)写出(1)f -和(1)f 的值;(2)写出()f x 在(0,)+∞上的单调区间;(3)设()()()g x f x m m =-∈R ,写出()g x 的零点个数.12.(2021·河北·高三阶段练习)已知函数()()23cos sin 022πf x ωx ωx ωx ω⎛⎫=-++> ⎪⎝⎭的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)若先将函数()f x 图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将其图像向左平移6π个单位长度,得到函数()g x 的图像,求方程()lg 10g x x --=在()0,∞+上根的个数.13.(2021·辽宁·高三阶段练习)已知函数21()cos cos (0)22f x x x x πωωωω⎛⎫=++-> ⎪⎝⎭的最小正周期为π.(I )求函数()f x 的解析式;(II )若先将函数()f x 的图象向左平移12π个单位长度,再将其图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()g x 的图象,求()|lg |y g x x =-在(0,)+∞上的零点个数.题型四:转化法判断函数零点个数一、单选题1.(2022·安徽·巢湖市第一中学高三期中(文))已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为()A .3B .4C .5D .62.(2022·全国·()()1,1ln 1,1x x f x x x -+≤⎧=⎨->⎩,则函数()()2g x f f x ⎡⎤⎣⎦=-的零点个数为()A .3B .4C .2D .13.(2021·天津市实验中学滨海学校高三期中)已知函数1,0,()ln(),0,x x f x x x x ⎧+>⎪=⎨⎪-<⎩则函数2()()y f x mf x m =-+的零点个数不可能是()A .1B .2C .3D .44.(2021·辽宁沈阳·高三阶段练习)对于任意正实数,,m n p ,关于x 的方程2112x xpmx mx n e e ---+=+的解集不可能是()A .{}1B .{}0,2C .{}0,1,2D .∅二、多选题5.(2022·江苏无锡·高三期末)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是()A .函数()f x 是R 上的单调递增函数B .函数2()()3g x f x x =-有2个零点C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+6.(2022·全国·高三专题练习)定义域和值域均为[],a a -(常数0a >)的函数()y f x =和()yg x =图象如图所示,给出下列四个命题,那么,其中正确命题是()A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有九个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解三、填空题7.(2022·全国·高三专题练习)已知()f x 是定义在R 上的奇函数,当0x ≥时,()f x =24x x -,则方程()2f x x =-解的个数为___________.8.(2021·全国·模拟预测)已知函数()21,0,ln ,0,x x f x x x ⎧-≤=⎨>⎩若直线y kx =与函数()f x 的图象交于A ,B 两点,且满足OA OB =,其中O 为坐标原点,则k 值的个数为___________.四、解答题9.(2021·全国·高三专题练习)证明:函数()()3log 1f x x =+的图象与()2log g x x =的图象有且仅有一个公共点.10.(2020·安徽·淮南市第五中学高三阶段练习(理))已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-(1)求(1)f ,(2)f -的值;(2)求()f x 的解析式并画出函数的简图;(3)讨论方程()f x k =的根的情况.题型五:零点存在定理与函数性质结合判断零点个数一、单选题1.(2022·广东韶关·二模)已知直线0l y kx k =>:()既是函数()21f x x =+的图象的切线,同时也是函数()()ln 1pxg x x p R x =+∈+的图象的切线,则函数()g x 零点个数为()A .0B .1C .0或1D .1或22.(2022·天津·高三专题练习)设函数()lg ,0sin ,04x x x f x x x πωπ+>⎧⎪=⎨⎛⎫+-≤≤ ⎪⎪⎝⎭⎩有5个不同的零点,则正实数ω的取值范围为()A .1317,44⎡⎫⎪⎢⎣⎭B .13,4⎛⎫+∞ ⎪⎝⎭C .17,4⎛⎤-∞ ⎥⎝⎦D .1319,44⎡⎤⎢⎥⎣⎦3.(2022·全国·高三专题练习(理))已知函数()()2e 2e x xf x a a x =+--有两个零点,则a 的取值范围为()A .()1,0-B .()0,1C.(D .()1,e 二、多选题4.(2021·江苏·泰州中学高三阶段练习)已知函数f (x )=sin(|cos x |)+cos(|sin x |),则以下结论正确的是()A .f (x )的图象关于直线2x π=对称B .f (x )是最小正周期为2π的偶函数C .f (x )在区间(0,2π上单调递减D .方程1()2f x x =恰有三个不相等的实数根5.(2021·湖北恩施·高三开学考试)已知函数()12cos f x x x x =+-,则以下说法正确的是()A .()f x 是偶函数B .()f x 在(0,)+∞上单调递增C .当0x ≤时,()1f x ≤-D .方程()0f x =有且只有两个实根6.(2022·全国·高三专题练习)函数()()()2210log 0xx f x x x ⎧-≤⎪=⎨>⎪⎩,则下列说法正确的有()A .函数()f x 是R 上的单调递增函数B .对于任意实数a ,不等式()()21f a f a +≥-恒成立C .若12x x ≠,且()()12f x f x =,则120x x +<D .方程()()0f x f x --=有3个不相等实数解三、解答题7.(2022·江西南昌·二模(文))已知函数()()2110,2xf x e ax x x a --->=∈R .(1)当0a =时,求函数()f x 的单调区间;(2)若1a >,证明:方程()0f x =有且仅有一个正根.8.(2022·河北·模拟预测)已知函数()12f x x=.(1)请研究函数()()sin g x f x x =-在[)(]2π,00,2πx ∈-⋃上的零点个数并证明;(2)当0x >时,证明:()()112e xf x f x ++>⎡⎤⎡⎤⎣⎦⎣⎦.9.(2022·全国·高三专题练习)设a 为实数,函数2()()||(1)f x x a x a a a =-+---.(1)若(0)1f,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a >时,讨论()||f x x +在R 上的零点个数.10.(2022·全国·高三专题练习)已知函数()sin e xf x x ax =++.(1)若0a =,求函数()f x 在,22ππ⎛⎫- ⎪⎝⎭上的零点个数;(2)当[)0,x ∈+∞时都有()1f x ≥,求实数a 的取值范围.题型六:利用函数零点(方程有根)求参数值或参数范围一、单选题1.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .22.(2022·湖南岳阳·三模)已知函数2()lg ()6a f x x x x =+-,若不等式()0f x >有且仅有2个整数解,则实数a 的取值范围是()A .(lg3,lg 2)--B .(lg3,lg 2]--C .(lg 2,lg3)D .[lg 2,lg3)3.(2022·山西·模拟预测(文))已知函数()24,1,ln 1,1,x x a x f x x x ⎧++<=⎨+≥⎩若函数()2y f x =-有三个零点,则实数a 的取值范围是()A .(,2)-∞B .()3,4-C .(3,6)-D .(3,)-+∞二、多选题4.(2021·辽宁·东北育才学校二模)一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1(,0]4m ∈-D .二次函数()212f x x x =-+存在“3倍跟随区间”三、填空题5.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.6.(2022·四川·石室中学三模(文))若函数()()()221f x x xax b =-++的图象关于直线2x =对称,且直线y k=与函数()f x 的图象有三个不同的公共点,则实数k 的值为______.四、解答题7.(2021·辽宁·东北育才学校二模)已知二次函数()y f x =满足以下条件:①经过原点(0,0);②R x ∀∈,()(2)f x f x =-;③函数()1y f x =+只有一个零点(1)求二次函数()y f x =的解析式;(2)若函数()||||e 12()e 1x x f g x -+=-与()||()2e 142x h x t t =⋅-+-的图象有两个公共点,求实数t 的取值范围.题型七:利用函数的交点(交点个数)求参数一、单选题1.(2022·河南安阳·模拟预测(理))已知函数()1,0,ln ,0,x a x f x x x ⎧+≤⎪=⎨>⎪⎩(0a >且1a ≠),若函数()()y f f x a=-的零点有5个,则实数a 的取值范围为()A .2a =B .ln 21a ≤<或12a <<C .0ln 2a <≤或12a <<或2a =D .ln 21a ≤<或2a =2.(2022·山东济宁·二模)已知函数(),0ln ,0x x f x a x x ≤⎧=⎨>⎩,若函数()()()g x f x f x =--有5个零点,则实数a 的取值范围是()A .()e,0-B .1,0e ⎛⎫- ⎪⎝⎭C .(),e -∞-D .1,e⎛⎫-∞- ⎪⎝⎭3.(2022·全国·模拟预测(理))已知函数()1f x +的图象关于直线1x =-对称,对x ∀∈R ,都有()()31f x f x -=+恒成立,当[]0,2x ∈时,()212f x x =,当0k >时,若函数()f x 的图象和直线()4y k x =+有5个交点,则k 的取值范围为()A .12,33⎛⎫ ⎪⎝⎭B .11,52⎛⎫ ⎪⎝⎭C .11,53⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭二、多选题4.(2022·福建莆田·三模)已知函数231,1()41613,1x x f x x x x ⎧-<⎪=⎨-+-≥⎪⎩,函数()()g x f x a =-,则下列结论正确的是()A .若()g x 有3个不同的零点,则a 的取值范围是[1,2)B .若()g x 有4个不同的零点,则a 的取值范围是()0,1C .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则344x x +=D .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则34x x 的取值范围是137,42⎛⎫⎪⎝⎭5.(2022·辽宁鞍山·二模)已知函数()()22log ,(02)813,2x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩,若()f x a =有四个不同的实数解1x ,2x ,3x ,4x ,且满足1234x x x x <<<,则下列命题正确的是()A .01a <<B .12922,2x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣三、填空题6.(2022·贵州毕节·三模(文))已知函数()()1sin 02f x x x ωωω=>在[]0,2π有且仅有3个零点,则ω的取值范围为__________.7.(2022·福建宁德·模拟预测)已知()f x 是定义在R 上的偶函数,当0x ≥时,()()22e 24x f x x a a =-+-.若()f x 的图象与x 轴恰有三个交点,则实数a 的值为___________.8.(2022·全国·三模(理))已知()f x 是定义在R 上的奇函数,且()1f x +是偶函数,当01x ≤≤时,()()2log 1f x x =-+.设()()()g x f x f x =+,若关于x 的方程()20g x mx --=有5个不同的实根,则实数m 的取值范围是__________.9.(2022·新疆昌吉·二模(文))已知函数()()216249,111,19x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩,若关于x 的方程()()f x m m R =∈有三个不同的实根,则m 的取值范围为______.四、解答题10.(2022·北京密云·高三期中)已知函数2()ln(21)f x x x ax =+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当0a <时,求证:函数()f x 存在极小值;(3)请直接写出函数()f x 的零点个数.。
考点37数列求和(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)
考点37数列求和(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.熟练掌握等差、等比数列的前n项和公式2.掌握非等差数列、非等比数列求和的几种常用方法.【知识点】数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:S n==.(2)等比数列的前n项和公式:S n={na1,q=1,.2.分组求和法与并项求和法(1)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧(1)1n(n+1)=1n-1n+1.(2)1n(n+2)=12(1n-1n+2).(3)1(2n -1)(2n +1)=12(12n -1-12n +1).1(5)1n (n +1)(n +2)=12[1n (n +1)-1(n +1)(n +2)].常用结论常用求和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2.(3)12+22+32+…+n 2=n (n +1)(2n +1)6.(4)13+23+33+…+n 3=[n (n +1)2]2【核心题型】题型一 分组求和与并项求和 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n ={a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和【例题1】(2024·河北·模拟预测)已知首项为2的数列{}n a 满足114522n n n n a a a a ++--=,当{}n a 的前n 项和16n S ³时,则n 的最小值为( )A .40B .41C .42D .43【变式1】(2024·四川攀枝花·三模)数列{}n a 的前n 项和为n S ,11a =-,*(1)(N )n n na S n n n =+-Î,设(1)nn n b a =-,则数列{}n b 的前51项之和为( )A .149-B .49-C .49D .149【变式2】(2024·山东菏泽·模拟预测)已知正项数列{}n a 的前n 项和为13,1,2n S a a ==,且213n n n n a a a a +++=,则16S 的最小值为 .【变式3】(2024·全国·高考真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.题型二 错位相减法求和(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式时必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1【例题2】(2024·全国·模拟预测)已知数列{}n a 满足11121440,2n n n a a a a a +--+===,其前n 项和为n S ,则使得625n n S a -<成立的n 的最小值为( )A .8B .9C .10D .11【变式1】(2024·全国·模拟预测)已知n S 是数列{}n a 的前n 项和,12a =,()122nn n a a +=+,不等式21212820n n a S n l +--+£对任意的*n ÎN 恒成立,则实数l 的取值范围为( )A .(],32-¥B .(],16-¥C .[)32,+¥D .(],8¥-【变式2】(2023·陕西咸阳·模拟预测)数列{}n a 满足12a =,且123132nn a a n n -=+-(*n ÎN 且1n >),若{}n a 的前n 项和为n S ,则满足21732n S >的最小正整数n 的值为 .【变式3】(2024·陕西渭南·模拟预测)已知各项均为正数的数列{}n a 的前n 项和为n S ,()21n n S n a =+且2132a a =.(1)求{}n a 的通项公式;(2)若2nn na b =,求数列{}n b 的前n 项和n T .题型三 裂项相消法求和裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项【例题3】(2024·福建泉州·一模)记数列{}{},n n a b 的前n 项和分别为,n n S T ,若{}n a 是等差数列,且6512590,1n n n S S a b a +=+==,则10T =( )A .245B .845C .1041D .4041【变式1】(2024·辽宁大连·模拟预测)已知数列{}n a 的前n 项的积为n T ,1nn n T a T =-,则使得212024ni i a =<å成立的n 的最大值为( )A .2021B .2022C .2023D .2024【变式2】(2024·山西阳泉·三模)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,则数列()()12n n n a a a ìüïïíý++ïïîþ的前100项和100T = .【变式3】(2024·湖南衡阳·模拟预测)已知等差数列{}n a 的前n 项和为n S ,且{}2n S n +也是等差数列.(1)求数列{}n a 的公差;(2)若11a =-,求数列11n n a a +ìüíýîþ的前n 项和n T .【课后强化】【基础保分练】一、单选题1.(2024·安徽合肥·模拟预测)已知数列{}n a 各项为正数,{}n b 满足21n n n a b b +=,112n n n a a b +++=,若12a =,11b =,则122024111a a a +++=L ( )A .10121013B .10111012C .20242025D .202320242.(2024·河南信阳·模拟预测)已知数列{}n a 的前n 项和为n S ,11S =,23S =,且132+n a 是2n a ,2n a +的等差中项,则使得1509128ni i i a =>å成立的最小的n 的值为( )A .8B .9C .10D .113.(2023·黑龙江佳木斯·三模)复数232024i 2i 3i 2024i Z =+++×××+的虚部是( )A .1012B .1011C .1011-D .1012-4.(2024·河北张家口·三模)已知数列{}n a 的前n 项和为n S ,且满足111,1,2,n n n a n a a a n ++ì==íî为奇数为偶数,则100S =( )A .5132156´-B .5132103´-C .5032156´-D .5032103´-二、多选题5.(2024·全国·模拟预测)已知2n n a =,31n b n =-,数列{}n a 和{}n b 的公共项由小到大排列组成数列{}n c ,则( )A .432c =B .{}n c 为等比数列C .数列n n b a ìüíýîþ的前n 项和[)1,5n S ÎD6.(2024·全国·模拟预测)已知数列{}n a 中,123,2a a ==,当n 为奇数时,23n n a a +=,当n 为偶数时,22n n a a +=,则( )A .数列{}n a 是递减数列B .814a =C .101110aa <D .10019i i a =<å三、填空题7.(2024·湖南岳阳·模拟预测)设n S 为等差数列{}n a 的前n 项和,131,6a S ==,则数列11n n a a +ìüíýîþ的前10项和为 .8.(2023·河南·模拟预测)已知数列{}n a 满足212n a a a n ++×××+=,则1212222n n a a a ×+×+×××+×= .9.(2024·陕西·模拟预测)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,则数列{}2n n a 的则前n 项和n T = .四、解答题10.(2024·湖南岳阳·模拟预测)已知数列的前n 项和为()12n n +.(1)求数列{}n a 的通项公式;(2)证明:()()33221331n n n a a a n +-=++,并求数列{}n a 的前n 项和n S .11.(2024·黑龙江双鸭山·模拟预测)记n S 为数列{}n a 的前n项和,是首项与公差均为1的等差数列.(1)求数列{}n a 的通项公式;(2)设()(1)1n n n na b S -+=,求数列{}n b 的前2024项的和2024T .【综合提升练】一、单选题1.(2024·浙江杭州·二模)设数列{}{},n n a b 满足11111,2,2n n n n n a b a b n a b ++==+=+=.设nS 为数列{}n n a b +的前n 项的和,则7S =( )A .110B .120C .288D .3062.(2024·安徽·三模)记数列{}n a 的前n 项和为n S ,若2111,321n n a S S n n +=+=++,则20S =( )A .590B .602C .630D .6503.(2024·湖南衡阳·模拟预测)已知数列{}n a 满足:11a =,()12n n a a n n -=+³,且1n nb a =,则数列{}n b 前n 项的和n S 为( )A .1n n S n =+B .21n nS n =+C .2n nS n =+D .232n n S n =+4.(2024·全国·模拟预测)已知数列{}n a 的前n 项和n S 满足*)2(13)(n n S a n +=ÎN ,若11n n n n a b S S ++=,数列{}n b 的前n 项和为n T ,则2024T =( )A .202511231--B .202411231--C .20241131--D .20251131--5.(2023·江苏南通·三模)复数22021202212i 3i 2022i 2023i z =+++++L 的虚部为( ).A .1012B .1011-C .1011D .20226.(2024·全国·二模)数列{}n a 的奇数项成等比数列,偶数项成等比数列,n S 是数列{}n a 的前n 项和,13a =,22a =,34a a =,47S =,则( )A .*221,N k k a a k +<Î,且2k ³B .当5n ³,且*N n Î时,数列{}n a 是递减数列C .101110a a <D .1009S <7.(2024·湖南衡阳·模拟预测)已知公差不为零的等差数列{}n a 满足:3820a a +=,且5a 是2a 与14a 的等比中项,设数列{}n b 满足()*11N n n n b n a a +=Î,则数列{}n b 的前n 项和n S 为( )A .1212121nn n -=++B .12212121n n n ++=++C .1112212+1æö-=ç÷+èønn n D .11+112212+1æö+=ç÷+èøn n n 8.(2024·河南·三模)已知等差数列{}n a 的公差大于0且1624a a a +=,若246k ==,则5a =( )A .134B .94C .74D .54二、多选题9.(2024·安徽淮北·二模)已知数列{}{},n n a b 的前n 项和分别为,n n S T ,若121,22n n n a n T +=-=-,则( )A .10100S =B .101024b =C .11n n a a +ìüíýîþ的前10项和为919D .1n b ìüíîþ的前10项和为1023102410.(23-24高三上·山西忻州·阶段练习)已知数列{}n a 的前n 项积为n T ,11223n n a T T +=-=,*n ÎN (),则( )A .31=-n n T B .{}n a 为递增数列C .13131n n n a --=-D .{}n T 的前n 项和为13322n n +--11.