统计学基础培训PPT课件
合集下载
统计学完整全套PPT课件
介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
统计培训ppt课件
实时分析
随着数据处理速度的提升,统 计学将更加注重实时数据分析 ,以满足快速变化的数据需求
。
提高统计素养的意义与途径
2. 实践应用
1. 教育培养
加强统计学教育,提高大众对统 计学的认知和理解。
通过实际项目和案例,培养统计 思维和技能,提高解决实际问题 的能力。
3. 持续学习
关注统计学的新发展、新方法和 新技术,不断更新知识体系。
时间序列分析
总结词
研究时间序列数据的内在规律和特点。
详细描述
通过分析时间序列数据的趋势、季节性、周期性和随机性等特点,揭示数据的变 化规律和预测未来的发展趋势。
聚类分析
总结词
将相似的对象归为同一类,不同类的对象尽量保持差异。
详细描述
通过计算对象之间的相似性或距离,将相似的对象归为同一 类,不同类的对象尽量保持差异,从而将数据划分为若干个 有意义的群组。
描述性统计
数据收集与整理
描述性统计是通过对数据进行整理、分类和总结,以描述 数据的基本特征和分布情况。
均值、中位数和众数
均值是所有数据之和除以数据量的结果,中位数是将数据 按大小排序后位于中间位置的数值,众数则是出现次数最 多的数值。
方差、标准差和变异系数
方差是描述数据离散程度的指标,标准差是方差的平方根 ,变异系数则是标准差与均值的比值。
03
统计分析方法
方差分析
总结词
用于比较不同组数据的均值是否 存在显著差异。
详细描述
通过比较不同组的变异来源,确 定组间差异和组内差异对总变异 的贡献,从而判断各组的均值是 否存在显著差异。
相关与回归分析
总结词
研究两个或多个变量之间的相关关系。
详细描述
随着数据处理速度的提升,统 计学将更加注重实时数据分析 ,以满足快速变化的数据需求
。
提高统计素养的意义与途径
2. 实践应用
1. 教育培养
加强统计学教育,提高大众对统 计学的认知和理解。
通过实际项目和案例,培养统计 思维和技能,提高解决实际问题 的能力。
3. 持续学习
关注统计学的新发展、新方法和 新技术,不断更新知识体系。
时间序列分析
总结词
研究时间序列数据的内在规律和特点。
详细描述
通过分析时间序列数据的趋势、季节性、周期性和随机性等特点,揭示数据的变 化规律和预测未来的发展趋势。
聚类分析
总结词
将相似的对象归为同一类,不同类的对象尽量保持差异。
详细描述
通过计算对象之间的相似性或距离,将相似的对象归为同一 类,不同类的对象尽量保持差异,从而将数据划分为若干个 有意义的群组。
描述性统计
数据收集与整理
描述性统计是通过对数据进行整理、分类和总结,以描述 数据的基本特征和分布情况。
均值、中位数和众数
均值是所有数据之和除以数据量的结果,中位数是将数据 按大小排序后位于中间位置的数值,众数则是出现次数最 多的数值。
方差、标准差和变异系数
方差是描述数据离散程度的指标,标准差是方差的平方根 ,变异系数则是标准差与均值的比值。
03
统计分析方法
方差分析
总结词
用于比较不同组数据的均值是否 存在显著差异。
详细描述
通过比较不同组的变异来源,确 定组间差异和组内差异对总变异 的贡献,从而判断各组的均值是 否存在显著差异。
相关与回归分析
总结词
研究两个或多个变量之间的相关关系。
详细描述
统计学基础ppt课件
➢ 调查失败的主要原因是抽样框出现了问题。在经济大萧条 时期由于电话和汽车并不普及,只是富裕阶层才会拥有, 调查有电话和汽车的人们,并不能够反映全体选民的观点
