160加氢裂化操作规程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章工艺技术规程

1.1装置概况

1.1.1装置简介

一、辽阳石化分公司炼油厂加氢裂化装置是继镇海加氢裂化装置之后第二套国产化装置,由洛阳石化工程公司承担主要设计,天津四建承建。于1991年10月正式开工建设,1995年6月建成,1995年9月开车一次成功;

原设计为100*104t/a,串联式中间馏分油循环流程。1998年9月装置进行120万吨/年一次通过流程的扩能改造,1999年6月实现160万吨/年一次通过流程改造的第一步,2001年6月完成160万吨/年串联式一次通过流程改造。

原料油主要是常减压直馏蜡油,可以掺炼部分焦化蜡油抽余油。

二、装置占地:加氢裂化和制氢在一个界区内,界区的面积为228*140=31920m2,其中加氢裂化占地面积为228*80=18240m2,制氢装置占地228*60=13680m2,加氢裂化和制氢装置共用一个中心控制室、变配电间、生产办工楼和生活设施,中心控制室在制氢南侧,办工楼在联合装置的界区外。

三、装置组成:装置由两大部分组成:

(一)反应部分包括原料系统、反应系统、新氢系统及注氨、注硫系统、反应部分包括:加热炉系统(F1101、F1102),加氢精制和加氢裂化反应器,高分和低分。

(二)分馏系统:由脱丁烷塔;轻石脑油分馏塔;第一分馏塔、重石脑油气提塔;第二分馏塔四个单元。

反应系统作用:原料油通过加氢裂化反应转化为轻质烃;轻、重石脑油、航煤、柴油等产品。

分馏系统作用:将反应部分来的反应生成油分馏切割成干气、液化石油气,轻、重石脑油、航煤、柴油、未转化油等产品。

四、主要材料和辅助材料的来源

(一)加氢裂化所需直馏蜡油VGO144.5*104t/a,由常减压装置提供;焦化蜡油抽余油CGO15.5*104t/a,由蜡油抽提装置提供。

(二)氢气由制氢装置及氢气提纯装置提供。

(三)燃料1、燃料气(干气+液化石油气),3.95*104t/a;

2、燃料油3.55*104t/a,均由燃料站提供。

(四)装置开工用油:新催化剂开工用油:低氮油2000吨;正常开工柴油500吨,全馏分石脑

油50吨。

五、工艺技术方案

1、原设计:为提供重石脑油和一定量的加氢未转化油作为蒸汽裂解原料采用高压(15Mpa氢分压),精制反应器和裂化反应器串联,中间馏分油循环的工艺流程。

2、改造以后:为了提供重石脑油作重整进料及部分尾油作为蒸汽裂解进料(或加氢回炼),同时也能提供柴油、航煤等高附加值产品,改造成高压(15Mpa氢分压),精制反应器和裂化反应器串联的一次通过工艺流程,处理量由125t/h提到200t/h。

六、自动控制水平

加氢裂化装置和制氢装置共用一套集散控制系统(DCS),用于装置的过程控制和管理数据的采集、记录、保存、实施高级优化控制。

由于加氢裂化装置操作复杂、危险因素多,相应设计了较为复杂的控制系统,为了保证安全操作,确保人身及设备的安全,装置设置了九个单元的自动保护系统。

分别为:2.1Mpa/min、0.7Mpa/min紧急停工联锁系统。

新氢压缩机(C1102A/B)和循环氢压缩机(C1101)机组停车联锁系统;进料泵(P1101A)和能量透平停机联锁系统,第一、第二循环氢加热炉熄炉联锁系统;进料泵(P1114A/B)泵联锁停车系统;脱丁烷塔底重沸炉(F1103),第一分馏塔底重沸炉(F1104),第二分馏塔底重沸炉(F1105)熄火联锁系统。

1.1.2工艺原理

1、加氢精制的反应原理

加氢精制的主要反应有以下几种:

一、烯烃饱和:是不饱的单烯、双烯通过加氢后,变成饱和的烷烃。

如:1、R-C=C-R+H2→R-C-C-R....+Q

2、R-C=C-C=C-R'+H2→R-C=C-C-C-R'+H2→R-C-C-C-C-R'

二、脱硫反应

在反应条件下,原料中含硫化合物进行氢解,转化成相应的烃和硫化氢,从而硫原子被脱除。如:硫醇: R-S-H + H2→R-H2 + SH2

硫醚: R-S-R' + H2→R-S-H + R'-H + H2→ R-H + R'-H + SH2

二硫化物:R-S-S-R' + H2→R-S-H + R'-S-H + 2H2→R-H + R'-H +2SH2

二硫化物加氢转化为烃和硫化氢需经过生成硫醇的中间阶段,即首先在s-s键上断裂,生成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也转化成硫醚。

而噻吩环状含硫物,在加氢脱硫时首先选定环中双键,发生饱和,然后再发生断环脱硫,脱硫反应速度因分子结构按以下顺序递减:RSH>RSSR>RSR'>噻吩

三、加氢脱氮反应

石油馏分中的含氮化合物可分为三类:

1、脂肪胺及芳香胺类;

2、吡啶、喹啉类型的碱性杂环化合物;

3、吡咯、茚入咔唑型的非碱性氮化物,氮化物加氢发生氢解反应生成NH3和烃

如:胺类:R-NH2 + H2→RH + NH3

(1)吡啶

(2)喹啉

由此可见:所有的含氮化合物氢解时都要向胺转化,再进一步氢解生成烃和氨。反应速度:脂肪胺〉芳香胺〉吡啶类型碱性杂环化合物〉吡咯类型的非碱性氮化物。

由于氮化物的分子结构都比较复杂,且都很稳定,故而氢解反应需要的条件比较苛刻,要求氢分压在15Mpa,温度在400℃,能脱除96%左右的氮,故此加氢裂化设计压力为16Mpa,而且精制的空速不能过高。

四、脱氧反应

原油中含氧化合物有环烷酸、脂肪酸酯和醚、酚等,含氧化合物发生氢解反应后生成烃和水。

这些含氧化合物在加氢精制的条件下很快发生分解。从反应速度上来看,硫化物>氧化物>氮化物

相关文档
最新文档