(2024·山东济南·二模)数列{}n a 满足11a =,*1*1,N 41,N 4n n n n a a n a --ìÎïï=íï+Ïïî,2n ³,m b 表示{}n a 落在区间)12,2m m +éë的项数,其中*m ÎN ,则( )A .310b =B .33344n n n a +££C .42163==+ånk k a n nD .()214413n nk k b ==-å三、填空题12.(2024·江苏泰州·模拟预测)设n S 为数列{}n a 的前n 项和,()112nn n n S a =--,n *ÎN ,则(1)1a = ;(2)12100S S S ++×××+= .13.(2024·江苏南通·模拟预测)定义:[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,如[]1.21=,{}1.22=.设函数()[]{}f x x x =在定义域[)()*0,N n n Î上的值域为n C ,记n C 中元素的个数为n a ,则2a =,12111na a a +++=L 14.(2023·全国·模拟预测)已知数列{}n a 为公差不为0的等差数列,35a =,且2514,,a a a 成等比数列,设[]x 表示不超过x 的最大整数,如[]3.53=,[]1.52-=-,记[]2log n nb a =,n S 为数列{}n b 的前n 项和,则2024S = .四、解答题15.(2024·山东·模拟预测)设数列{}n a 满足()122n n na n a +=+,且14a =.(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S .16.(2024·河北衡水·三模)已知数列{}n a 满足:1212122n n n a a a a a ++==+=,,.(1)请写出324354a a a a a a ---,,的值,给出一个你的猜想,并证明;(2)设213n n b na +=,求数列{}n b 的前n 项和n S .17.(2024·福建泉州·二模)己知数列{}n a 和{}n b 的各项为正,且3118a b =,{}n b 是公比3的等比数列.数列{}n a 的前n 项和n S 满足242n n n S a a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)设()()333cos π31n n nn n b C a n b b +++=+--,求数列{}n c 的前n 项和n S .18.(2024·广西·模拟预测)记数列{}n a 的前n 项和为n S ,对任意正整数n ,有23322n n n S =-.(1)求数列{}n a 的通项公式;(2)对所有正整数m ,若14mk k a a +<<,则在k a 和1k a +两项中插入4m ,由此得到一个新数列{}n b ,求{}n b 的前91项和.19.(2024·四川·模拟预测)已知数列{}n a 满足1111,02n n n n a a a a a ++=--=.(1)求{}n a 的通项公式;(2)若数列{}n b 满足,122121211,n n n n nb b b b b a -+=-=-=,求证:24211134n b b b +++<L .【拓展冲刺练】一、单选题1.(2023·江苏徐州·模拟预测)函数()f x 满足x ∀、y ÎR ,都有()()()2f x y f x f y +=,且()11f =,则( )A .122f æö=ç÷èøB .数列(){}f n 单调递减C .()()121222f x f x x x f ++æö£ç÷èøD .()04242nni ni f i =+éù×=-ëûå2.(2024·全国·模拟预测)已知数列{}n a 满足13a =,215a =,且2128n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则122024403440344034a a a éù++×××+=êúëû( )A .2015B .2016C .2017D .20183.(2024·陕西西安·模拟预测)数列{}n a 满足()1122421n n a a n a n n n -+-==³-,,则12320241111a a a a ++++=L ( )A .20212025B .10122025C .10124048D .202340484.(2024·广东深圳·模拟预测)已知数列{}n a 的前n 项和为n S ,且23n S n n =+,若首项为12的数列{}n b 满足111n n na b b +-=,则数列{}n b 的前2024项和为( )A .10122023B .20252024C .20232024D .20242025二、多选题5.(2023·山西大同·模拟预测)已知数列{}n a 满足()121nn n a a ++=´-,n Î*N ,且51a =,则下列表述正确的有( )A .15a =-B .数列{}21n a -是等差数列C .数列{}n a 是等差数列D .数列11n n a a +ìüíýîþ的前n 项和为1449nn -6.(2023·浙江·二模)定义:若存在正实数M 使()*N n a M n £Î,则称正数列{}n a 为有界正数列.已知数列{}n a 满足()2ln 11n n a n +=+,n S 为数列{}n a 的前n 项和.则( )A .数列{}n a 为递增数列B .数列{}n S 为递增数列C .数列{}n a 为有界正数列D .数列{}n S 为有界正数列三、填空题7.(2023·陕西西安·模拟预测)已知数列{}n a 和数列{}n b ,21n a n =-,2nn b -=.设n n n c a b =×,则数列{}n c 的前n 项和n S = .8.(2024·四川·三模)在数列{}n a 中,已知112a =,()12n n n a na ++=,则数列{}n a 的前2024项和2024S =.9.(2023·陕西铜川·二模)已知数列{}n a 的前n 项和为n S ,且点(),n n a S 总在直线21y x =-上,则数列{}n n a ×的前n 项和n T = .四、解答题10.(2024·陕西商洛·模拟预测)已知数列{}n a 的前n 项和为n S ,且满足221n n S a n =+-.(1)求数列{}n a 的通项公式;(2)已知()23n n n a b -=,求数列{}n b 的前n 项和.11.(2024·江苏宿迁·三模)在数列{}n a 中,113(2,2*)n n n a a n a +==Î+×N .(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足12111444nnb b b b n a ---=L ;①求证:数列{}n b 是等差数列;②若23b =,设数列1n n n nb bc a +=的前n 项和为n T ,求证:14n T <.。
2022年高考数学核心考点专题训练专题1 集合(含解析)
2022年高考数学核心考点专题训练专题1集合一、单选题(本大题共12小题,共60.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A; ②A∪B=A; ③A∩(∁I B)=⌀; ④A∩B=I⑤x∈B是x∈A的必要不充分条件.其中与命题A⊆B等价的有( )A.1个B.2个C.3个D.4个2.已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4}3,A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对A,B的个数为()A.1B.2C.3D.43.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A.①②B.③④C.③D.④4.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A.1个B.2个C.3个D.4个5.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A.214个B.213个C.211个D.27个6.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为( )A.{m|m<3}B.{m|m⩾−11}C.{m|−11⩽m⩽3}D.{m|−11<m<3}7.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为( )A.m⩾3B.2⩽m⩽3C.m⩾2D.m⩽38.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A.若S有2个元素,则S∪T有4个元素B.若S有2个元素,则S∪T有3个元素C.存在3个元素的集合S,满足S∪T有5个元素D.存在3个元素的集合S,满足S∪T有4个元素9.已知集合A=x∈R≤1,B=x∈−2a x−a2−1<0,若∁R A∩B=⌀,则实数a的A.1,+∞B.0,+∞C.0,+∞D.1,+∞10.设集合M={x|x2−x>0}.N={x|1x<1},则( )A.M⊊NB.N⊊MC.M=ND.M∪N=R11.若集合A=x x−3x+1≥0,B=x ax+1≤0,若B⊆A,则实数a的取值范围是()A.−13,1B.−13,1C.−∞,−1⋃0,+∞D.−13,0⋃0,112.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A.若a=0,对S的所有非空子集A i,f(A i)的和为320B.若a=0,对S的所有非空子集B i,f(B i)的和为−640C.若a=−1,对S的所有非空子集C i,g(C i)的和为−1D.若a=−1,对S的所有非空子集D i,g(D i)的和为0二、单空题(本大题共4小题,共20.0分)13.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.14.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.15.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:①M={(x,y)|y=1x};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.其中为“好集合”的序号是______.16.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.专题1集合一、单选题(本大题共12小题,共60.0分)17.若A、B是全集I的真子集,则下列四个命题:①A∩B=A; ②A∪B=A; ③A∩(∁I B)=⌀; ④A∩B=I⑤x∈B是x∈A的必要不充分条件.其中与命题A⊆B等价的有( )A.1个B.2个C.3个D.4个【答案】B【解析】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B;②A∪B=A⇔B⊆A;③A∩∁I B=⌀⇔A⊆B;④A∩B=IA⊆I B⊆I⇔A=B=I⇒A⊆B,但A⊆B不一定能得出A=B=I,故A∩B=I与A⊆B不等价;⑤x∈B是x∈A的必要不充分条件,则A⊆B,但A⊆B不一定能得x∈B是x∈A的必要不充分条件,所以不等价.故和命题A⊆B等价的有①③,故选B.18.已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4}3,A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对A,B的个数为()A.1B.2C.3D.4【答案】B【解析】若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1对;同理,若集合B只有1个元素,则集合A中有3个元素,有1对;若集合A中有2个元素,则集合B中有2个元素,2∉A,2∉B,不满足条件.所以满足条件的有序集合对(A,B)的个数为1+1=2,故选B.19.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A.①②B.③④C.③D.④【答案】B已知集合M,P满足M∪P=M,则P⊆M,故④正确,①错误,②错误;由P⊆M可得M∩P=P,故③正确,故选B20.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A.1个B.2个C.3个D.4个【答案】A【解析】①当m=0时,方程是一元一次方程,错误;②方程ax2+2x−1=0(a≠0)的判别式Δ=4+4a,其值不一定大于或等于0,所以与x轴至少有一个交点不能确定,错误;③正确;④空集不是空集的真子集,错误.故选A.21.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A.214个B.213个C.211个D.27个【答案】C【解析】按照题意,将集合A中元素逐一列举出来如下:A={(10, 1), (2, 5), (1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7, 3), (4, 6),(6, 4), (5, 5)},故集合A中共有11个元素,所以集合A的子集个数为211.故选C.22.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为( )A.{m|m<3}B.{m|m⩾−11}C.{m|−11⩽m⩽3}D.{m|−11<m<3}【答案】D【解析】若A∩B=⌀,利用下图的数轴可得m+9⩽−2或m⩾3,∴m⩽−11或m⩾3.∴满足A∩B≠⌀的实数m的取值范围为{m|−11<m<3}.故选D.23.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为( )A.m⩾3B.2⩽m⩽3C.m⩾2D.m⩽3【答案】D【解析】A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1},而B⊆A,(1)当B=⌀时,满足B⊆A,此时m+1>2m−1,解得m<2;(2)当B≠⌀时,B⊆A,则计算得出2≤m≤3.综上,m≤3.故选D.24.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A.若S有2个元素,则S∪T有4个元素B.若S有2个元素,则S∪T有3个元素C.存在3个元素的集合S,满足S∪T有5个元素D.存在3个元素的集合S,满足S∪T有4个元素【答案】B【解析】若S有2个元素,不妨设S={a,b},由 ②知集合S中的两个元素必为相反数,故可设S={a,−a};由 ①得0∈T,由于集合T中至少有两个元素,故至少还有另外一个元素m∈T,当集合T有2个元素时,由 ②得:−m∈S,则m=±a,T={0,−a}或T={0,a},当集合T有多于2个元素时,不妨设T={0,m,n},由 ②得:m,n,−m,−n,m−n,n−m∈S,由于m,n≠0,所以m≠m−n,n≠n−m,又m≠n,故集合S中至少有3个元素,矛盾,综上,S∪T={0,a,−a},故B正确;若S有3个元素,不妨设S={a,b,c},其中a<b<c,则{a+b,b+c,c+a}⊆T,所以c−a,c−b,b−a,a−c,b−c,a−b∈S,集合S中至少两个不同正数,两个不同负数,即集合S中至少有4个元素,矛盾,排除C,D.故选B.25.已知集合A=x∈R≤1,B=x∈−2a x−a2−1<0,若∁R A∩B=⌀,则实数a的A.1,+∞B.0,+∞C.0,+∞D.1,+∞【答案】B【解析】∵集合A={x∈R|12x+1≤1}={x|−2x2x+1≤0}={x|x<−12或x≥0},B={x∈R|(x−2a)(x−a2−1)<0},∵2a≤a2+1,∴当2a=a2+1时,a=1,B=⌀,满足题意;当2a<a2+1时,a≠1,B={x|2a<x<a2+1},∁R A={x|−12≤x<0},∴a2+1≤−12或2a≥0,a≠1,解得a≥0,且a≠1,综上,a≥0,即实数a的取值范围是[0,+∞).故选:B.26.设集合M={x|x2−x>0}.N={x|1x<1},则( )A.M⊊NB.N⊊MC.M=ND.M∪N=R【答案】C【解析】解:解x2−x>0得,x<0或x>1;解1x<1得,x>1,或x<0;∴M=N.故选:C.27.若集合A=x x−3x+1≥0,B=x ax+1≤0,若B⊆A,则实数a的取值范围是()A.−13,1B.−13,1C.−∞,−1⋃0,+∞D.−13,0⋃0,1【答案】A【解析】因为x−3x+1≥0,所以x+1≠0(x−3)(x+1)≥0,所以x<−1或x≥3,所以A={x|x<−1或x≥3},当a=0时,1≤0不成立,所以B=⌀,所以B⊆A满足,当a>0时,因为ax+1≤0,所以x≤−1a,又因为B⊆A,所以−1a<−1,所以0<a<1,当a<0时,因为ax+1≤0,所以x≥−1a,又因为B⊆A,所以−1a≥3,所以−13≤a<0综上可知:a∈[−13,1).故选:A28.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A.若a=0,对S的所有非空子集A i,f(A i)的和为320B.若a=0,对S的所有非空子集B i,f(B i)的和为−640C.若a=−1,对S的所有非空子集C i,g(C i)的和为−1D.若a=−1,对S的所有非空子集D i,g(D i)的和为0【答案】C【解析】由于S={−20,21,5,−11,−15,30,a}中的所有元素的和为a,则在S的所有非空子集中,对任意x∈S,含有x的非空子集的个数为26,从而A⊂S f (A)=26⋅A⊂S x =a⋅26.从而当a=0时,A⊂S f (A)=0,故选项A,B均错误.当a=−1时,S={−20,21,5,−11,−15,30,−1},对于S中的任意子集A,若−1∈A,则将元素−1从集合A中删除得集合B=A={−1},则g(A)=−g(B);若−1∉A,则将元素−1添加到集合A中得集合B=A∪{−1},则g(A)=−g(B).由此A⊂S g (A)=g({−1))=−1,因此C选项正确.故选C.二、单空题(本大题共4小题,共20.0分)29.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.【答案】{0,1,2};{0,1,2,4}.【解析】A={x|x2−6x+8=0}={2,4},∵B∩A=B,∴B⊆A,当m=0时,B=⌀,满足条件,B⊆A,当m≠0时,B={4m},若满足条件,B⊆A,则4m=2或4m=4,即m=2或m=1,综上实数m的值构成的集合C={0,1,2};∵A={2,4},C={0,1,2},则A∪C={0,1,2,4}.故答案为:{0,1,2};{0,1,2,4}.30.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.【答案】8【解析】因为集合A={0,3},B={m+2,m2+2},且A∩B={3},所以3∈B,所以m+2=3或m2+2=3,解得m=1或m=−1,当m=1时,此时B={3,3},不满足集合中元素的互异性,故舍之,当m=−1时,B={1,3},满足题意,此时A∪B={0,1,3},所以集合A∪B的子集的个数为23=8.故答案为8.31.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:①M={(x,y)|y=1x};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.其中为“好集合”的序号是______.【答案】②③【解析】对于①,注意到x1x2+1x1x2=0无实数解,因此①不是“好集合”;对于②,如下左图,注意到过原点任意作一条直线与曲线y=e x−2相交,过原点与该直线垂直的直线必与曲线y=e x−2相交,因此②是“好集合”;对于③,如下中图,注意到过原点任意作一条直线与曲线y=cosx相交,过原点与该直线垂直的直线必与曲线y=cosx相交,因此③是“好集合”;对于④,如下右图,注意到对于点(1,0),不存在(x2,y2)∈M,使得1×x2+0×lnx2=0,因为x2=0与真数的限制条件x2>0矛盾,因此④不是“好集合”.故答案为:②③32.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.【答案】5【解析】由已知,若a≠2正确,则a=0或a=1,即a=0,b=1,c=2或a=0,b=2,c=1或a=1,b=0,c=2或a=1,b=2,c=0,均与“三个关系有且只有一个正确”矛盾;若b=2正确,则a≠2正确,不符合题意;所以,只有c≠0正确,a=2,b=0,c=1,故a+2b+3c=5.故答案为:5.。
考点04基本不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)
考点04基本不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.【知识点】1≤a+b 2(1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)ba+ab≥(a,b同号).(3)ab≤(a,b∈R).(4)a2+b22≥(a,b∈R).以上不等式等号成立的条件均为a=b.3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值.注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.【核心题型】题型一 利用基本不等式求最值(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.命题点1 配凑法【例题1】(2024·辽宁·一模)已知20m n >>,则 2m mm n n+-的最小值为( )A .3+B .3-C .2+D .2【变式1】故选:D (2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足26x xy yz xz x z +++++=,则32x y z ++的最小值是 .【变式2】(2024·内蒙古呼伦贝尔·一模)已知函()3102f x x x =++-的最小值为m .(1)求m 的值;(2)若a ,b 为正数,且a b m +=.【变式3】(2024·黑龙江·二模)已知实数a ,b 且0ab >,则222229aba b a b +++取得最大值时,a b +的值为( )A B .C .-D .-命题点2 常数代换法【例题2】(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为( )A .32B .C .32+D .3【变式1】(2024·四川成都·模拟预测)若,a b 是正实数,且111324a b a b+=++,则a b +的最小值为( )A .45B .23C .1D .2【变式2】(23-24高三上·浙江宁波·期末)已知0,0a b >>,则下列选项中,能使4a b +取得最小值25的为( )A .36ab =B .9ab a b=+C .221a b +=D .2216625a b +=【变式3】(2024·全国·模拟预测)设正实数a ,b 满足2a b +=,则1112+++a b 的最小值为( )A .23B .34C .45D .56命题点3 消元法【例题3】(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为( )A .15B .25C .35D .45【变式1】(2023·重庆·模拟预测)已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A .4B .6C .8D .12【变式2】(2023·烟台模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【变式3】(2024·浙江·模拟预测)已知,0,1a b ab >=,求11112S a b=+++的最小值.题型二 基本不等式的常见变形应用基本不等式的常见变形(1)ab ≤22a b +⎛⎫ ⎪⎝⎭≤a 2+b 22.(2)21a +1b≤≤a +b2≤a >0,b >0).【例题4】(2023·全国·三模)已知0a >,0b >,且1a b +=,则下列不等式不正确的是( )A .14ab £B .2212a b +³C .1121a b +>+D1£【变式1】(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC V 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为( ).A.)0,02a ba b +³>>B.)20,0aba b a b£>>+C.)0,02a b a b +£>>D.)220,0a b a b +³>>【变式2】(2023·陕西宝鸡·二模)设a ,R b Î,则“2a b +³”是“222a b +³”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【变式3】(2024·全国·模拟预测)已知正项数列{}n a 的前n 项和为n S ,()211n S n +=+,则下列说法正确的是( )A.11a =B .