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
统计基础知识ppt课件
统计基础知识ppt课件
目录
• 统计概述 • 描述性统计方法 • 概率论基础 • 推断性统计方法 • 方差分析与回归分析 • 时间序列分析与预测 • 统计软件应用与实例分析
01
统计概述
统计定义与作用
统计定义
统计是收集、整理、分析和解释数据 ,以揭示其数量特征和规律性的科学 。
统计作用
统计在各个领域都有广泛应用,如经 济、社会、医学、环境等。通过统计 ,我们可以更好地了解事物的数量特 征和规律,为决策提供依据。
演示如何对数据进行编码、转换 和标准化等预处理操作,以便进
行后续的统计分析。
基于实例数据的描述性统计结果展示
01
集中趋势度量
计算并展示实例数据的均值、中 位数和众数等集中趋势指标。
03
分布形态描述
通过绘制直方图、箱线图等图形 ,直观展示实例数据的分布形态
。
02
离散程度度量
计算并展示实例数据的标准差、 方差和四分位距等离散程度指标
03
概率论基础
事件与概率概念
事件定义与分类
事件是在一定条件下,所关心的某种 结果或某种现象的发生。根据事件之 间的关系,可以将其分为互斥事件、 对立事件、独立事件等。
概率定义与性质
古典概型与几何概型
古典概型是指具有有限个可能结果的 概率模型,几何概型是指具有无限多 个可能结果,且每个结果发生的可能 性相等的概率模型。
对模型进行检验和评估,确定 模型有效性
利用模型进行长期趋势预测并 输出结果
07
统计软件应用与实例 分析
常用统计软件介绍及功能比较
01
02
03
04
SPSS
适合社会科学领域的数据分析 ,提供丰富的统计方法和图形
目录
• 统计概述 • 描述性统计方法 • 概率论基础 • 推断性统计方法 • 方差分析与回归分析 • 时间序列分析与预测 • 统计软件应用与实例分析
01
统计概述
统计定义与作用
统计定义
统计是收集、整理、分析和解释数据 ,以揭示其数量特征和规律性的科学 。
统计作用
统计在各个领域都有广泛应用,如经 济、社会、医学、环境等。通过统计 ,我们可以更好地了解事物的数量特 征和规律,为决策提供依据。
演示如何对数据进行编码、转换 和标准化等预处理操作,以便进
行后续的统计分析。
基于实例数据的描述性统计结果展示
01
集中趋势度量
计算并展示实例数据的均值、中 位数和众数等集中趋势指标。
03
分布形态描述
通过绘制直方图、箱线图等图形 ,直观展示实例数据的分布形态
。
02
离散程度度量
计算并展示实例数据的标准差、 方差和四分位距等离散程度指标
03
概率论基础
事件与概率概念
事件定义与分类
事件是在一定条件下,所关心的某种 结果或某种现象的发生。根据事件之 间的关系,可以将其分为互斥事件、 对立事件、独立事件等。
概率定义与性质
古典概型与几何概型
古典概型是指具有有限个可能结果的 概率模型,几何概型是指具有无限多 个可能结果,且每个结果发生的可能 性相等的概率模型。
对模型进行检验和评估,确定 模型有效性
利用模型进行长期趋势预测并 输出结果
07
统计软件应用与实例 分析
常用统计软件介绍及功能比较
01
02
03
04
SPSS
适合社会科学领域的数据分析 ,提供丰富的统计方法和图形
统计学完整ppt课件完整版
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
统计学培训讲座(ppt 114页)
q 1 p 1 5 % 9% 5
20
(3)抽样总体标准差和抽样总体方差。
说明抽样总体之间标志值变异程度的指标,叫做抽样
总体标准差。抽样总体标准差的平方称为抽样总体方
差(简称样本方差)。其计算公式为:
s
2
xx n
2
s2 xx n
21
一个总体可以抽取许多个样本,而样本不同, 抽样指标的数值也各不相同。可见,抽样指标的数 值不是惟一确定的。因为抽样指标是样本变量的函数, 是随机可变的变量。也就是说,由 样本观测值所决定的 统计量是随机变量。
3
(二)抽样推断的特点 1.抽样推断是非全面调查 2.抽样推断是按随机原则抽选调查单位。 3.抽样推断是用样本的指标数值去推算总体的指标数值。 4.抽样推断中产生的抽样误差,可以事先计算并加以控制。
4
二、抽样调查的主要内容 (一)随机抽样:按照随机原则从总体中抽 取部分单位构成样本的过程。
(二)统计估计:根据随机抽取的部分单位的特性来对 总体的分布函数、分布参数或数字特征等进行推测估算的过程。 (三)假设检验:根据经验或认识,提出某一假设,并判断该假 设正确性的过程。
产品合格率 Q=1—P=1-5.0%=95%
14
(3)总体标准差和总体方差。 表示单位之间标志值的变异程度指标,叫做总
体标准差,又称总体均方差(标准差)。总体标准差的 平方称为总体方差。其计算公式为:
2
X X
N
2
2 XX
N
15
2.抽样指标 抽样指标是指根据抽样总体各单位标志值计算的综合指 标,又称样本指标。常用的抽样指标有:抽样平均数、 抽样成数、抽样总体标准差和抽样总体方差。
24
20
(3)抽样总体标准差和抽样总体方差。
说明抽样总体之间标志值变异程度的指标,叫做抽样
总体标准差。抽样总体标准差的平方称为抽样总体方
差(简称样本方差)。其计算公式为:
s
2
xx n
2
s2 xx n
21
一个总体可以抽取许多个样本,而样本不同, 抽样指标的数值也各不相同。可见,抽样指标的数 值不是惟一确定的。因为抽样指标是样本变量的函数, 是随机可变的变量。也就是说,由 样本观测值所决定的 统计量是随机变量。
3
(二)抽样推断的特点 1.抽样推断是非全面调查 2.抽样推断是按随机原则抽选调查单位。 3.抽样推断是用样本的指标数值去推算总体的指标数值。 4.抽样推断中产生的抽样误差,可以事先计算并加以控制。
4
二、抽样调查的主要内容 (一)随机抽样:按照随机原则从总体中抽 取部分单位构成样本的过程。
(二)统计估计:根据随机抽取的部分单位的特性来对 总体的分布函数、分布参数或数字特征等进行推测估算的过程。 (三)假设检验:根据经验或认识,提出某一假设,并判断该假 设正确性的过程。
产品合格率 Q=1—P=1-5.0%=95%
14
(3)总体标准差和总体方差。 表示单位之间标志值的变异程度指标,叫做总
体标准差,又称总体均方差(标准差)。总体标准差的 平方称为总体方差。其计算公式为:
2
X X
N
2
2 XX
N
15
2.抽样指标 抽样指标是指根据抽样总体各单位标志值计算的综合指 标,又称样本指标。常用的抽样指标有:抽样平均数、 抽样成数、抽样总体标准差和抽样总体方差。
24
《统计学基础》PPT课件1
任务二 统计学研究对象和作用
本节的重点: 统计研究对象及其特点 统计的作用
本节的难点: 统计研究对象的特点
27
一、统计学的研究对象及其特点
(一)统计学的研究对象 社会经济统计学的研究对象,是社会经济现象