{}n a 是递减数列C .9911(1)8nn na =-=åD .1152n nn a a +++<题型三 基本不等式的实际应用 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.【例题5】(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x = 米时,直角梯形花坛ABCD的面积最大.【变式1】(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ¹,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则( )A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定【变式2】(2024·内蒙古呼和浩特·一模)小明在春节期间,预约了正月初五上午去美术馆欣赏油画,其中有一幅画吸引了众多游客驻足观赏,为保证观赏时可以有最大视角,警卫处的同志需要将警戒线控制在距墙多远处最合适呢?(单位:米,精确到小数点后两位)已知该画挂在墙上,其上沿在观赏者眼睛平视的上方3米处,其下沿在观赏者眼睛平视的上方1米处.( )A .1.73B .1.41C .2.24D .2.45【变式3】(2024·广东韶关·二模)在工程中估算平整一块矩形场地的工程量W (单位:平方米)的计算公式是()()44W =+´+长宽,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )A .10000B .10480C .10816D .10818【课后强化】基础保分练一、单选题1.(2024·河南南阳·一模)已知正实数,x y 满足111x y+=,则43xy x -的最小值为( )A .8B .9C .10D .112.(2023·河南开封·三模)已知0a >,0b >,且1a b +=,a b ¹,则下列不等式成立的是( )A 1122a b<<+B 1122a b<+<C .1122a b +<<D .1122a b+<3.(22-23高三上·湖南长沙·阶段练习)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算( )A .甲更合算B .乙更合算C .甲乙同样合算D .无法判断谁更合算4.(2024·陕西西安·一模)“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《胁子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何现有这样一个相关的问题:被3除余2且被5除余3的正整数按照从小到大的顺序排成一列,构成数列{}n a ,记数列{}n a 的前n 项和为n S ,则260n S n+的最小值为( )A .60B .61C .75D .765.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22222x x f x x ++=+有( )A .最小值1B .最大值1C .最小值1-D .最大值1-6.(2024·四川凉山·二模)已知正数,a b 满足e112a b dx x +=ò,则2aba b+的最大值为( )A B .C D .1二、多选题7.(2024·江苏·一模)已知,x y ÎR ,且123x =,124y =,则( )A .y x >B .1x y +>C .14xy <D <8.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则( )A .22a b +³B .112a b +³C .22log log 1a b +£D .222a b +³三、填空题9.(2024·云南红河·二模)如图,在棱长均相等的斜三棱柱111ABC A B C -中,111π,3A AB A AC BM BB ÐÐl ===uuuur uuur ,1CN CC m =uuu r uuuu r ,若存在()()0,1,0,1l m ÎÎ,使0AM BN ×=uuuu r uuu r 成立,则l m +的最小值为.10.(2024·江西九江·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ,B ,C 成等差数列,224a c +=,则ABC V 面积的最大值是 ,()24sin sin 3A C b +=.四、解答题11.(2024·四川广安·二模)已知a ,b ,c 均为正数,且3a b c ++=.(1)是否存在a ,b ,c ,使得()190,5a b c +Î+,说明理由;(2)6.12.(2024·四川成都·二模)已知函数()()23,32f x x g x x =-=--(1)求不等式()()f x g x £的解集N ;(2)设N 的最小数为n ,正数,a b 满足32n a b +=,求223b a a b++的最小值.综合提升练一、单选题1.(·0>,2221a ab b ++=,则222a b + )A B C .34D 2.(2024·辽宁鞍山·二模)已知a ,b 均为锐角,()sin 3sin cos a b a b =+,则tan a 取得最大值时,()tan a b +的值为( )A B C .1D .23.(23-24高三上·浙江金华·期末)若()tan 23tan a a b =-,则()tan a b +的最大值为( )A B .1C .2D 4.(2024·黑龙江齐齐哈尔·二模)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()4141a b++的最小值为( )A .254B .916C .94D .25165.(2024·陕西西安·一模)已知二次函数()2y x b a x ab =-+-+的图象与x 轴交于A 、B 两点,图象在A 、B 两点处的切线相交于点P .若1ab =,则ABP V 的面积的最小值为( ).A .1B C .2D .46.(2023·山东泰安·模拟预测)在实验课上,小明和小芳利用一个不等臂的天平秤称取药品. 实验一:小明将5克的砝码放在天平左盘,取出一些药品放在右盘中使天平平衡;实验二:小芳将20克的砝码放在右盘,取出一些药品放在天平左盘中使天平平衡,则在这两个实验中小明和小芳共秤得的药品( )A .大于20克B .小于20克C .大于等于20克D .小于等于20克7.(2024·云南楚雄·模拟预测)足球是一项深受人们喜爱的体育运动.如图,现有一个11人制的标准足球场,其底线宽68m AB =,球门宽7.32m EF =,且球门位于底线AB 的中间,在某次比赛过程中,攻方球员带球在边界线AC 上的M 点处起脚射门,当EMF Ð最大时,点M 离底线AB 的距离约为( )A .26.32mB .28.15mC .33.80mD .37.66m8.(23-24高三上·浙江宁波·期末)设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( )A .12B .24C .D .二、多选题9.(23-24高三上·河北沧州·阶段练习)已知0a >,0b >,且111a b +=,则下列说法正确的有( )A .8ab ³B .4a b +³C .228a b +³D .49a b +³10.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是( )A .11a ba b >++B .2ab a b <+C .()ln 2a b ab ++>D .111ln 1ln a b<++11.(2024·全国·模拟预测)已知正实数a ,b ,c 满足111a b c<<,则( )A .c a c b ->-B .b b ca a c->-C .a c -³D 12³三、填空题12.(2024·陕西咸阳·二模)已知总体的各个个体的值由小到大依次为2,4,4,6,a ,b ,12,14,18,20,且总体的平均值为10.则11a b+的最小值为 .13.(2024·辽宁大连·一模)对于任意的正数m ,n ,不等式 312m n m n l+³+成立,则λ的最大值为14.(2024·四川泸州·二模)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22233c a b =-,则()tan A B -的最大值为.四、解答题15.(2024·四川成都·二模)已知函数()f x x a b =++,不等式()4f x <的解集为{06}x x <<∣.(1)求实数,a b 的值;(2)函数()f x 的最小值为t ,若正实数,,m n p 满足23m n p t ++=,求1122m p n p+++的最小值.16.(2023·陕西宝鸡·二模)已知函数()221f x x x =-++.(1)求()5f x ³的解集;(2)设()f x 的最小值为m ,若正数a ,b ,c 满足a b c m ++=,求ab ac bc ++的最大值.17.(2024·青海·一模)已知正数,,a b c 满足2a b c ++=.求证:(1)22243a b c ++³;6£.18.(2024·广东·一模)海参中含有丰富的蛋白质、氨基酸、维生素、矿物质等营养元素,随着生活水平的提高,海参逐渐被人们喜爱.某品牌的海参按大小等级划分为5、4、3、2、1五个层级,分别对应如下五组质量指标值:[300,350),[350,400),[400,450),[450,500),[500,550].从该品牌海参中随机抽取10000颗作为样本,统计得到如图所示的频率分布直方图.(1)质量指标值越高,海参越大、质量越好,若质量指标值低于400的为二级,质量指标值不低于400的为一级.现利用分层随机抽样的方法按比例从不低于400和低于400的样本中随机抽取10颗,再从抽取的10颗海参中随机抽取4颗,记其中一级的颗数为X ,求X 的分布列及数学期望;(2)甲、乙两人计划在某网络购物平台上参加该品牌海参的订单“秒杀”抢购活动,每人只能抢购一个订单,每个订单均由()*2,n n n ³ÎN 箱海参构成.假设甲、乙两人抢购成功的概率均为()215n +,记甲、乙两人抢购成功的订单总数量为Y ,抢到海参总箱数为Z .①求Y 的分布列及数学期望;②当Z 的数学期望取最大值时,求正整数n 的值.19.(2023·四川达州·二模)在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos cos cos cos cos b c a aB C A B C+=+.(1)求tan tan B C ;(2)若3bc =,求ABC V 面积S 的最小值.拓展冲刺练一、单选题1.(2024·辽宁·一模)已知,R a b Î.则“0a >且0b >”是“2ab b a+³”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2024·山东济宁·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC V 面积的最大值为( )A B C .94D .923.(2024·湖北武汉·模拟预测)在三棱锥-P ABC 中,AB =1PC =,4PA PB +=,CA -,且PC AB ^,则二面角P AB C --A B .34C .12D 4.(23-24高三上·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为1p ,2p ,且满足1243p p +=,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若()16E X =,则从期望的角度来看,甲、乙两人训练的轮数至少为( )A .27B .24C .32D .28二、多选题5.(2024·江苏·一模)已知函数()sin 2cos2xf x x=-,则( )A .()f x 的最小正周期为πB .()f x 的图象关于点()π,0对称C .不等式()f x x >无解D .()f x 6.(23-24高三上·江苏连云港·阶段练习)已知0a >,()e 1ln 1ab -=,则( )A .1e b <<B .ln a b >C .e ln 1a b -<D .1b a -<7.(2023·全国·模拟预测)实数a ,b 满足2242a b +=,则( )A .12£abB .a b +的最大值为C .a b é-ÎêëD .()()3328a b a b ++的最大值为92三、填空题8.(2024·四川成都·模拟预测)已知实数00,x y >>,若231x y +=,则21x y +的最小值为 .9.(2024·福建漳州·模拟预测)如图,某城市有一条公路从正西方向AO 通过路口O 后转向西北方向OB ,围绕道路,OA OB 打造了一个半径为2km 的扇形景区,现要修一条与扇形景区相切的观光道MN ,则MN 的最小值为km .四、解答题10.(2023·四川资阳·模拟预测)已知0a >,0b >,且2a b +=.(1)求22a b +的最小值;(2)£.11.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D 为边BC 上靠近B 点的三等分点,60ADC Ð=°,2AD =.(1)若45ACD Ð=°,求三角形手巾的面积;(2)当ACAB取最小值时,请帮设计师计算BD 的长.12.(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y l l l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.。
2022年高考数学核心考点专题训练专题21 平面向量的数量积(含解析)
2OE;③AH在AB向量上的投影向量的模为
2.
2
其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
10. 设向量 a,b,c,满足 a = b = 2,a ⋅ b = 2, a − c ⋅ b − c = 0,则 c 的最小值为
A. 3+1 2
B. 3−1 2
C. 3 − 1
11. 在给出的下列命题中,不正确的是( )
−5 10
=−
10,所以
2
B
错误:
因为a
−
b
=
(5,0),所以
cos
<
a,a
−
b
>=
a⋅(a−b) |a|×|a−b|
=
10 5×5
=
2 5,所以
5
C
正确;
因为c
=
(
5 5
,
25 5
),所以a
⋅
c
=2×
5 5
+
1
×
25 5
=
45 5
≠
0,所以a与c不垂直,所以 D
错误.
故选 C.
20.
已知向量m =
⋅
OB
=
OA
⋅
OC,AO
=
λ(
AB |AB|
+
AC |AC|
)则ΔABC
为等腰三角形
D. 已知平面向量OA,OB,OC满足 OA = OB = OC = r(r > 0),且OA + OB + OC = 0,则△ ABC
是等边三角形
12. 已知不共线向量OA,OB夹角为α, OA = 1, OB = 2,OP = 1 − t OA,OQ = tOB 0 ≤ t ≤ 1), PQ 在 t = t0
高考数学核心考点复习(完整版)
最新高考核心考点复习核心考点一 集合、常用逻辑用语、函数与导数第1课时 集合、常用逻辑用语1.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N ) 2.若p 是真命题,q 是假命题,则( )A .p ∧q 是真命题B .p ∨q 是假命题C .┑p 是真命题D .┒q 是真命题3.命题“所有能被2整除的数都是偶数”的否定是( )A .所有不能被2整除的数都是偶数B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数4.已知U ={}y | y =log 2x ,x >1,P =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >2,则∁U P =( ) A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎭⎫0,12 C.()0,+∞ D.()-∞,0∪⎣⎡⎭⎫12,+∞ 5.已知集合P ={x |x 2≤1},M ={a },若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)6.设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数为( )A .57B .56C .49D .87.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a 、b 必满足( ) A .|a +b |≤3 B .|a +b |≥3 C .|a -b |≤3 D .|a -b |≥38.A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },则A ∩B =B 的概率是_____.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?10.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪132≤2-x ≤4,B ={x |x 2-3mx +2m 2-m -1<0}. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围; (3)若A ⊇B ,求m 的取值范围.第2课时 函数的图象与性质1.(安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .32.(安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 3.(上海)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为( ) A .y =ln 1|x |B .y =x 3C .y =2|x |D .y =cos x4.(江苏)函数f (x )=log 5(2x +1)的单调增区间是__________.5.(浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =__________.6.(四川)函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )7.(福建)对于函数f (x )=a sin x +bx +c (其中a 、b ∈R ,c ∈Z ),选取a 、b 、c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和28.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过 n (n ∈N +)个整点,则称函数f (x )为n 阶整点函数.有下列函数:①f (x )=sin2x ;②g (x )=x 3;③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x .,其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④ D .④9.定义:如果函数y =f (x )在定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.(1)判断函数f (x )=-x 2+4x 在区间[0,9]上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;(2)若函数f (x )=-x 2+mx +1是区间[-1,1]上的平均值函数,试确定实数m 的取值范围.10.(广东广州模拟)已知函数f (x )=ax 2+bx +c (a ≠0)满足f (0)=0,对于任意x ∈R 都有f (x )≥x ,且f ⎝⎛⎭⎫-12+x =f ⎝⎛⎭⎫-12-x ,令g (x )=f (x )-|λx -1|(λ>0).(1)求函数f (x )的表达式; (2)求函数g (x )的单调区间. 第3课时 函数与方程1.若x 0是方程式lg x +x =2的解,则x 0属于区间( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2) 2.(陕西)方程|x |=cos x 在(-∞,+∞)内( )A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根3.(湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.e x +e -x 2 C.e -x -e x 2 D.e x -e -x 24.(福建)已知函数f (x )=⎩⎪⎨⎪⎧2x (x >0)x +1 (x ≤0),若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .35.(深圳中学、广雅、华附、省实联考)下面是用区间二分法求方程2sin x +x -1=0在[0,1]内的一个近似解(误差不超过0.001)的算法框图,如图2所示,则判断框内空白处应填入________,才能得到需要的解.图26.(湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( ) A .[2-2,2+2] B .(2-2,2+2) C .[1,3] D .(1,3)7.(山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.8.(陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 9.设函数f (x )=x |x -1|+m ,g (x )=ln x .(1)当m >1时,求函数y =f (x )在[0,m ]上的最大值;(2)记函数p (x )=f (x )-g (x ),若函数p (x )有零点,求m 的取值范围.10.(湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式; (2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时).第4课时 函数与导数1.已知函数f (x )=a 3+sin x ,则f ′(x )=( )A .3a 2+cos xB .a 3+cos xC .3a 2+sin xD .cos x 2.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( )A .e 2B .e C.ln22D .ln23.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A .1 B.12 C .-12D .-14.(广东深圳调研)如图2,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )图2A.4π2B.4π3C.2π2D.2π3 5.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.6.(全国)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6[来源:学,科,网Z,X,X,K] 7.(安徽皖北联考)已知函数f (x )=13x 3+ax 2-bx +1(a 、b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是____________.8.(全国)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为___________. 9.(山东)某企业拟建造如图3所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l ≥2r .假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (c >3)千元.设该容器的建造费用为y 千元.图3(1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r .10.(广东)设a >0,讨论函数f (x )=ln x +a (1-a )x 2-2(1-a )x 的单调性.核心考点二 不等式第5课时 不等式解法及证明1.设集合M ={x |x 2-x <0},N ={x ||x |<2},则( )A .M ∩N =∅B .M ∩N =MC .M ∪N =MD .M ∪N =R2.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(-∞,1) ∪(2,+∞)3.(辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x (x ≤1)1-log 2x (x >1),则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 4.不等式2-xx +4>0的解集是___________.5.