的总体的数量方面,即社会经济现象总体的数 量特征和数量关系。 就是通过特有的统计指标和统计指标体系来表 明社会经济现象的规模、水平、速度、比例和 效益等,揭示现象发展的本质规律。
概率论 (包括分布理论、大数定律
和中心极限定理等)
反映客观 现象的数
据
样本数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进
行估计和检验等)
总体内在的 数量规律性
统计学探索现象数量规律性的过程
理论统计与应用统计
理论统计
▪ 研究统计学的一般理论 ▪ 研究统计方法的数学原理
23
三、统计学与其他学科的关系
(三)统计学与数学的关系 数学是统计学的研究工具,统计研究要
运用大量的数学知识,研究理论统计学 的人需要较深的数学功底,使用统计方 法的人要具有良好的数学基础。统计学 与数学又有着本质的区别
24
三、统计学与其他学科的关系
(四)统计学与数理统计学的关系 一方面,统计学的产生先于数理统计学,从一
12
历史上各国对统计学的译法
法国: Statistique
意大利: Statistica
英国:
Statistics
日本:
政表、政算、国势、形势等
中国: ,,,,,,,,,,统计(钮永建、林卓南于1903译)
13
统计学基础知识培训PPT课件
距,频数密度才能准确反映频数分布的实际情况。 返回
统计学基础知识培训
13
连续数值型数据的显示方法
分组数据的图形显示——直方图 这是406例汽车的马力的直方图
60
40
20
0
50
100
150
200
汽车马力
统计学基础知识培训
14
连续数值型数据的显示方法
未分组数据的显示方法——箱线图 箱线图是由一组数据的5个特征值绘制而成的,它由一个箱子和两条线段 组成,5个特征值为:最大值、最小值、中位数和两个四分位,下面是 406例产地为美国、欧洲和日本三个地区的汽车马力值的箱线图。欧洲箱 线图有两个离群点。
300
200
汽
车
马
力
285 283
100
0
N=
249
American
71
European
79
Japanese
统计学基础知识培国训别
返回
15
你有何种数据?
1.分类数据(定类、定序) 2.连续数值型数据(定距、定比)
统计学基础知识培训
返回
16
分类数据分布的统计量指标
1.集中趋势:计算众数、中位数
众数是一组数据中出现次数最多的变量值;
SPSS实现:Analyze—Descriptive Statistics—
Descriptives
统计学基础知识培训
12
数据分组法
数据分组包括单变量分组和组距分组两种,单变量适合离散变量分 组,一般数据都使用组距分组。
数据分组的步骤:
1.确定组数,可以按斯特奇斯(Sturges)提出的经验公式来确定组 数K;K=1+lgn/lg2。n为数据的个数,对结果四舍五入即为组数;
统计学基础知识培训
13
连续数值型数据的显示方法
分组数据的图形显示——直方图 这是406例汽车的马力的直方图
60
40
20
0
50
100
150
200
汽车马力
统计学基础知识培训
14
连续数值型数据的显示方法
未分组数据的显示方法——箱线图 箱线图是由一组数据的5个特征值绘制而成的,它由一个箱子和两条线段 组成,5个特征值为:最大值、最小值、中位数和两个四分位,下面是 406例产地为美国、欧洲和日本三个地区的汽车马力值的箱线图。欧洲箱 线图有两个离群点。
300
200
汽
车
马
力
285 283
100
0
N=
249
American
71
European
79
Japanese
统计学基础知识培国训别
返回
15
你有何种数据?
1.分类数据(定类、定序) 2.连续数值型数据(定距、定比)
统计学基础知识培训
返回
16
分类数据分布的统计量指标
1.集中趋势:计算众数、中位数
众数是一组数据中出现次数最多的变量值;
SPSS实现:Analyze—Descriptive Statistics—
Descriptives
统计学基础知识培训
12
数据分组法
数据分组包括单变量分组和组距分组两种,单变量适合离散变量分 组,一般数据都使用组距分组。
数据分组的步骤:
1.确定组数,可以按斯特奇斯(Sturges)提出的经验公式来确定组 数K;K=1+lgn/lg2。n为数据的个数,对结果四舍五入即为组数;
统计学PPT课件
19世纪初,法国数学家、统计学家拉普拉斯在总结前人成果 的基础上出版了《概率的分析理论》一书,从而形成完整的应用 理论体系。
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
《统计基础知识》课件
客观性
避免主观臆断和偏见 ,客观地分析和解读 数据。
可读性
确保报告的清晰易懂 ,避免使用过于专业 或复杂的术语。
及时性
及时更新和发布数据 报告,以便决策者和 相关人员及时了解和 利用。
06
统计误区的识别与避免
常见的统计误区
样本偏差
由于样本选取不当,导致对总体特征的估 计出现偏差。
回归问题
在回归分析中,因变量的预测受到自变量 之外其他因素的影响。
04
数据可视化
通过图表、表格等形式将数据呈现出 来,以便更好地理解和解释数据的特 征和趋势。
06
结果报告
将数据分析结果以书面或口头形式报告出来, 包括数据解读、结论和建议等,以便决策者和 相关人员参考和应用。
解读与报告数据的注意事项
准确性
确保数据的准确性和 可靠性,避免误导和 错误解读。
完整性
全面收集和呈现数据 ,避免遗漏重要信息 。
03
02
了解基本概念
掌握统计学的基本概念和原理,能 够识别常见的误区。
实践检验
将统计结论与实际情况进行对比, 验证其是否符合实际情况。
04
如何避免统计误区
数据全面分析
强化变量控制
在实验或调查中,对变量进行严 格控制,避免混淆因果关系。
对数据进行全面分析,不只关注 部分数据或成功案例。
正确解读数据
对数据进行综合分析和解读,避 免片面或错误的结论。
文献法
通过查阅文献资料获取数据,适用于历史数 据和二手数据的收集。
数据收集的步骤
确定研究目的和问题
设计数据收集方案
明确研究目标和需要解决的问题,为数据 收集提供方向。
根据研究目的和问题,选择合适的数据收 集方法、工具和样本。
统计学基础知识培训ppt课件
连续数值型数据分布的统计量 指标
1.集中趋势:平均值、加权平均值、算术平均值
简单均值就是一组数据值之和除以其数据个数 ;加权平均的均值与其各个数 值的个数有关 ;几何平均是适用于特殊数据的一种平均数,只要用于比率的 平均。
距,频数密度才能准确反映频数分布的实际情况。 返回
13
连续数值型数据的显示方法
分组数据的图形显示——直方图 这是406例汽车的马力的直方图
60
40
20
0
50
100
150
200
汽车马力
14
连续数值型数据的显示方法
未分组数据的显示方法——箱线图 箱线图是由一组数据的5个特征值绘制而成的,它由一个箱子和两条线段 组成,5个特征值为:最大值、最小值、中位数和两个四分位,下面是 406例产地为美国、欧洲和日本三个地区的汽车马力值的箱线图。欧洲箱 线图有两个离群点。
数据分组的步骤: 1.确定组数,可以按斯特奇斯(Sturges)提出的经验公式来确定组 数K;K=1+lgn/lg2。n为数据的个数,对结果四舍五入即为组数; 2.确定各组的组距。组距是上限与下限的差,组距=(最大值-最小 值)/组数; 3.根据分组整理成频数分布表。 分组需要“不重不漏”,因此习惯上规定“上组限不在内”。若有 的值过大,可以设置开口组。等距分组由于各组的组距相等,各组频 数分布不受组距大小的影响,可以从频数分布中直接观察频数分布的 特征和规律,而不等距分组就必须计算频数密度,频数密度=频数/组
结束
4
你要归纳整理的是什么类型的数 据?
1.已分类数据(定类、定序) 2.连续、数值型数据(定距、定比)
返回
5
你想如何归纳整理数据?
1.分类计算频数和百分比
统计学ppt(全)
1 -2
经济、管理类 基础课程
统计学
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
1 -3
经济、管理类 基础课程
统计学
1 -4
一、什么是统计?
1. 统计工作
收集数据的活动
2. 统计数据
▪ 对现象计量的结果
3. 统计学
分析数据的方法与技术
经济、管理类 基础课程
统计学
什么是统计学?