已知集合A ={}x |||x -a ≤1,B ={x |x 2-5x +4≥0}.若A ∩B =∅,则实数a 的取值范围是__________.6.(江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)7.(天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =__________.8.(陕西)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是( ) A .(-∞,-3]∪[3,+∞) B .[-3,3] C .(-∞,-1]∪[1,+∞) D .[-1,1] 9.(福建)设不等式|2x -1|<1的解集为M .(1)求集合M ; (2)若a 、b ∈M ,试比较ab +1与a +b 的大小.10.(甘肃兰州模拟)已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞).(1)若对任意x ∈[1,+∞),f (x )>0恒成立,求实数a 的取值范围; (2)若对任意a ∈[-1,1],f (x )>4恒成立,求实数x 的取值范围.第6课时 不等式的应用1.(安徽皖北模拟)下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x 无最大值2.(重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+ 2B .1+ 3C .3D .43.(安徽淮南模拟)若实数x 、y 满足不等式组:⎩⎪⎨⎪⎧x -y ≥-1x +y ≥13x -y ≤3,则该约束条件所围成的平面区域的面积是( ) A .3 B.52C .2D .2 24.已知正数x 、y 满足⎩⎪⎨⎪⎧2x -y ≤0x -3y +5≥0,则z =4-x ·⎝⎛⎭⎫12y的最小值为( ) A .1 B.14 32 C.116 D.1325.(江苏)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x 的图象交于P 、Q 两点,则线段PQ 长的最小值是________.6.(浙江)设实数x 、y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>02x +y -7>0x ≥0,y ≥0,若x 、y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .197.对于使f (x )≤M 恒成立的所有常数M 中,我们把M 的最小值叫做f (x )的上确界.若a >0,b >0且a +b =1,则-12a -2b 的上确界为( ) A.92 B .-92 C.14D .-48.(浙江)若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.9.投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入18万元,又知年销量W (万件)与广告费x (万元)之间的函数关系为W =kx +1x +1(x ≥0),且知投入广告费1万元时,可销售2万件产品.预计此种产品年销售收入M (万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用50%的和.(1)试将年利润y (万元)表示为年广告费x (万元)的函数;(2)当年广告费为多少万元时,年利润最大? 最大年利润是多少万元?10.如图2所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱.(1)若大网箱的面积为108平方米,每个小网箱的长x ,宽y 设计为多少米时,才能使围成的网箱中筛网总长度最小;(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米时,可使总造价最低?图2核心考点三 三角函数、平面向量第7课时 三角函数的图象与性质1.(山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1D 3 2.(全国)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( ) A .-45 B .-35 C.35 D.453.(上海)函数y =2sin x -cos x 的最大值为________. 4.(全国)已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 5.(福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α=________.6.(全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9 7.(浙江)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A.33 B .-33 C.5 39 D .-698.若对于函数f (x )的定义域内的任一个x 的值,均有f (x )=f (-x )=-f ⎝⎛⎭⎫x +π2,对于下列五个函数:①y =cos 2x -cos 4x ;②y =sin 4x -cos 4x ;③y =sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4 ;④y =|tan x |.其中符合已知条件的函数序号为__________.9.(福建)设函数f ()θ=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P ()x ,y ,且0≤θ≤π.(1)若点P 的坐标为⎝⎛⎭⎫12,32,求f ()θ的值;(2)若点P ()x ,y 为平面区域Ω:⎩⎪⎨⎪⎧x +y ≥1x ≤1y ≤1上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.10.(天津)已知函数f ()x =tan ⎝⎛⎭⎫2x +π4. (1)求函数的定义域与最小正周期; (2)设α∈⎝⎛⎭⎫0,π4,若f ⎝⎛⎭⎫α2=2cos2α,求α的大小.第8课时 平面向量及其运算1.(江苏)已知e 1、e 2是夹角为23π的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a ·b =0,则k 的值为________.2.(安徽模拟)设向量a 、b 均为单位向量,且|a +b|2=1,则a 与b 夹角为( )A.π3B.π2C.2π3D.3π43.(湖北)若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4 B.π6 C.π4 D.3π44.(广东茂名模拟)如图2,在△ABC 中,AB =BC =4,∠ABC =30°,AD 是边BC 上的高,则AD →·AC →的值等于( )图2A .0B .4C .8D .-45.(上海)在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD →=________.6.(全国)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 P 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3 P 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π P 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3 P 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π 其中的真命题是( )A .P 1、P 4B .P 1、P 3C .P 2、P 3D .P 2、P 47.(江西)已知两个单位向量e 1、e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=______.8.(安徽淮南模拟)已知点G 是△ABC 的重心,AG →=λAB →+μAC →( λ、μ∈R ),若∠A =120°,AB →·AC →=-2,则|AG →|的最小值是( ) A.33 B.22 C.23 D.349.(广东揭阳模拟)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c (其中a ≤b ≤c ),设向量m =(cos B ,sin B ),n =(0,3),且向量m -n 为单位向量.(1)求∠B 的大小; (2)若b =3,a =1,求△ABC 的面积.10.(安徽淮南模拟)已知函数f (x )=cos 2x -sin 2x +2 3sin x cos x +1. (1)已知:x ∈⎣⎡⎦⎤-π2,π3,求函数f (x )单调减区间; (2)若函数f (x )按向量a 平移后得到函数g (x ),且函数g (x )=2cos2x ,求向量a .第9课时 解三角形1.(重庆)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.232. (四川)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎣⎡⎭⎫π6,πC.⎝⎛⎦⎤0,π3D.⎣⎡⎭⎫π3,π 3.在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形4.在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,若A =60°,b 、c 分别是方程x 2-7x +11=0的两个根,则a 等于________.5.(上海)在相距2千米的A 、B 两点处测量目标C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离是________ 千米.6.(浙江)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ) A .-12 B.12C .-1D .17.在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =b D .a 与b 的大小关系不能确定8.(全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 9.(湖北)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c .已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos ()A -C 的值.10.(山东)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值; (2)若cos B =14,b =2,求△ABC 的面积.核心考点四 数列第10课时 等差数列与等比数列1.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( ) A .1 B.53C .-2D .32.设等比数列{}a n 的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152 D.1723.等比数列{a n }的前n 项和为S n ,且4a 1、2a 2、a 3成等差数列.若a 1=1,则S 4=( )A .7B .8C .15D .164.(重庆)在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .185.(2009年全国)设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________.6.(安徽“江南十校”联考)已知函数f (x )是R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负 7.若数列{a n },{b n }的通项公式分别是a n =()-1n +2 012·a ,b n =2+()-1n +2 013n,且a n <b n 对任意n ∈N *恒成立,则常数a 的取值范围是__________.8.(浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =__________.9.(湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.10.(安徽合肥模拟)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和S n ,求使得S n >21-2n 成立的最小整数n .第11课时 数列的综合应用1.如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( )A .14B .21C .28D .352.(2010年福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9[来源:学科网]3.(全国)设S n 为等差数列{}a n 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .54.(北京)在等比数列{}a n 中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.5.(湖南)设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________.6.(江西)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( ) A .1 B .9 C .10 D .55 7.(安徽)若数列{ }a n 的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…a 10=( ) A .15 B .12 C .-12 D .-158.(安徽模拟)在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是______.9.在数列{a n }中,如果对任意n ∈N *都有a n +2-a n +1a n +1-a n=p (p 为非零常数),则称数列{a n }为“等差比”数列,p 叫数列{a n }的“公差比”.(1)已知数列{a n }满足a n =-3·2n +5(n ∈N *),判断该数列是否为等差比数列?(2)已知数列{b n }(n ∈N *)是等差比数列,且b 1=2,b 2=4,公差比p =2,求数列{b n }的通项公式b n ; (3)记S n 为(2)中数列{b n }的前n 项的和,证明数列{S n }(n ∈N *)也是等差比数列,并求出公差比p 的值.10.(江南十校联考)数列{a n }满足a 1=2,a n +1=2n +1a n⎝⎛⎭⎫n +12a n +2n (n ∈N +).(1)设b n =2na n,求数列{b n }的通项公式b n ;(2)设c n =1n (n +1)·a n +1,数列{c n }的前n 项和为S n ,求出S n 并由此证明:516≤S n <12.第12课时 推理与证明1.(黑龙江双鸭山模拟)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 42.(2010年山东)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )3.(广东湛江测试)命题:“若空间两条直线a 、b 分别垂直平面α,则a ∥b ”学生小夏这样证明:设a 、b 与面α分别相交于A 、B ,连接AB ,∵a ⊥α,b ⊥α,AB ⊂α ①, ∴a ⊥AB ,b ⊥AB ②,∴a ∥b ③,这里的证明有两个推理,即:①⇒②和②⇒③.老师评改认为小夏的证明推理不正确,这两个推理中不正确的是__________.4.有下列各式:1+12+13>1,1+12+…+17>32,1+12+13+…+115>2,……则按此规律可猜想此类不等式的一般形式为:____________________________________.5.已知:f (x )=x1-x ,设f 1(x )=f (x ),f n (x )=f [f n -1(x )](n >1且n ∈N *),则f 3(x )的表达式为________,猜想f n (x )(n ∈N *)的表达式为________.6.如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有______条,这些直线中共有f (n )对异面直线,则f (4)=________;f (n )=________(答案用数字或n 的解析式表示).7.如图2的数表,为一组等式:某学生猜测S 2n -1=(2n -1)(an 2+bn +c ),老师回答正确,则3a +b =________.s 1=1, s 2=2+3=5, s 3=4+5+6=15, s 4=7+8+9+10=34, s 5=11+12+13+14+15=65,…………………图28.(四川)函数f (x )的定义域为A ,若x 1、x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数; ②指数函数f (x )=2x (x ∈R )是单函数; ③若f (x )为单函数,x 1、x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);④在定义域上具有单调性的函数一定是单函数.其中的真命题是________(写出所有真命题的编号).9.(江西)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.10.对于给定数列{c n},如果存在实常数p、q使得c n+1=pc n+q对于任意n∈N*都成立,我们称数列{c n}是“M类数列”.(1)若a n=2n,b n=3·2n,n∈N*,数列{a n}、{b n}是否为“M类数列”?若是,指出它对应的实常数p、q,若不是,请说明理由;(2)证明:若数列{a n}是“M类数列”,则数列{a n+a n+1}也是“M类数列”;(3)若数列{a n}满足a1=2,a n+a n+1=3t·2n(n∈N*),t为常数.求数列{a n}前2 009项的和.核心考点五立体几何第13课时空间几何体1.(江西)将长方体截去一个四棱锥,得到的几何体如图10,则该几何体的左视图为()图102.在一个几何体的三视图中,正视图和俯视图如图11所示,则相应的侧视图可以为()图113.(安徽合肥检测)图11是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是()A.6π B.12π C.18π D.24π图12图134.(天津)一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m3.5.(福建)三棱锥P-ABC中,P A⊥底面ABC,P A=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于________.6.(安徽)一个空间几何体的三视图如图14所示,则该几何体的表面积为()A.48 B.32+817 C.48+817 D.80图147.(辽宁)一个正三棱柱的侧棱长和底面边长相等,体积为2 3,它的三视图中的俯视图如图15所示,左视图是一个矩形,则这个矩形的面积是()A.4 B.2 3 C.2 D. 3图15 图168.(天津)一个几何体的三视图如图16所示(单位:m),则该几何体的体积为________m3.9.(江苏)如图17,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.图1710.(福建)如图18,四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.图18第14课时空间中角与距离的计算1.如图9,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是()图9A.①④B.②③C.②④D.①②2.(福建福州联考)m、n表示直线,α、β、γ表示平面,给出下列四个命题,其中真命题为()(1)α∩β=m,n⊂α,n⊥m,则α⊥β(2)α⊥β,α∩γ=m,β∩γ=n,则n⊥m(3)α⊥β,α⊥γ,β∩γ=m,则m⊥α(4)m⊥α,n⊥β,m⊥n,则α⊥βA.(1)、(2) B.(3)、(4) C.(2)、(3) D.(2)、(4)3.(浙江)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β4.(安徽淮南模拟)给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l、m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;(3)已知α、β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)若点P到三角形三个顶点的距离相等,则点P在该三角形所在平面内的射影是该三角形的外心;(5)a、b是两条异面直线,P为空间一点,过P总可以作一个平面与a、b之一垂直,与另一个平行.其中正确的命题是____________(只填序号).5.(全国)已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为__________.6.(全国)已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则CD=() A.2 B. 3 C. 2 D.17.(辽宁)如图10,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A.AC⊥SB B.AB∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角图10 图118.如图11所示,正三棱柱ABC -A 1B 1C 1的所有棱的长度都为4,点D 是B 1C 1的中点,则异面直线AB 1与A 1D 所成角的余弦是________.9.(四川)如图12,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1上的一点,P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA 1.(1)求证:CD =C 1D ;(2)求二面角A -A 1D -B 的平面角的余弦值; (3)求点C 到平面B 1DP 的距离.图1210.(浙江)如图13,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP ⊥BC ; (2)已知BC =8,PO =4,AO =3,OD =2.求二面角B -AP -C 的大小.图13第15课时 空间向量1.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 值是( )A .1 B.15 C.35 D.752.(河北唐山联考)已知正方形ABCD 的边长为2,E 是BC 的中点,则AC →·AE →等于( )A .-6B .6C .7D .-83.如图15,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量与B 1M →相等的向量是( )图15A .-12a +12b +c B. 12a +12b +c C. 12a -12b +c D .-12a -12b +c4.已知三点A (1,0,0),B (3,1,1),C (2,0,1),(1)CB →与CA →的夹角等于__________; (2)CB →在CA →方向上的投影等于__________.5.(安徽淮南模拟)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直线坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3, 4),且法向量为n =(1,-2)的直线(点法式)方程为1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0. 类比以上方法,在空间直角坐标系中,经过点A (1, 2, 3)且法向量为n =(-1,-2,1)的平面(点法式)方程为____________________(请写出化简后的结果).6.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则A 1C 1到底面ABCD 的距离为( )A.33B .1 C. 2 D. 3 7.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90°8.(全国)已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________.9.(2010年天津)如图16,在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明AF ⊥平面A 1ED ; (3)求二面角A 1-ED -F 的正弦值.图1610.(北京)如图17,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值;(3)当平面PBC 与平面PDC 垂直时,求P A 的长.图17核心考点六 解析几何第16课时 直线与圆1.(四川)圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3) 2.以抛物线y 2=4x 的焦点为圆心,半径为2的圆方程为( )A .x 2+y 2-2x -1=0B .x 2+y 2-2x -3=0C .x 2+y 2+2x -1=0D .x 2+y 2+2x -3=0 3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .64.(重庆)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .5 2 B .10 2 C .15 2 D .20 25.(浙江)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.6.(全国)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .4 2 C .8 D .8 27.(湖南)已知圆C :x 2+y 2=12,直线l :4x +3y =25.(1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________.8.(江苏)设集合A =⎩⎨⎧(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2, }x 、y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x 、y ∈R }, 若A ∩B ≠∅, 则实数m 的取值范围是____________. 9. 已知平面区域⎩⎪⎨⎪⎧x ≥0y ≥0x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖.(1)试求圆C 的方程;(2)若斜率为1的直线l 与圆C 交于不同两点A 、B 满足CA ⊥CB ,求直线l 的方程.10.(福建)如图2,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.图2第17课时 椭圆、双曲线与抛物线1.(湖南)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .12.(河北唐山模拟)已知双曲线x 23-y 2b 2=1的右焦点到一条渐近线的距离为1,则该双曲线的离心率为( )A. 2B. 3C.2 33D.3 223.(安徽皖北模拟)椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为( ) A .20 B .22 C .24 D .284.(安徽模拟)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________________________.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,且a 、b 、c 依次成等差数列,则椭圆的离心率为__________.6.已知F 1、F 2分别为双曲线x 2-y 23=1的左、右焦点,P 为双曲线右支上的任意一点,则|PF 1|2|PF 2|的最小值为( ) A .8 B .5 C .4 D .97.(福建)设圆锥曲线Γ的两个焦点分别为F 1、F 2,若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( ) A.12或32 B.23或2 C.12或2 D.23或328.(北京)曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数 a 2 (a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是____________.9.(北京)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(2 2,0).斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.10. (安徽合肥模拟)已知抛物线y 2=4x ,过点M (0,2)的直线l 与抛物线交于A 、B 两点,且直线l 与x 交于点C . (1)求证:|MA |、|MC |、|MB |成等比数列;(2)设MA →=αAC →,MB →=βBC →,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.第18课时 直线与圆锥曲线的位置关系1.(陕西)设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x 2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0 C.⎝⎛⎭⎫62,0 D .(3,0) 3.(山东)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1[来源:学科网] 4.(上海)设m 为常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =__________ .5.(全国)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1、F 2在x 轴上,离心率为22.过F 1的直线L 交C 于A 、B 两点,且△ABF 2的周长为16,那么C 的方程为__________.6.(全国)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A 、B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .37.(全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A 、B 两点.则cos ∠AFB =( ) A.45 B.35 C .-35 D .-458.(山东)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.9.(天津)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P (a ,b )满足|PF 2|=|F 1F 2|.(1)求椭圆的离心率e ; (2)设直线PF 2与椭圆相交于A 、B 两点,若直线PF 2与圆(x +1)2+(y -3)2=16相交于M 、N 两点,且|MN |=58|AB |,求椭圆的方程.10.(浙江)如图5,已知抛物线C 1:x 2=y ,圆C 2:x 2+(y -4)2=1的圆心为点M .(1)求点M 到抛物线C 1的准线的距离;(2)已知点P 是抛物线C 1上一点(异于原点),过点P 作圆C 2的两条切线,交抛物线C 1于A 、B 两点,若过M 、P 两点的直线l 垂直于AB ,求直线l 的方程.图5核心考点七 概率与统计第19课时 排列与组合及二项式定理1.(全国)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) A .12种 B .24种 C .30种 D .36种2.(安徽合肥检测)世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A 、B 、C 三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A 馆,则不同的分配方案有( )A .36种B .30种C .24种D .20种3.(陕西)(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .204.(北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个(用数字作答).5.(湖北)在⎝⎛⎭⎫x -13 x 18展开式中含x 15的项的系数为____________(结果用数值表示).6.(全国)⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-40 B .-20 C .20 D .407.对任意正整数n ,定义n 的双阶乘n !!如下:当n 为偶数时,n !!=n (n -2)(n -4)…6×4×2 当n 为奇数时, n !!=n (n -2)(n -4)…5×3×1 现有四个命题:①(2 011!!)(2 010!!)=2 011!,②2 010!!=2×1 005!!,③(2 010!!)(2 010!!)=2 011!!,④2 011!!个位数为5其中正确的个数为( ) A .1 B .2 C .3 D .48.(安徽“江南十校”联考)在1,2,3,4,5,6,7的任一排列a 1、a 2、a 3、a 4、a 5、a 6、a 7中,使相邻两数都互质的排列方式种数共有( )A .576B .720C .864D .1 1529.(安徽)设(x -1)21=a 0+a 1x +a 2x 2+…a 21x 21,则a 10+a 11=________. 10.(全国)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________.第20课时 离散型随机变量及其分布1.(浙江)从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110 B.310 C.35 D.9102.(陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.163.(浙江)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率( ) A.15 B.25 C.35 D.454.(安徽)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) A.110 B.18 C.16 D.155.(福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.6.(湖北)如图2,用K 、A 1、A 2三类不同的元件连接成一个系统,K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )图2A .0.960B .0.864C .0.720D .0.5767.(湖南)如图3,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.图38.(浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲。
高考数学重难点练习题(附答案)
高考数学重难点练习题(附答案)学校:___________班级:___________姓名:___________考号:___________ 一、单选题1.设,2k M x x k ⎧⎫==∈⎨⎬⎩⎭Z ,1,2N x x k k ⎧⎫==+∈⎨⎬⎩⎭Z 则( )A .M NB .N MC .M ND .M N ⋂=∅2.若()()()()1R f x x x x a a =++∈为奇函数,则a 的值为( ) A .-1B .0C .1D .-1或13.某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为( ) A .0.9B .0.7C .0.3D .0.14.已知函数()()()sin 20πϕϕ=+<<f x x 的图象关于直线π6x =对称,则ϕ的值为( ) A .π12 B .π6C .π3D .2π35.三星堆古遗址作为“长江文明之源",被誉为人类最伟大的考古发现之一.3号坑发现的神树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为( )A .272πcmB .2162πcmC .2216πcmD .2288πcm6.设等比数列{}n a 的前n 项和为n S .已知1122n n S S +=+,*N n ∈则6S =( )A .312B .16C .30D .6327.已知椭圆E :()222210x y a b a b+=>>的两条弦AB CD ,相交于点P (点P 在第一象限),且8.设,a b ∈R ,462b a a =-和562a b b =-,则( ) A .1a b <<B .0b a <<C .0b a <<D .1b a <<二、多选题9.已知事件A ,B 满足()0.5P A =和()0.2P B =,则( )点为2x a =,记()()f k P X k =<,()()g k P X k a =>+则( )A .()~,X N b aB .()2~2,X N a aC .()()2f a g a =D .()()()()22f a g a f a g a +=+ 11.下列说法中,其中正确的是( )12.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x xf x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A .a b =是函数()f x 为偶函数的充分不必要条件;B .0a b +=是函数()f x 为奇函数的充要条件;C .如果0ab <,那么()f x 为单调函数;D .如果0ab >,那么函数()f x 存在极值点.三、填空题13.过点()3,2P -且与圆C :222410x y x y +--+=相切的直线方程为14.数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222221231112220=+++=+++.设222225a b c d =+++,其中a ,b ,c ,d 均为自然数,则满足条件的有序数组(),,,a b c d 的个数是 .15.已知直线:1l y =-,抛物线2:4C x y =的焦点为F ,过点F 的直线交抛物线C 于,A B 两点,点B 关于y 轴对称的点为P .若过点,A B 的圆与直线l 相切,且与直线PB 交于点Q ,则当3QB PQ =时直线AB 的斜率为 .16.三个元件a ,b 和c 独立正常工作的概率分别是1P ,2P 和3P ()12301P P P <<<<,把它们随意接入如图所示电路的三个接线盒1T ,2T 和3T 中(一盒接一个元件),各种连接方法中,此电路正常工作的最大概率是 .四、解答题17.已知数列{}n a 满足212(1)*,1,2n n a qa q q n N a a +=≠∈==为实数,且,,且233445,,a a a a a 成等差数列Ⅰ)求q 的值和{}n a 的通项公式;Ⅰ)设22log ,nn a b n =∈N 已知锐角ABC 中,,求角B ;1,求21a +(1)求PNNC的值;(2)求平面AMN与平面PAC夹角的余弦值.20.抽屉中装有5双规格相同的筷子,其中2双是一次性筷子,3双是非一次性筷子,每次使用筷子时从抽屉中随机取出1双,若取出的是一次性筷子,则使用后直接丢弃,若取出的是非一次性筷子,则使用后经过清洗再次放入抽屉中,求:(1)在第2次取出的是非一次性筷子的条件下,第1次取出的是一次性筷子的概率;(2)取了3次后,取出的一次性筷子的个数(双)的分布列及数学期望;(3)取了(2,3,4n n=,…)次后,所有一次性筷子刚好全部取出的概率.21.平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的离心率是32,抛物线2:2E x y=的焦点F是C的一个顶点.设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.参考答案:所以集合N 是由所有奇数的一半组成而集合M 是由所有整数的一半组成,故N M . 故选:B 2.A【分析】根据奇函数的定义,取特殊情况()()110f f -+= ,可以快速求解出a 的值. 【详解】由题得: ()()110f f -+=,故1a =-. 故选:A. 3.D【分析】根据正态分布的对称性求解即可. 【详解】由题得:()20.9P x ≥=,故()20.1P x <= 因为6242+=,所以根据对称性得:()()620.1P x P x ≥=<=. 故选:D. 4.B【分析】由正弦函数的图象的对称性可得()πππZ 32ϕ+=+∈k k ,由此可以求出ϕ的值.【详解】由题得:π16f ⎛⎫=± ⎪⎝⎭,故()πππZ 32ϕ+=+∈k k ,而0πϕ<<,所以π6ϕ=.故选:B. 5.C【分析】根据题意可知正方体的体对角线即是外接球的直径,又因圆柱的外侧面内切于正方体的侧面,可利用勾股定理得出正方体边长,继而求出球的表面积.【详解】不妨设正方体的边长为2a ,球О的半径为R ,则圆柱的底面半径为a 因为正方体的体对角线即为球О直径,故223R a =利用勾股定理得:222263a R a +==,解得18a =,球的表面积为2ππ44318216πS R ==⨯⨯= 故选:C. 6.D【分析】根据递推关系可求出等比数列的公比、首项,由求和公式得解.【详解】由题得:1122n n S S +=+Ⅰ,21122n n S S ++=+Ⅰ,Ⅰ-Ⅰ得: 212n n a a ++=和2q若a b >,则544a a b >>,设()()62231x x x xf x =-=-在()0,∞+上单调递增,所以6262a a b b ->-,即45b a >,不合题意.故选:A.【点睛】关键点点睛:本题关键点在于,由462b a a =-,562a b b =-构造函数()62x xf x =-,通过单调性证明若a b >则存在矛盾. 9.BD【分析】对于A ,由题意可得()()P AB P B =,从而即可判断; 对于B ,由互斥事件的概率计算公式计算即可;对于C ,先求得()0.8P B =,再根据独立事件的计算公式计算即可; 对于D ,判断()()()P AB P A P B =⋅是否成立即可.【详解】解:对于A ,因为()0.5P A = ()0.2P B = B A ⊆ 所以()()0.2P AB P B ==,故错误;对于B ,因为A 与B 互斥,所以()()()0.50.20.7P A B P A P B +=+=+=,故正确; 对于C ,因为()0.2P B =,所以()10.20.8P B =-=,所以()0.50.80.4P AB =⨯=,故错误; 对于D ,因为()|0.2P B A =,即()0.2()P AB P A =,所以()0.2()0.1P AB P A =⨯= 又因为()()0.50.20.1P A P B ⨯=⨯=,所以()()()P AB P A P B =⋅ 所以A 与B 相互独立,故正确. 故选:BD 10.BCD【分析】利用随机变量X 的概率密度函数可得到,b a μσ==,可判断A ;利用复合函数单调性可得()x ϕ在(),b -∞上递增,在(),b ∞+上递减,即()x ϕ的极大值点为2x b a ==,故可判断B ;根据密度曲线关于2x a μ==对称,可判断CD 【详解】对于A ,由随机变量X 的概率密度函数为()()2221e 2πx b a x aϕ--=可得22,b a μσ==因为0a >,所以a σ=,所以随机变量X 服从正态分布()2~,X N b a ,故错误;由23PA AC ==,26CP =则222PA AC CP +=,得PA AC ⊥由D 是PB 的中点23PA AB PB ===,易知:ⅠPAB 为等边三角形且3AD = 又21CD =,所以222CA AD CD +=,得CA AD ⊥ 又ADAP A =,,AP AD ⊂平面PAB ,所以AC ⊥平面PAB .设球心为O 且在过ⅠPAB 中心垂直于面PAB 的垂线上,点O 到底面PAB 的距离为132d AC == 由正弦定理得PAB 的外接圆半径2322sin 60322PA r ===⨯球O 的半径()2222327OA R d r ==+=+=所以三棱锥-P ABC 的外接球O 的体积为()3344287πππ7333V R ===.故D 正确. 故选:BCD. 12.BCD【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时函数()f x 定义域为R 关于原点对称()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时()()=0f x f x --,故()()0e e x xa b b a --+-=即()()2e =xa b a b --,又2e 0x >,故a b =所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时函数()f x 定义域为R 关于原点对称()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数当函数()f x 为奇函数时()()=e e ()()=0x xf x f x a b a b -+-+++因为e 0x >,e 0x ->故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --'因为0ab <f x函数ff x函数f()0'<函数fx所以函数存在极值点,故D正确.【详解】显然a ,b ,c ,d 均为不超过5的自然数,下面进行讨论. 最大数为5的情况:Ⅰ2222255000=+++,此时共有14A 4=种情况; 最大数为4的情况:Ⅰ2222254300=+++,此时共有24A 12=种情况; Ⅰ2222254221=+++,此时共有24A 12=种情况.当最大数为3时222222223322253321+++>>+++,故没有满足题意的情况. 综上,满足条件的有序数组(),,,a b c d 的个数是4121228++=. 故答案为:28. 15.24±【分析】根据题意设直线AB 的方程为1y kx =+,联立抛物线方程,然后结合韦达定理即可得到结果.【详解】如图,易知过点,A B 且与直线l 相切的圆就是以AB 为直径的圆,设()()1122,,,A x y B x y则()()1222,,,Q x y P x y -,由3QB PQ =有212x x =-设直线AB 的方程为1y kx =+,代入24x y =有2440x kx --= 所以12124,4x x k x x +==-,结合212x x =-,得24k =±. 故答案为: 24±16.3312123+-PP P P PP P【分析】根据题意可知电路正常工作的条件为1T 正常工作,2T 和3T 中至少有一个正常工作,然后利用独立事件乘法公式分类讨论1T ,2T 和3T 接入的元件不同的情况下电路正常工作的2q12n n -++⨯1231111112322222n nS n =⨯+⨯+⨯++⨯两式相减得23111111112212122222222212n n n n n n n n n n S --=+++++-=-=--- 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈. 考点:等差数列定义、等比数列及前n 项和公式、错位相减法求和.18.(1)π3B = (2)最大值为2516【分析】(1)运用两角和差的正余弦公式进行化简即可; (2)根据(1)中结论运用正弦定理得到sin sin 1a C b A ==,然后把2211a b +表示为cos 2C 的函数,再利用降次公式化简,结合内角取值范围及求解. 【详解】(1)由题意知sin()sin()cos cos A B A C B C--=.所以sin()cos sin()cos A B C A C B -=-所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=- 所以cos sin cos cos sin cos A B C A C B = 因为3A π=,所以sin cos sin cos B C C B =所以tan tan =B C ,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以B C =由角π3A =,所以π3B =.(2)由(1)知B C =,所以sin sin B C = b c = 因为sin 1a C =,所以1sin C a= 由正弦定理得:sin sin sin 1a C c A b A ===,所以1sin A b=因为ABC 为锐角三角形,且由二次函数的性质可得,当2211a b +的最大值为(1)2PNNC=21和(1,1,0AC =设PN PC λ=,则()0,1,3AP = ()0,1,3PB =- ()1,0,3PC =-. 故(),1,33AN AP PN λλ=+=-.ⅠPB ⊥平面AMN ,ⅠPB AN ⊥,即0PB AN ⋅= 即()13330λ--=,解得23λ=,所以2PNNC =. (2)ⅠPB ⊥平面AMN ,ⅠPB 是平面AMN 的一个法向量.设平面PAC 的一个法向量为(),,n x y z =则00n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,所以300y z x y ⎧+=⎪⎨+=⎪⎩,取()3,3,1n =--则2321cos ,727n PB n PB n PB⋅===⨯⋅. 所以平面AMN 与平面PAC 夹角的余弦值为217. 20.(1)511(2)分布列见解析,数学期望为10191000(3)答案见解析【分析】(1)运用条件概率公式计算; (2)按照独立事件计算;(3)运用独立事件的概率乘法公式结合等比数列求和计算即可.【详解】(1)设取出的是第一次是一次性筷子为事件A ,取出的是第二次非一次性筷子为事件B则()22333354550P B ⎛⎫=⨯+=⎪⎝⎭ ()2335410P AB =⨯= 所以在第二次是非一次性筷子的前提下,第一次是一次性筷子的概率()()()5|11P AB P A B P B ==; (2)对于0X = ,表示三次都是非一次性筷子,非一次性筷子是由放回的,235n -⎛⎫++ ⎪⎝⎭235n -⎛⎫++ ⎪⎝⎭245n -⎛⎫++ ⎪⎝⎭31049n⎛⎫⨯- ⎪⎝⎭得到定直线;(2)由直线l 的方程为00y x x y =-,令0x =,可得0(0,)G y -,运用三角形的面积公式,可得2100011(1)24S FG x x x =⋅=+,00202041214x y S PM x x =⋅-+化简整理,再2012(1)x t t +=≥,整理可得t 的二次方程,进而得到最大值及此时P 的坐标. 【详解】(1)证明:由题意可得32c e a ==,抛物线2:2E x y =的焦点F 为1(0,)2 即有12b =2214a c -=解得1a = 32c =可得椭圆的方程为2241x y +=;设0(P x ,0)y 可得2002x y =由212y x =的导数为y x '=,即有切线的斜率为0x 则切线的方程为000()y y x x x -=- 可化为00y x x y =-,代入椭圆方程可得2220000(14)8410x x x y x y +-+-= 22220000644(14)(41)0x y x y ∆=-+->,可得2200144x y +>.设1(A x ,1)y ) 2(B x ,2)y ) 可得001220814x y x x x +=+,即有中点00204(14x y D x +,020)14y x -+) 直线OD 的方程为014y x x =-,可令0x x =,可得14y =-即有点M 在定直线14y =-上;(2)直线l 的方程为00y x x y =-,令0x =,可得0(0,)G y -则21000001111||||()(1)2224S FG x x y x x =⋅=⋅+=+;32200000002000222000444(12)1111||||()2142414814x y x x x y x S PM x y x x x x +-+=⋅-=+⋅=⋅+++ 则2200122202(1)(14)(12)x x S S x ++=+ 令212(1)x t t +=≥,则122212(1)(122)(1)(21)2t t S t t S t t -++-+-==答案第21页,共21页 故函数()H x 在()0,∞+上单调递增,所以()110H m =+>由(1)可知32m ≥,11ln 21ln 2202H m ⎛⎫=-≤-< ⎪⎝⎭故存在21,12x ⎛⎫∈ ⎪⎝⎭,使得()20H x = 所以当20x x <<时()0H x <,()0g x '<函数()g x 单调递减;当2x x >时()0H x >,()0g x '>函数()g x 单调递增.所以2x 是函数()g x 的极小值点,即2x 是()f x '的极小值点,因此12x x =则11,12x ⎛⎫∈ ⎪⎝⎭,()10H x =又()()000220002121ln m x m m H x m x x x x -=+-+= 由e 22<,所以21e 8->,所以231e 2-> 又由(1)知32m ≥,所以1320212e 12e 10m x ---=-≥->,所以()00H x > 又因为()10H x =,所以()()01H x H x >,因为函数()()01H x H x >因为函数()H x 在()0,∞+上单调递增,所以01x x >,则011x x >. 由32m ≥,则3102m-≤-<,即1302e e e m --≤<,可得320e 1x -≤< 由1112x <<,则1112x <<,即3021e 2e x x -<<< 故011e x x <<. 【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用,二是函数的零点,不等式证明常转化为函数的单调性、极(最)值问题处理.。
2023年新高考数学一轮总复习核心考点分层训练 等差数列及其前n项和带讲解
第35讲 等差数列及其前n 项和学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·浙江·杭师大附中模拟预测)等差数列{}n a 的前n 项和为n S ,547,29,198n n a a S -===,则n =( ) A .10 B .11 C .12 D .13【答案】B【分析】根据等差数列的通项的性质和前n 项和公式求解. 【详解】因为()()15422n n n n a a n a a S -++==, 又547,29,198n n a a S -===, 所以18198n =, 所以11n =, 故选:B .2.(2022·湖北武汉·模拟预测)设公差不为零的等差数列{}n a 的前n 项和为n S ,452a a =,则74S S =( )A .74B .-1C .1D .54【答案】C【分析】利用等差中项5462a a a =+,6572a a a =+及等差数列前n 项和的性质即可求解. 【详解】解:在等差数列{}n a 中,5462a a a =+,452a a =,故60a =, 又6572a a a =+,故75a a =-, 则745674S S a a a S =+++=,故741S S =. 故选:C.3.(2022·福建·莆田华侨中学模拟预测)2022年4月26日下午,神州十三号载人飞船返回舱在京完成开舱.据科学计算,运载“神十三”的“长征二号”F 遥十三运载火箭,在点火第一秒钟通过的路程为2千米,以后每秒钟通过的路程都增加2千米,在达到离地面380千米的高度时,火箭与飞船分离,则这一过程需要的时间大约是( ) A .10秒 B .13秒 C .15秒 D .19秒【答案】D【分析】根据题意和等差数列的定义可知每秒钟通过的路程构成数列{}n a ,结合等差数列的前n 项求和公式计算即可.【详解】设每秒钟通过的路程构成数列{}n a , 则{}n a 是首项为2,公差为2的等差数列,由求和公式有()221380n n n n n +-=+=,解得19n =. 故选:D.4.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( ) A .8 B .10 C .12 D .14【答案】C【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解.【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.5.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( )A .9B .8C .7D .6【答案】C【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得.【详解】因为()9353m S a a a =++,又959S a =,所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=, 设等差数列{}n a 的公差为d , 则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠, 所以18m +=, 所以7m =. 故选:C.6.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D7.(2022·重庆·二模)等差数列{}n a 的公差为2,前n 项和为n S ,若5m a =,则m S 的最大值为( ) A .3 B .6 C .9 D .12【答案】C【分析】先利用等差数列的通项公式得到首项,再利用等差数列的前n 项和公式和一元二次函数求其最值. 【详解】设等差数列{}n a 的首项为1a , 因为5m a =,且2d =, 所以1+2(1)5a m -=, 解得172a m =-, 则1()(122)=22m m m a a m m S +-= 2(3)99m =--+≤,即3m m S =时取最大值为9. 故选:C.8.(2022·重庆八中模拟预测)已知等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,且1n n S nT n =+,那么87a b 的值为( ) A .1312B .1413C .1514D .1615【答案】C【分析】设等差数列{}n a 、{}n b 的公差分别为1d 、2d ,由题意利用等差数列的性质求出它们的首项、公差之间的关系,可得结论.【详解】设等差数列{}{},n n a b 的公差分别为1d 和2.d11111,12n n S S a n T n T b =∴==+,即1112a b = 2112122223S a d T b d +∴==+,即11232b d d =- ① 311312333334S a d T b d +∴==+,即21143d d b =- ①由①①解得1211,.d d b d ==11811712111771526614d d a a d b b d d d ++∴===++故选:C 9.(2022·广东·华南师大附中三模)已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n项和为n S ,则30S =( ) A .351 B .353 C .531 D .533【答案】B【分析】根据题意讨论n 的奇偶,当n 为奇数时,可得23n n a a +-=,按等差数列理解处理,当n 为偶数时,可得23n n a a ++=,按并项求和理解出来,则30S 按奇偶分组求和分别理解处理. 【详解】依题意,()213nn n a a ++-=, 显然,当n 为奇数时有23n n a a +-=,即有313a a -=,533a a -=,…,21213n n a a +--=, 令21n n b a -=,故13n n b b +-=,所以数列{}n b 是首项为1,公差为3的等差数列, 故32n b n =-;当n 为偶数时有23n n a a ++=,即423a a +=,643a a +=,…,2223n n a a ++=, 于是,()()3013292430S a a a a a a =+++++++()()()12152462830b b b a a a a a =+++++++++⎡⎤⎣⎦14315273330233532+=⨯++⨯=+=, 故选:B .10.(多选)(2022·河北沧州·二模)已知数列{}n a 满足()1121,(1)n n n a a a n n ++==--+,记{}n a 的前n 项和为n S ,则( )A .4850100a a += B .50464a a -= C .48600S = D .49601S =【答案】BCD【分析】由条件可得当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=,然后可逐一判断.【详解】因为()1121,(1)n n n a a a n n ++==--+,所以当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=.所以485096a a +=,选项A 错误;又因为464892a a +=,所以50464a a -=,选项B 正确; ()()()481354724684648S a a a a a a a a a a ⎡⎤=+++++++++++⎣⎦()()24612241226462426002+⨯=⨯+⨯+++=+⨯=故C 正确4948496001601S S a =+=+=,选项D 正确.故选:BCD11.(多选)(2022·湖北·华中师大一附中模拟预测)记数列{}n a 是等差数列,下列结论中不恒成立的是( )A .若120a a +>,则230a a +>B .若130a a +<,则20a <C .若12a a <,则2a >D .若10a <,则()()21230a a a a --> 【答案】ACD【分析】根据等差数列通项公式及等差中项,结合基本不等式即可求解. 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则对于A ,由数列{}n a 是等差数列及120a a +>,所以可取123101a a a ===-,,,所以230a a +>不成立,故A 正确;对于B ,由数列{}n a 是等差数列,所以13202a a a +<=,所以20a <恒成立,故B 不正确;对于C, 由数列{}n a 是等差数列,12a a <可取123321a a a =-=-=-,,,所以2a C 正确;对于D ,由数列{}n a 是等差数列,得()()221230a a a a d --=-≤,无论1a 为何值,均有()()21230a a a a --≤所以若10a <,则()()21230a a a a -->恒不成立,故D 正确. 故选:ACD.12.(2022·北京·101中学三模)已知等差数列{}n a 中2341,25a a a =-+=,则20222020a a -=_______. 【答案】4【分析】设出公差,利用等差数列通项公式基本量计算得到方程组,求出公差,求出答案.【详解】设公差为d ,则()11112235a d a d a d +=-⎧⎨+++=⎩,解得:132a d =-⎧⎨=⎩,所以2022202024a a d -==故答案为:413.(2022·山东青岛·二模)将等差数列中的项排成如下数阵,已知该数阵第n 行共有12n -个数,若12a =,且该数阵中第5行第6列的数为42,则n a =___________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 ……【答案】2n【分析】利用等比数列前n 项和公式确定42为数列中的第几项,可以求出公差,从而确定等差数列的通项公式.【详解】解:设公差为d , 因为该数阵第n 行共有12n -个数, 则前4行共有()41121512⨯-=-个数,所以第5行第6列数为2142a =,则2114222211211a a d --===--, 所以2(1)22n a n n =+-⨯=. 故答案为:2n .14.(2022·辽宁·抚顺一中模拟预测)已知等差数列{}n a 的前n 项和为n S ,若12113S a =,则5a =______,9S =______.【答案】 0 0【分析】根据等差数列的求和公式,化简可得12d a =,代入12113S a =即可求出14a d =-,根据等差数列的通项公式和求和公式,即可求出答案.【详解】等差数列{}n a 中,12111112663330S a d a a d =+==+, 所以111266330a d a d +=+, 即14a d =-,所以5140a a d =+=,9590S a == 故答案为:①0;①0.15.(2022·江苏·南京市天印高级中学模拟预测)2022年北京冬奥会开幕式始于24节气倒计时,它将中国人的物候文明、传承久远的诗歌、现代生活的画面和谐统一起来.我国古人将一年分为24个节气,如图所示,相邻两个节气的日晷长变化量相同,冬至日晷长最长,夏至日晷长最短,周而复始.已知冬至日晷长为13.5尺,芒种日晷长为2.5尺,则一年中夏至到立冬的日晷长的和为______尺【答案】60【分析】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列,所以夏至到立冬的日晷长的和可以用等差数列求和公式得到.【详解】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列, 设冬至日晷长13.5尺为1a ,则芒种日晷长2.5尺为12a ,所以1211121a a d -==--, 所以夏至日晷长为1.5尺,记夏至日晷长1.5尺为1b ,小暑为2b ,大暑为3b ,……,立冬为10b则121010(101)101.51602b b b ⋅-+++=⋅+⋅=. 故答案为:60.16.(2022·重庆八中模拟预测)在等差数列{}n a 中,261028a a a ++=,则数列{}n a 的前13项和为______. 【答案】26【分析】由等差数列的通项公式得12+6a d =,再代入求和公式()13113+6S a d =可求得答案. 【详解】解:设等差数列{}n a 的公差为d ,因为261028a a a ++=,()()()111+++5+2+98d d a a a d ∴=, 12+6a d ∴=,则()131113(131)13+13+6262S a d a d ⨯-===, 故答案为:26.17.(2022·广东·模拟预测)已知{}n a 和{}n b 均为等差数列,若12456,9a b a b ==+=,则78a b +的值是__________. 【答案】6【分析】利用等差数列的性质计算即可得解. 【详解】解:因为{}n a 和{}n b 均为等差数列, 所以1742852,2a a a b b b +=+=, 所以()1728452a a b b a b +++=+, 即781229a b ++=⨯,所以786a b +=. 故答案为:6.18.(2022·江苏泰州·模拟预测)已知等差数列{n a }的前n 项和是n S ,180S >,190S <,则数列{|n a |}中值最小的项为第___项. 【答案】10【分析】根据题意判断等差数列{n a }的90a >,100a <,9100a a >->,由此可判断数列{||}n a 的项的增减情况,进而确定答案.【详解】由题意得:119191019()1902a a S a +===<,①100a <,()1180990S a a =+>,①90a >,9100a a >->,①910a a >,故等差数列{n a }为递减数列,即公差为负数, 因此{||}n a 的前9项依次递减,从第10项开始依次递增, 由于910a a >,①{|n a |}最小的项是第10项, 故答案为:1019.(2022·湖北·大冶市第一中学模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥.(1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解】(1)由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-; (2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦12122n n =- 20.(2022·山东·济南市历城第二中学模拟预测)在“①1n n a a +>,31044a a =,4915a a +=;①765S a =,23a =;①2(3)n S n n =+”三个条件中任选一个,补充到下面的横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,且__________. (1)求{}n a 的通项公式; (2)若11n n n b a a +=,求{}n b 的前n 项和为n T ,求证:12n T <. 【解】(1)若选择①,因为1n n a a +>,31044a a =,4915a a +=,31049a a a a +=+, 解得34a =,1011a =,设公差为d ,则有1324a a d +==,101911a a d =+=, 解得12a =,1d =, 所以1n a n =+.若选择①,设公差为d ,74675S a a ==, 即()()117355a d a d +=+,结合213a a d =+=,解得12a =,1d =, 所以1n a n =+.若选择①,当1n =时,112a S ==; 当2n ≥时,1(3)(1)(2)122n n n n n n n a S S n -+-+=-=-=+, 当1n =时亦满足上式, 所以1n a n =+. (2)证明:由(1)得11111(1)(2)12n n n b a a n n n n +===-++++, 所以1111111123341222n T n n n =-+-++-=-+++, 因为102n >+,(*N n ∈),所以111222n -<+,所以12n T <. 【素养提升】1.(2022·浙江省江山中学模拟预测)已知sin ,sin ,sin x y z 依次组成严格递增的等差数列,则下列结论错误..的是( )A .tan ,tan ,tan x y z 依次可组成等差数列B .cos ,cos ,cos x y z 依次可组成等差数列C .cos ,cos ,cos x z y 依次可组成等差数列D .cos ,cos ,cos z x y 依次可组成等差数列【答案】B 【分析】取,0,66x y z ππ=-==,即可判断A ;利用反证法,假设cos ,cos ,cos xy z 依次可组成等差数列,则有2cos coscos y x z =+,2sin sin sin y x z =+,两式相加,整理即可判断B ;取sin 0,sin x y z ===CD.【详解】解:对于A ,当,0,66x y z ππ=-==时,此时11sin ,sin 0,sin 22x y z =-==依次组成严格递增的等差数列,则tan tan 0,tan x y z ===依次组成等差数列,故A 正确; 对于B ,假设cos ,cos ,cos x y z 依次可组成等差数列, 则有2cos cos cos y x z =+, 又因2sin sin sin y x z =+,两式平方相加得()422cos cos sin sin x z x z =++, 则()cos 1x z -=,故2x z k π-=,所以2,Z x k z k π=+∈, 所以()sin sin 2sin x k z z π=+=,与题意矛盾,所以cos ,cos ,cos x y z 依次不可能组成等差数列,故B 错误;对于C ,当sin 0,sin 33x y z =-==11cos ,cos ,cos 133x z y =-==,则cos ,cos ,cos x z y 为等差数列,故C 正确;对于D ,当sin 0,sin 33x y z =-==若11cos ,cos ,cos 133z x y =-==,则cos ,cos ,cos z x y 为等差数列,故D 正确.故选:B.2.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( )A .20222022S =,且52018a a >B .20222022S =-,且52018a a <C .20224044S =-,且52018a a >D .20224044S =,且52018a a <【答案】C【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-, 120222022520182022()1011()40442a a S a a +==+=-.故选:C.3.(多选)(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d【答案】ABD【分析】对于A ,利用 对于B ,利用()2211332S T S T S T +=+++化简可得答案;对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案.【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =,所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD4.(多选)(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项. 【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD5.(2022·湖北·荆门市龙泉中学一模)在数列{}n a 中,11a =,()11nn n a a n ++-=,*N n ∈,则4a =_______;{}n a 的前2022项和为_______.【答案】 3 1023133【分析】求出数列前若干项,根据其特性,分别求和后再可解即可. 【详解】由()11nn n a a n ++-=,得()11nn n a n a +=--,又11a =,所以()21112a a =--=,()232210a a =--=,()343313a a =--=,()454411a a =--=,()565516a a =--=,()676610a a =--=,()787717a a =--=,()898811a a =--=,()91099110a a =--=,()1011101010a a =--=,()11121111111a a =--=,()1213121211a a =--=,()13141313114a a =--=,⋯;因为202250542=⨯+, 所以,明显可见,规律如下: 159132021,,,,,a a a a a ,成各项为1的常数数列,其和为1506506⨯=, 2610142022,,,,,a a a a a ,成首项为2,公差为4的等差数列,其和为25065055062450625120722⨯⨯+⨯=⨯=, 3711152019,,,,,a a a a a ,成各项为0的成常数数列,其和为05050⨯=,4812162020,,,,,a a a a a ,成首项为3,公差为4的等差数列,其和为505504505345105552⨯⨯+⨯=, 故202250651207205105551023133S =+++=. 故答案为:①3;①1023133.6.(2022·湖南·长郡中学模拟预测)已知数列{}n a 的前n 项和2n S n an =+(a 为常数),则20222021a a -=________;设函数()8sin()cos()g x x x x ππ=+-且()()()12918g a g a g a +++=,则5a =__________.【答案】 2;14【分析】根据数列前n 项和与第n 项的关系、等差数列的定义、等差数列的性质,结合辅助角公式、构造函数法,利用导数的性质进行求解即可.【详解】当*2,N n n ≥∈时,221(1)(1)21n n n a S S n an n a n n a -=-=+----=+-,当1n =时,显然成立,因为当*2,N n n ≥∈时,12n n a a --=,数列{}n a 为等差数列,且公差2d =,所以202220212a a -=.又因为111()8sin πcos π8π8π2444g x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-=-=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()8πh t t t =,因为()8π)(8π)()h t t t t t h t -=--=-=-, 所以()h t 为奇函数,因为()8cos π0h t t =+>',所以()h t 在R 上单调递增. 由题意得()()()1292220g a g a g a -+-++-=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,因为数列{}n a 是公差不为0的等差数列,其中129a a a <<<,则129111444a a a -<-<<-,假设1911044a a ⎛⎫⎛⎫-+-> ⎪ ⎪⎝⎭⎝⎭,1919191111110444444a a h a h a h a h a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫->--⇒->--⇒-+-> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.因为1928374651111111112,444444444a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-=-+-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.假设1911044a a ⎛⎫⎛⎫-+-< ⎪ ⎪⎝⎭⎝⎭,同理可得1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上,19195111104424a a a a a ⎛⎫⎛⎫-+-=⇒+=⇒= ⎪ ⎪⎝⎭⎝⎭.故答案为:2;14。
高考数学常见考点题库汇总
高考数学常见考点题库汇总高考数学作为一门重要的学科,其考点众多且复杂。
为了帮助广大考生更好地备考,本文将对高考数学常见的考点进行汇总。
一、函数函数是高考数学中的重点内容。
包括函数的概念、性质(单调性、奇偶性、周期性等)、函数的图像。
其中,一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数等的性质和图像是必须掌握的。
例如,二次函数的对称轴、顶点坐标、最值等;指数函数和对数函数的底数对函数性质的影响。
在函数的应用方面,函数的零点、方程的根、不等式的求解等问题经常出现。
通过函数的单调性和奇偶性来解不等式,或者利用函数的图像来确定方程根的个数,都是常见的考察方式。
二、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
三角函数的基本公式,如诱导公式、和差公式、倍角公式等,要熟练掌握并能灵活运用。
三角函数的图像和性质也是重要考点,比如周期、振幅、相位等。
解三角形问题,通常会结合正弦定理和余弦定理,求解三角形的边长、角度等。
三、数列数列分为等差数列和等比数列。
需要掌握它们的通项公式、前 n 项和公式。
在数列的考察中,求通项公式、判断数列的性质(单调性、周期性等)、数列求和等问题较为常见。
错位相减法、裂项相消法等求和方法要熟练运用。
数列的递推关系也是一个重要的考点,通过递推关系求出通项公式或者证明数列的相关性质。
四、立体几何立体几何主要考查空间几何体的结构特征、表面积和体积的计算,以及空间直线与平面的位置关系。
要掌握常见几何体(如棱柱、棱锥、圆柱、圆锥、球等)的结构特征和体积、表面积公式。
线面平行、线面垂直、面面平行、面面垂直的判定和性质定理是解题的关键。
空间向量在解决立体几何问题中的应用也越来越重要,可以通过建立空间直角坐标系,利用向量的方法求解角度和距离问题。
五、解析几何解析几何包括直线方程、圆的方程、椭圆、双曲线、抛物线的方程和性质。
直线的点斜式、斜截式、两点式、一般式方程要熟练掌握。
圆的标准方程和一般方程,以及椭圆、双曲线、抛物线的标准方程和几何性质是重点。
2024高中数学高考高频考点经典题型练习卷 (2318)
一、单选题1. 已知集合则为A.B.C.D.2. 函数是定义在上的奇函数,当时,,则的值为()A.B.C.D.3. 复数满足,则()A.B.C.D.4. 已知集合则()A.B.C.D.5. “中国天眼”位于我国贵州省,是世界最大单口径、最灵敏的球面射电望远镜,其反射面的形状为球冠.球冠是球面被平面所截后剩下的曲面,截得的圆为球冠的底,与截面垂直的球体直径被截得的部分为球冠的高,设球冠底的半径为,球冠的高为,球冠底面圆周长为,球冠所在球的半径为.已知球冠表面积公式为,当时,的值为()A.6500B.650C.2500D.2506. 设函数在定义域内可导,的图象如图所示,则其导函数的图象可能是()A.B.C.D.7. 设奇函数的定义域为R,为偶函数,当时,,则()A.B.C.D.8. 设等比数列的前项和为,若,,则A.61B.62C.63D.759. 设x,y为正实数,且xy-(x+y)=1,则()A.x+y≥2(+1)B.xy≤+1C .x+y≤(+1)2D.xy≥2(+1)二、多选题10.已知点的,曲线的方程,曲线的方程,则“点在曲线上“是”点在曲线上“的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件11. 已知集合,,则图中阴影部分表示的集合的元素个数为()A .4B .3C .2D .112. 函数的部分图像如图所示,若,,且,则()A .1B.C.D.13.若,则“成立”是“成立”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14. 不等式的解集是( )A.B .或C.D .或15. 设,分别是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )A.B.C.D.16. 给出定义:若(其中为整数),则叫做离实数最近的整数,记作.在此基础上给出下列关于函数的四个命题:①;②;③;④的定义域是R ,值域是;则其中真命题的序号是A .①②B .①③C .②④D .③④17.下列函数中,以为最小正周期,且在区间上单调递增的是( )A.B.C.D.18.如果,那么下列不等式错误的是( )A.B.C.D.三、填空题四、解答题19. 已知向量,,,若(m ,),则可能是( )A.B.C.D.20. 已知直线 :与圆 :相交于两点,与两坐标轴分别交于两点,记的面积为,的面积为,则( )A.B .存在,使C.D .存在,使21.已知函数,下列结论中正确的有( )A .若,则是的整数倍B.函数的图象可由函数的图象上所有点的纵坐标不变,横坐标变为原来的,再向左平移单位得到C.函数的图象关于点对称D .函数在上单调递增22. 已知是抛物线的焦点,是抛物线上的两点,为坐标原点,则( )A .若轴,则B .若,则的面积为C.长度的最小值为D .若,则23.已知函数的定义域为,且,则( )A.B.C .是奇函数D.没有极值24. 对于实数x,符号表示不超过x的最大整数,例如,.定义函数,则( )A.函数的最大值为1B.函数的最小值为0C.D .时,方程有5个不同实数根25.已知函数,若方程有4个不同实根,则的取值范围是______.26.在中,已知,,,则________.27. 已知向量,,若,则__________.28.已知,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.29.设,.(1)求的展开式中系数最大的项;(2)时,化简;(3)求证:.五、解答题30.已知函数(Ⅰ)将函数化简成的形式,并指出的周期;(Ⅱ)求函数上的最大值和最小值31. 如图,两射线、均与直线l 垂直,垂足分别为D 、E 且.点A 在直线l 上,点B 、C 在射线上.(1)若F 为线段BC 的中点(未画出),求的最小值;(2)若为等边三角形,求面积的范围.32.已知椭圆的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆的短轴长为.(1)求椭圆的标准方程;(2)是否存在过点的直线与椭圆相交于不同的两点,且满足(为坐标原点)若存在,求出直线的方程;若不存在,请说明理由.33. 已知函数.(1)求f (x )的最小正周期和在的单调递增区间;(2)已知,先化简后计算求值:34. 某同学解答一道三角函数题:“已知函数,且.(Ⅰ)求的值;(Ⅱ)求函数在区间上的最大值及相应x 的值.”该同学解答过程如下:解答:(Ⅰ)因为,所以.因为,所以.(Ⅱ)因为,所以.令,则.画出函数在上的图象,由图象可知,当,即时,函数的最大值为.下表列出了某些数学知识:任意角的概念任意角的正弦、余弦、正切的定义弧度制的概念,的正弦、余弦、正切的诱导公式弧度与角度的互化函数,,的图象三角函数的周期性正弦函数、余弦函数在区间上的性质同角三角函数的基本关系式正切函数在区间上的性质两角差的余弦公式函数的实际意义两角差的正弦、正切公式参数A,,对函数图象变化的影响两角和的正弦、余弦、正切公式二倍角的正弦、余弦、正切公式请写出该同学在解答过程中用到了此表中的哪些数学知识.35. 如图,在四棱锥中,平面,底面满足,且,,三角形的面积为(1)画出平面和平面的交线,并说明理由(2)求点到平面的距离36. 年月日,电影《长津湖》在各大影院.上映,并获得一致好评.该片是以长津湖战役为背景,讲述了一个中国志愿军连队在极度严酷的环境下坚守阵地,奋勇杀敌,为长津湖战役胜利作出重要贡献的感人的历史故事.某同学看完电影后以抗美援朝时期的历史为内容制作了一份知识问卷,并邀请了该校名同学(男女各一半)参与了问卷的知识竞赛,将得分情况统计如下表:得分性别男生女生将比赛成绩超过分的考生视为对抗美援朝的历史了解.(1)从这名同学中随机抽选一人,求该位同学对抗美援朝的历史了解的频率;(2)能否有的把握认为对抗美援朝的历史了解与性别有关?附:,37. 如图,已知平行六面体的底面是菱形,,且.六、解答题(1)试在平面内过点作直线,使得直线平面,说明作图方法,并证明:直线;(2)求点到平面的距离.38.年月日,由工业和信息化部、安徽省人民政府共同主办的第十七届“中国芯”集成电路产业大会在合肥成功举办.此次大会以“强芯固基以质为本”为主题,旨在培育壮大我国集成电路产业,夯实产业基础、营造良好产业生态.年,全国芯片研发单位相比年增加家,提交芯片数量增加个,均增长超过倍.某芯片研发单位用在“芯片”上研发费用占本单位总研发费用的百分比()如表所示.年份年份代码(1)根据表中的数据,作出相应的折线图;并结合相关数据,计算相关系数,并推断与线性相关程度;(已知:,则认为与线性相关很强;,则认为与线性相关一般;,则认为与线性相关较弱)(2)求出与的回归直线方程(保留一位小数);(3)请判断,若年用在“芯片”上研发费用不低于万元,则该单位年芯片研发的总费用预算为万元是否符合研发要求?附:相关数据:,,,.相关计算公式:①相关系数;在回归直线方程中,,.39. 已知函数.(1)求函数的单调区间和极值;(2)画出函数的大致图象,并说明理由;(3)求函数的零点的个数.40. 如图,在底面是菱形的四棱锥中,底面,点E 为棱的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面.41. 已知函数,.(1)求在处的切线方程;(2)判断函数在区间上零点的个数,并证明;(3)函数在区间上的极值点从小到大分别为,证明:.42. 如图,在直三棱柱中,,E为的中点,.(1)证明:.(2)求二面角的余弦值.43.如图1所示,在等腰梯形中,.把沿折起,使得,得到四棱锥.如图2所示.(1)求证:面面;(2)求平面与平面所成锐二面角的余弦值.44. 如图,在四棱锥中,已知底面为直角梯形,,,,平面平面,,.七、解答题(1)从下列条件①、条件②中再选择一个作为已知条件,求证:平面PAB ;条件①:E ,F 分别为棱PD ,BC 的中点;条件②:E ,F 分别为棱PC ,AD 的中点.(2)若点M 在棱PD (含端点)上运动,当为何值时,直线CM 与平面PAD所成角的正弦值为.45.当时,定义,.(1)求证:,;(2)设,求函数有两个零点的充要条件.46. 大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.46.6573 6.8289.81.6215083.431280表中,.(1)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程;(3)已知这种产品的年利润与、的关系为. 根据(2)的结果回答下列问题:(i )年宣传费时,年销售量及年利润的预报值是多少?(ii )年宣传费为何值时,年利润的预报值最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.47. 新疆棉以绒长、品质好、产量高著称于世.现有两类以新疆长绒棉为主要原材料的均码服装,A 类服装为纯棉服饰,成本价为120元/件,总量中有30%将按照原价200元/件的价格销售给非会员顾客,有50%将按照8.5折的价格销售给会员顾客.B 类服装为全棉服饰,成本价为160元/件,总量中有20%将按照原价300元/件的价格销售给非会员顾客,有40%将按照8.5折的价格销售给会员顾客.这两类服装剩余部分将会在换季促销时按照原价6折的价格销售给顾客,并能全部售完.(1)通过计算比较这两类服装单件收益的期望(收益=售价成本);(2)某服装专卖店店庆当天,全场A ,B 两类服装均以会员价销售.假设每位来店购买A ,B 两类服装的顾客只选其中一类购买,每位顾客限购1件,且购买了服装的顾客中购买A 类服装的概率为.已知该店店庆当天这两类服装共售出5件,设X 为该店当天所售服装中B 类服装的件数,Y 为当天销售这两类服装带来的总收益.求当时,n 可取的最大值及Y 的期望E (Y ).48. 某产业园生产的一种产品的成本为50元/件.销售单价依产品的等级来确定,其中优等品、一等品、二等品、普通品的销售单价分别为80元、75元、65元、60元.为了解各等级产品的比例,检测员从流水线上随机抽取200件产品进行等级检测,检测结果如下表所示.产品等级优等品一等品二等品普通品样本数量(件)30506060(1)若从流水线上随机抽取一件产品,估计该产品为优等品的概率;(2)从该流水线上随机抽取3件产品,记其中单件产品利润大于20元的件数为,用频率估计概率,求随机变量的分布列和数学期望;(3)为拓宽市场,产业园决定对抽取的200件样本产品进行让利销售,每件产品的销售价格均降低了5元.设降价前后这200件样本产品的利润的方差分别为,比较的大小.(请直接写出结论)49. 铅球起源于古代入类用石块猎取禽兽或防御攻击的活动.现代推铅球始于14世纪40年代欧洲炮兵闲暇期间推掷炮弹的游戏和比赛,后逐渐形成体育运动项目.男、女铅球分别于1896年、1948年被列为奥运会比赛项目.为了更好地在中小学生中推广推铅球这项体育运动,某教育局对该市管辖内的42所高中的所有高一男生进行了推铅球测试,测试结果表明所有高一男生的成绩(单位:米)近似服从正态分布,且,.(1)若从所有高一男生中随机挑选1人,求他的推铅球测试成绩在范围内的概率;(2)从所有高一男生中随机挑选4人,记这4人中推铅球测试成绩在范围内的人数为,求的分布列和方差;(3)某高一男生进行推铅球训练,若推(为正整数)次铅球,期望至少有21次成绩在范围内,请估计的最小值.50. 某种病菌在某地区人群中传播,目前临床医学研究中已有费用昂贵但能准确检测出个体是否带菌的方法.现引进操作易、成本低的新型检测方法:每次只需检测,两项指标,若指标的值大于4且指标的值大于100,则检测结果呈阳性,否则呈阴性.为考查该检测方法的准确度,随机抽取50位带菌者(用“*”表示)和50位不带菌者(用“”表示)各做一次检测,他们检测后的数据,制成统计图:(1)从这100名被检测者中,随机抽取一名不带菌者,求检测结果呈阳性的概率;(2)完成下列列联表,并判断能否在犯错误概率不超过0.001的前提下,认为“带菌”与“检测结果呈阳性”有关?检测结果呈阳性检测结果呈阴性合计不带菌者带菌者合计(参考公式:,其中)0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.82851. 某乡为了解居民的半年收入情况,随机抽取辖区内的1200个家庭进行调查,半年收入均在(单位:万元)范围内,将调查的数据分成五组,并绘制成频率分布直方图(如图).(1)求该直方图中的值;(2)若从第一组和第二组中利用分层抽样的方法抽取6个家庭,并在这6个家庭中选2个家庭进行深入调研,求这2个家庭的半年收入不在同一组的概率.。
2022年高考数学核心考点专题训练专题8 函数的图象及应用(含解析)
2022年高考数学核心考点专题训练专题8函数的图象及应用一、单选题(本大题共10小题,共50.0分)1.设函数f(x)的导函数为f'(x),若f(x)为偶函数,且在(0,1)上存在极大值,则f'(x)的图象可能为( )A. B. C. D.2.设函数f(x)=xln1+x1−x,则函数f(x)的图象可能为( )A. B.C. D.3.已知函数f x=8x−4−e,x≤1−lnx,x>1,记g x=f x−ex−a,若g x存在3个零点,则实数a的取值范围是()A.−2e,−32eB.−2e,−eC.−32e,−eD.−e,−12e4.已知如下六个函数:y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,从中选出两个函数记为f x和g x,若F x=f x+g x的图像如图所示,则F x=A.x2+cosxB.x2+sinxC.2x+cosxD.2x+sinx5.如图,函数f x的图象为两条射线CA,CB组成的折线,如果不等式f x≥x2−a的解集中有且仅有1个整数,那么a取值范围是().A.a|−2≤a<0B.a|−2<a<0C.a|0≤a<1D.a|−2≤a<16.已知函数f(x)=2x|log2x|x≤0x>0,若a<b<c,且满足f(a)=f(b)=f(c),则abc的取值范围为()A.(−∞,−1]B.(−∞,0]C.[−2,0]D.[−4,0]7.如图所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l // l1与半圆相交于F,G 两点,与三角形ABC两边相交于F,D两点,设弧FG的x(0<x<π),y=EB+BC+CD,若l从l1平行移动带l2,则函数y=f(x)图象大致是()A. B. C. D.8.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图像大致为A. B. C. D.9.设f(x)是定义在R上的函数,g(x)=f(x−1).若函数g(x)满足下列条件:①g(x)是偶函数;②g(x)在区间[0,+∞)上是增函数;③g(x)有一个零点为2.则不等式(x+1)f(x)>0的解集是A.(−3,−1)∪(1,+∞)B.(1,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(1,+∞)10.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=4−x−1,g(x)=x2+2x,x<0log2(x+1),x≥0,若g(f(a))≤3,则实数a的取值范围为()A.−12,12B.−3,−2∪0,12C.−12,−2∪0,8D.−2,8二、单空题(本大题共4小题,共20.0分)11.若函数y=f(x)图象上不同两点M,N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=e x,x<0,x2−4x,x>0,则此函数的“和谐点对”有_______对.12.已知函数f(x)=|x−1|+|x+1|−12|x|,若函数g(x)=f(x)−b恰有四个零点,则实数b的取值范围是________.13.已知函数f(x)=|log2|1−x||(a>0,且a≠1),若x1<x2<x3<x4,且f x1=f x2=f x3=f x4,则1x1+1x2+1x3+1x4=__________.14.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=≤x≤2)−1,(x>2),若关于x的方程[f(x)]2+ af(x)+b=0,a,b∈R,有且仅有6个不同实数根,则实数a的取值范围是_____________.三、解答题(本大题共3小题,共30分)15.已知函数f x=sinωx+φ+bω>0,0<φ<π的图象两相邻对称轴之间的距离是π2,若将f x的图象先向右平移π3个单位长度,再向上平移2个单位长度后,所得图象关于y轴对称且经过坐标原点.(1)求f x(2)若对任意x∈f x2−af x+a+1≤0恒成立,求实数a的取值范围.16.已知二次函数f(x)满足f(x+1)−f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[−1,1]上,函数y=f(x)的图象恒在直线y=2x+m的图象上方,试确定实数m的取值范围.17.已知①函数f(x)=3sinωxcosωx+cos2ωx(ω>0),周期是π2;②函数f(x)=Asin(ωx+φ)+k(A> 0,ω>0,|φ|<π2,k∈R)的图像如图所示;在以上两个条件中选择一个解答下列问题.(注:如果选择多个条件分别进行解答,则按第一个解答进行计分.)(1)求f(x)的解析式,以及x∈−π12f(x)的值域;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,纵坐标不变,再向左平移π3个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若|g(x)−m|<1成立的充分条件是0≤x≤5π12,求m的取值范围.专题8函数的图象及应用一、单选题(本大题共10小题,共50.0分)18.设函数f(x)的导函数为f'(x),若f(x)为偶函数,且在(0,1)上存在极大值,则f'(x)的图象可能为( )A. B. C. D.【答案】C【解析】解:根据题意,若f(x)为偶函数,则其导数f'(x)为奇函数,分析选项:可以排除B、D,又由函数f(x)在(0,1)上存在极大值,则其导数图象在(0,1)上存在零点,且零点左侧导数值符号为正,右侧导数值符号为负,分析选项:可以排除A,C符合;故选:C.19.设函数f(x)=xln1+x1−x,则函数f(x)的图象可能为( )A. B.C. D.【答案】B【解析】解:函数f(x)=xln1+x1−x的定义域为(−1,1),由f(−x)=−xln1−x1+x=xln1+x1−x=f(x),得f(x)为偶函数,排除A,C;又f(12)=12ln1+121−12=12ln3>0,排除D.故选:B.20.已知函数f x=8x−4−e,x≤1−lnx,x>1,记g x=f x−ex−a,若g x存在3个零点,则实数a的取值范围是()A.−2e,−32eB.−2e,−eC.−32e,−eD.−e,−12e【答案】C【解析】解:结合函数f(x)={|8x−4|−e,x⩽1−1nx,x>1与y=ex+a的图像,若g x=f x−ex−a存在三个零点,则y=ex+a在点12,−e上方,在1,0下方∴−e<12e+ae+a<0解得:−32e<a<−e故选C.21.已知如下六个函数:y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,从中选出两个函数记为f x和g x,若F x=f x+g x的图像如图所示,则F x=A.x2+cosxB.x2+sinxC.2x+cosxD.2x+sinx【答案】D【解析】解:由图象可知,函数F(x)过定点(0,1),当x>0时,F(x)>1,为增函数,当x<0时,F(x)>0或,F(x)<0交替出现,因为y=2x的图象经过点(0,1),且当x>0时,y>1,当x<0时,0<y<1,若为y=cosx,当x=0时,y=1,2x+cosx不满足过点(0,1),所以只有当F(x)=2x+sinx才满足条件,故选:D.22.如图,函数f x的图象为两条射线CA,CB组成的折线,如果不等式f x≥x2−a的解集中有且仅有1个整数,那么a取值范围是().A.a|−2≤a<0B.a|−2<a<0C.a|0≤a<1D.a|−2≤a<1【答案】A【解析】解:f x=2x+2,x⩽0−x+2,x>0,不等式f x≥x2−a等价于a⩾x2−f x,设g(x)=x2−f(x)=x2−2x−2 ,x≤0x2+x−2 ,x>0,x≤0,g'(x)=2x−2<0,函数单调递减,x>0,g'(x)=2x+1>0,函数单调递增,又g(0)=−2,g(1)=1+1−2=0,g(−1)=1+2−2=1,要使a≥g(x)只有1个整数,那么a取值范围是−2⩽a<0.故选A.23.已知函数f(x)=2x|log2x|x≤0x>0,若a<b<c,且满足f(a)=f(b)=f(c),则abc的取值范围为()A.(−∞,−1]B.(−∞,0]C.[−2,0]D.[−4,0]【答案】B【解析】解:由函数f x=2x,x≤02x,x>0,作出函数的图象;结合函数f x=2x,x≤02x,x>0图象可得a∈−∞,0,12≤b<1<c≤2,由f(a)=f(b)=f(c)可得−log2b=log2c,从而bc=1.所以abc=a∈−∞,0.故选B.24.如图所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l // l1与半圆相交于F,G 两点,与三角形ABC两边相交于F,D两点,设弧FG的x(0<x<π),y=EB+BC+CD,若l从l1平行移动带l2,则函数y=f(x)图象大致是()A. B. C. D.【答案】D【解析】解:当x=0时,y=EB+BC+CD=BC=当x=π时,此时y=AB+BC+CA=3=23;当x=π3时,∠FOG=π3,三角形OFG为正三角形,此时AM=OH=在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA−(AE+AD)=32×1=23−2.如图,又当x=π3时,图中y0=13(23=>23−2.故当x=π3时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.25.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图像大致为A. B. C. D.【答案】A【解析】【试题解析】解:最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A.故选:A26.设f(x)是定义在R上的函数,g(x)=f(x−1).若函数g(x)满足下列条件:①g(x)是偶函数;②g(x)在区间[0,+∞)上是增函数;③g(x)有一个零点为2.则不等式(x+1)f(x)>0的解集是A.(−3,−1)∪(1,+∞)B.(1,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(1,+∞)【答案】A【解析】解:由g(x)=f(x−1),可得g(x+1)=f(x),即f(x)为g(x)向左平移一个单位得到.故由g(x)是偶函数,可得f(x)关于直线x=−1对称;又由g(x)在区间[0,+∞)上是增函数,可得f(x)在区间[−1,+∞)上是增函数;由g(x)有一个零点为2,可得f(x)有一个零点为1,结合图象,可得f(x)>0的解集为−∞,−3∪1,+∞,f(x)<0的解集为−3,1,(x +1)f(x)>0即x +1>0f x >0或x +1<0f x <0,解得x >1或−3<x <−1,故不等式解集为(−3,−1)∪(1,+∞).故选A .27.已知函数f(x)是定义在R 上的奇函数,当x >0时,f(x)=4−x −1,g(x)=x 2+2x,x <0log 2(x +1),x ≥0,若g(f(a))≤3,则实数a 的取值范围为()A.−12,12B.−3,−2∪0,12C.−12,−2∪0,8D.−2,8【答案】C【解析】由g(x)≤3可得,当x <0时,x 2+2x⩽3,得−3⩽x <0,当x⩾0时,log 2(x +1)⩽3,得0⩽x⩽7,故g(x)≤3的解为{x|−3⩽x⩽7}∴g(f(a))≤3的解即−3≤f(a)≤7的解,函数f(x)=4−x −1,x >00, x =0−4+x +1,x <0作出f(x)的图象如下,∵f(12)=−7,f(8)=−3,∴f(−12)=7,∴当a ∈[−12,−2]∪[0,8]时,g(f(a))≤3.故选C .二、单空题(本大题共4小题,共20.0分)28.若函数y =f(x)图象上不同两点M ,N 关于原点对称,则称点对[M,N]是函数y =f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=e x ,x <0,x 2−4x,x >0,则此函数的“和谐点对”有_______对.【答案】2【解析】作出函数f(x)={e x,x<0,x2−4x,x>0的图象,f(x)的“和谐点对”数可转化为y1=e x(x<0)和y2=−x2−4x(x<0)的图象的交点个数(如图).由图象知,函数f(x)有两对“和谐点对”.29.已知函数f(x)=|x−1|+|x+1|−12|x|,若函数g(x)=f(x)−b恰有四个零点,则实数b的取值范围是________.,2【解析】由题意,分段函数f x的解析式为f x=x, x⩾1−12x, 0⩽x<1+12x, −1⩽x<032x, x<−1,其图像如下图所示:由图像可知,当b∈时,方程f x=b有4个交点,此时函数g x=f x−b=0恰有四个零点.,2.30.已知函数f(x)=|log2|1−x||(a>0,且a≠1),若x1<x2<x3<x4,且f x1=f x2=f x3=f x4,则1x1+1x2+1x3+1x4=__________.【答案】2【解析】因为f(x)=|log a|x−1||a>0且a≠1,所以f(x)的图象关于x=1对称,又因为x1<x2<x3<x4且f(x1)=f(x2)=f(x3)=f(x4),所以x1<x2<1<x3<x4,故log a|x1−1|=−log a|x2−1|,−log a|x3−1|=log a|x4−1|,即(x1−1)(x2−1)=1,(x3−1)(x4−1)=1,解得x1x2=x1+x2,x3x4=x3+x4,所以1x1+1x2+1x3+1x4=x1+x2x1x2+x3+x4x3x4=1+1=2.故答案为2.31.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=≤x≤2)−1,(x>2),若关于x的方程[f(x)]2+ af(x)+b=0,a,b∈R,有且仅有6个不同实数根,则实数a的取值范围是_____________.【答案】(−14,1)∪(−12,−14)【解析】作出f(x)的函数图象如图所示:令f(x)=t,显然,当t=0时,方程f(x)=t有三个解,当0<t<14时,方程f(x)=t有四个解,当t=14或−1<t<0时,方程f(x)=t有两解,当t≤−1或t>14时,方程f(x)=t无解.∵关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,∴关于t的方程t2+at+b=0,t∈R有两根,不妨设为t1,t2,且t1=14,0<t2<14或−1<t1<0,0<t2<14∴t1+t2∈(14,12)或者t1+t2∈(−1,14);又∵−a=t1+t2,∴a∈(−14,1)∪(−12,−14),故答案为:(−14,1)∪(−12,−14)三、解答题(本大题共3小题,共30分)32.已知函数f x=sinωx+φ+bω>0,0<φ<π的图象两相邻对称轴之间的距离是π2,若将f x的图象先向右平移π3个单位长度,再向上平移2个单位长度后,所得图象关于y轴对称且经过坐标原点.(1)求f x(2)若对任意x∈f x2−af x+a+1≤0恒成立,求实数a的取值范围.【答案】解:(1)由题意f(x)=+φ)+b(ω>0,0<φ<π),其周期为T=π2×2=π,故T=2πω=π,即得ω=2.将f(x)的图象向右平移π3个单位长度,再向上平移2个单位长度得到y=sin (2(x−π3)+φ)+b+2.即y=sin (2x+φ−2π3)+b+2,由题设条件得φ−2π3=π2+kπ,即φ=7π6+kπ, k∈Z,因为0<φ<π,当k=−1时满足条件,即φ=π6,又函数f x的图像经过坐标原点,即得sin (φ−2π3)+b+2=0,故b=−1.故f(x)=sin (2x+π6)−1.(2)因为x∈[0,π4],故2x+π6∈[π6,2π3],故sin (2x+π6)∈[12,1],f(x)∈[−12,0].设t=f(x)∈[−12,0],即t2−at+a+1⩽0恒成立.即g(t)=t2−at+a+1的最大值小于等于零即可.故满足:g(−12)⩽0g(0)⩽0,+12a+a+1⩽0+1⩽0,解得a⩽−1.故实数a的取值范围为−∞,−1.已知二次函数f(x)满足f(x+1)−f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[−1,1]上,函数y=f(x)的图象恒在直线y=2x+m的图象上方,试确定实数m的取值范围.【答案】解:(1)由f(0)=1,可设f(x)=ax2+bx+1(a≠0),故f(x+1)−f(x)=a(x+1)2+b(x+1)+1−(ax2+bx+1)=2ax+a+b,又f(x+1)−f(x)=2x,所以2a=2a+b=0,解得a=1b=−1,故f(x)=x2−x+1.(2)由题意,得x2−x+1>2x+m,即x2−3x+1>m,对x∈[−1,1]恒成立.令g(x)=x2−3x+1(x∈[−1,1]),则问题可转化为g(x)min>m.又g(x)在[−1,1]上单调递减,所以g(x)min=g(1)=−1,故m<−1.所以m的取值范围为(−∞,−1).33.已知①函数f(x)=3sinωxcosωx+cos2ωx(ω>0),周期是π2;②函数f(x)=Asin(ωx+φ)+k(A> 0,ω>0,|φ|<π2,k∈R)的图像如图所示;在以上两个条件中选择一个解答下列问题.(注:如果选择多个条件分别进行解答,则按第一个解答进行计分.)(1)求f(x)的解析式,以及x∈−π12f(x)的值域;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,纵坐标不变,再向左平移π3个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若|g(x)−m|<1成立的充分条件是0≤x≤5π12,求m的取值范围.【答案】解:选择条件 ①解答如下(1)f(x)=3sinωxcosωx+cos2ωx=32sin2ωx+12(cos2ωx+1)=sin(2ωx+π6)+12由T=2π2ω=π2,解得ω=2,所以函数f(x)=sin(4x+π6)+12因为x∈[−π12,7π24],所以−π64x+π6≤4π3,≤sin(4x+π6)+12≤32,即函数f(x)在x∈[−π12,7π24](2)将f(x)图象上所有点的横坐标扩大到原来的2倍,得y=sin(2x+π6)+12,纵坐标不变,再向左平移π3个单位,得y=sin[2(x+π3)+π6]+12=sin(2x+5π6)+12,最后将整个函数图象向上平移32个单位后,得到g(x)=sin(2x+5π6)+12+32=sin(2x+5π6)+2因为|g(x)−m|<1,所以g(x)−1<m<g(x)+1,∵|g(x)−m|<1成立的充分条件是0≤x≤5π12,∴当x∈[0,5π12]时,g(x)−1<m<g(x)+1恒成立,所以只需[g(x)−1]max<m<[g(x)+1]min,转化为求g(x)的最大值与最小值当x∈[0,5π12]时,2x+5π6∈[5π6,5π3],所以g(x)max=g(0)=12+2=52,g(x)min=g(π3)=−1+2=1,从而[g(x)−1]max=32,[g(x)+1]min=2,即32<m<2,所以m的取值范围是(32,2)选择条件 ②解答如下:(1)由己知A=32−(−12)2=1,k=32+(−12)2=12,∵T2=π3−π12=π4,∴T=π2,∴ω=2πT=4,∴f(x)=sin(4x+φ)+12,过点(π12,32),且|φ|<π2,∴4×π12+φ=π2,∴φ=π6,∴f(x)=sin(4x+π6)+12因为x∈[−π12,7π24],所以−π64x+π6≤4π3,≤sin(4x+π6)+12≤32,即函数f(x)在x∈[−π12,7π24](2)将f(x)图象上所有点的横坐标扩大到原来的2倍,得y=sin(2x+π6)+12,纵坐标不变,再向左平移π3个单位,得y=sin[2(x+π3)+π6]+12=sin(2x+5π6)+12,最后将整个函数图象向上平移32个单位后,得到g(x)=sin(2x+5π6)+12+32=sin(2x+5π6)+2,因为|g(x)−m|<1,所以g(x)−1<m<g(x)+1∵|g(x)−m|<1成立的充分条件是0≤x≤5π12,∴当x∈[0,5π12]时,g(x)−1<m<g(x)+1恒成立,所以只需[g(x)−1]max<m<[g(x)+1]min,转化为求g(x)的最大值与最小值当x∈[0,5π12]时,2x+5π6∈[5π6,5π3],所以g(x)max=g(0)=12+2=52,g(x)min=g(π3)=−1+2=1,从而[g(x)−1]max=32,[g(x)+1]min=2,即32<m<2所以m的取值范围是(32,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心考点模拟演练(一)(集合、逻辑、函数、导数与不等式)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4,5},A ={1,2,4},∁U B ={4,5},则A ∩B =( ) A .{1,2} B .{4} C .{1,2,3} D .{3,5}2.下列命题:①∀x ∈R ,x 2≥x ;②∃x ∈R ,x 2≥x ;③4≥3;④“x 2≠1”的充要条件是“x ≠1或x ≠-1”中,其中正确命题的个数是( )A .0B .1C .2D .33.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( ) A .[-4,-2] B .[-2,0] C .[0,2] D .[2,4]4.设x 、y 为正数,则(x +y )⎝⎛⎭⎫1x + 4y 的最小值为( ) A .6 B .9C .12D .15 5.函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称6.函数y =ax 2+bx 与y =log b ax (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )7.一物体A 以速度v =3t 2+2(t 的单位:s 、v 的单位:m/s),在一直线上运动,在此直线上在物体A 出发的同时,物体B 在物体A 的正前方8 m 处以v =8t (t 的单位:s 、v 的单位:m/s)的速度与A 同向运动,设n s 后两物体相遇,则n 的值为( )A.4+103 B .2+10C .4D .58.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=⎝⎛⎭⎫110x在⎣⎡⎦⎤0,103上根的个数是( ) A .1个 B .2个 C .3个 D .4个 二、填空题:本大题共6小题每小题5分,满分30分.9.集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪10m +1∈Z ,m ∈Z的所有元素之和为________. 10.若函数f (x )=ax +b 有一个零点是2,则函数g (x )=bx 2-ax 的零点是________. 11.已知双曲线x 2-y 2=1的一条渐近线与曲线y =13x 3+a 相切,则a 的值为__________.12.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1)x 2,x ∈[1,+∞).若f (x )>4,则x 的取值范围是____________.13.已知b >0,直线b 2x +y +1=0与ax -(b 2+4)y +2=0互相垂直,则ab 的最小值为__________.14.设x 、y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥08x -y -4≤0x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程或演算步骤.15.(12分)已知命题p :方程x 2+mx +1=0有两个不等的负数根,命题q :关于x 的方程4x 2+4(m -2)x +1=0没有实数根.若“p ∧q ”为假命题,“p ∨q ” 为真命题,求m 的取值范围.16.(12分)若f (x )=a ·2x +a -22x +1为奇函数.(1)判断它的单调性; (2)求f (x )的值域.17.(14分)设函数f (x )=⎩⎪⎨⎪⎧1 (1≤x ≤2)x -1 (2<x ≤3),g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ).(1)求函数h (a )的解析式;(2)在图1中画出函数y =h (x )的图象并指出h (x )的最小值.图118.(14分)某食物营养研究所想用x千克甲种食物,y千克乙种食物,z千克丙种食物配成100千克的混合食物,并使混合食物至少含56 000单位维生素A和63 000单位维生素B.(1)用x、y表示混合物成本C;(2)确定x、y、z的值,使成本最低.19.(14分)某单位为解决职工的住房问题,计划征用一块土地盖一幢总建筑面积为A(m2)的宿舍楼.已知土地的征用费为2 388元/m3,且每层的建筑面积相同,土地的征用面积为第一层的2.5倍. 经工程技术人员核算,第一、二层的建筑费用都为445元/m2,以后每增高一层,其建筑费用就增加30元/m2.试设计这幢宿舍楼的楼高层数,使总费用最小,并求出其最小费用(总费用为建筑费用和征地费用之和).20.(14分)设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.(1)若x1=-1,x2=2,求函数f(x)的解析式;(2)若|x1|+|x2|=2 2,求b的最大值;(3)若x1<x<x2,且x2=a,函数g(x)=f′(x)-a(x-x1),求证:|g(x)|≤112a(3a+2)2.核心考点模拟演练(二)(三角函数、平面向量与解三角形)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.角α终边过点(-1,2),则cos α=( ) A.55 B.2 55C .-55 D.-2 552.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin ⎝⎛⎭⎫2x -π6B .y =sin ⎝⎛⎭⎫2x -π3C .y =sin ⎝⎛⎭⎫2x +π6D .y =sin ⎝⎛⎭⎫x 2+π3 3.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =( )A .2B .3C .4D .54.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =2 3sin B ,则A =( )A .30°B .60°C .120°D .150°5.已知函数y =f (x )sin x 的一部分图象如图1,则函数f (x )可以是( )图1A .2sin xB .2cos xC .-2sin xD .-2cos x6.若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=3 5,则b 等于( ) A .(-3,6) B .(3,-6) C .(6,-3) D .(-6,3)8.定义平面向量之间的一种运算“□”如下,对任意的a =(m ,n ),b =(p ,q ),令a □b =mq -np ,下面说法错误的是( )A .若a 与b 共线,则a □b =0B .a □b =b □aC .对任意的λ∈R ,有(λa )□b =λ(a □b )D .(a □b )2+(a·b )2=|a |2|b |2二、填空题:本大题共6小题每小题5分,满分30分.9.若三角形ABC 的三条边长分别为a =2,b =1,c =2,则sin Asin (A +C )=__________.10.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →=__________. 11.f (x )=cos ⎝⎛⎭⎫ωx -π6的最小正周期为π5,其中ω>0,则ω=________. 12.已知α是第二象限的角,tan α=-12,则cos α=________.13.函数y 2=sin x -cos x 的图象可由y 1=sin x +cos x 的图象向右平移________个单位得到.14.函数f (x )=1-2sin 2⎝⎛⎭⎫x +π4,则f ⎝⎛⎭⎫π6=________. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程或演算步骤.15.(12分)已知向量a =⎝⎛⎭⎫sin x ,32,b =(cos x ,-1). (1)当a ∥b 时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在⎣⎡⎦⎤-π2,0上的值域.16.(12分)已知函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,0<φ<π2)的图象如图2.(1)求A 、ω及φ的值; (2)若tan α=2,求f ⎝⎛⎫α+π8的值.图217.(14分)已知:向量a =(3,-1),b =(sin2x ,cos2x ),(0<x <π),函数f (x )=a·b .(1)若f (x )=0,求x 的值;(2)求函数f (x )取得最大值时,向量a 与b 的夹角. 18.(14分)设函数f (x )=cos ⎝⎛⎭⎫x +23π+2cos 2x2,x ∈R . (1)求f (x )的值域;(2)记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若f (B )=1,b =1,c =3,求a 的值.19.(14分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求f (x )的解析式;(2)若α∈⎝⎛⎭⎫-π3,π2,f ⎝⎛⎭⎫α+π3=13,求sin ⎝⎛⎭⎫2α+5π3的值. 20.(14分)已知△ABC 的面积为3,且满足0≤AB →·AC →≤6,设AB →和AC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=2sin 2⎝⎛⎭⎫π4+θ-3cos2θ最大值与最小值.核心考点模拟演练(三)(数列、推理与证明)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30 B .40 C .60 D .802.在等比数列{a n }中,若a n >0且a 3a 7=64,a 5的值为( ) A .2 B .4 C .6 D .8 3.等比数列{a n }的前n 项和为S n ,且4a 1、2a 2、a 3成等差数列,若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .164.黑白两种颜色的正六边形地面砖按如图1的规律拼成若干个图案,则第n 个图案中白色地面砖的块数是( )图1A .4n +2B .4n -2C .2n +4D .3n +35.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是( )A .Π11B .Π10C .Π9D .Π86.数列{a n }中,a n =2n +3,前n 项和S n =an 2+bn +c (n ∈N *),a 、b 、c 为常数,则a -b +c =( )A .-3B .-4C .-5D .-67.已知{a n }是等比数列,a 1=4,a 2=2,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n )D.323(1-2-n ) 8.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。