总量指标、相对指标和平均指标
3. 按计量单位
实物指标、价格指标和劳动量指标
1 - 35
经济、管理类 基础课程
统计学
统计指标体系
由若干个相互联
系相互制约的统计指 标组成的一个统计指 标系统
•基本统计指标体系
•专题统计指标体系
1 - 36
经济、管理类 基础课程
2. 17世纪中叶的政治算术学派可看作是统计学的开端
3. 19世纪,沿着约翰·格朗特所开创的人口统计以及 沿着威廉·配第所开创的经济统计有了进一步的发 展
4. 威廉·配第为以后经济统计的发展开拓了道路;约 翰·格朗特为人口统计的发展开拓了道路
5. 政治算术学派则为后来的社会经济统计的发展奠定 了基础
Thomas Robert Malthus (马尔萨斯) (1766-1834)
1 - 19
Johann Gregor Mendel (孟德尔) (1822-1884) Pierre Simon Laplace (拉普拉斯) (1749-1827)
经济、管理类 基础课程
统计学
历史上著名的统计学家
Jacob Bernoulli (伯努利) (1654-1705) Edmond Halley (哈雷) (1656-1742) De Moivre (棣美佛) (1667-1754) Thomas Bayes (贝叶斯) (1702-1761) Leonhard Euler (欧拉) (1707-1783) Pierre Simon Laplace (拉普拉斯) (1749-1827) Adrien Marie Legendre (勒让德) (1752-1833) Thomas Robert Malthus (马尔萨斯) (1766-1834) Friedrich Gauss (高斯) (1777-1855) Johann Gregor Mendel (孟德尔) (1822-1884) Karl Pearson (皮尔森) (1857-1936) Ronald Aylmer Fisher (费歇) (1890-1962) Jerzy Neyman (内曼)(1894-1981) Egon Sharpe Pearson (皮尔森) (1895-1980)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 均值(mean)
胖子和浩子都会修板子,下面是两人去年每月的修板数量 胖子: 77,78,82,81,81,80,81,79,79,81,83,79 浩子 86,87,65,90,85,96,47,86,86,92,55,85 请问可以用平均数来推测下一个月两人的休班量吗?
2. 中位数(median)
出现次数(或频数)最多的观察值;在 频数分布图中对应于高峰所在位置的观察 值。
适用于大样本;较粗糙。
3. 众数(mode)
小A和小B是好战友,周日相约去靶场打靶 小A前10枪的成绩是: 10,10,10,0,10,10,0,10,10,10 小B前10枪的成绩是 8,7,7,9,8,9,7,8,8,9 请问第11枪小A小B的成绩会是多少?
2. 中位数(median)
胖子和浩子都会修板子,下面是两人去年每月的修板数量 胖子: 77,78,82,81,81,80,81,79,79,81,83,79 浩子 86,87,65,90,85,96,47,86,86,92,55,85 请问可以用平均数来推测下一个月两人的休班量吗?
3. 众数(mode)
变变量量(随机变量)的分类
离散型变量(discrete variable):计数资料(15,17,24,…) 可能取到的值是有限个的随机变量 记数变量,只能通过记数的方法来获取,只能以整数为单位
连续性变量(continuous variable): 计量资料(1.65, 1.73, 1.77,…) 可能取到的值是无限个的随机变量 计量变量,能用量测手段直接测定
中位数是将一批数据从小至大排列后位次居中
的数据值,符号为Md,反映一批观察值在位次上的平
均水平。
适用条件:适合各种类型的资料。尤其适合 于
① 大样本偏态分布的资料;
② 参数有不确定数值;
③ 参数分布不明等。
2. 中位数(median)
先将观察值按从小到大顺序排列,再按以下 公式计算:
Md
n
n
X f1X1 f2 X 2 f3 X 3 fk X k fi X i
f1 f2 f3 fk
fi
适用条件:变量呈正态或近似正态分布的情况
1. 均值(mean)
小A和小B是好战友,周日相约去靶场打靶 小A前10枪的成绩是: 10,10,10,0,10,10,0,10,10,10 小B前10枪的成绩是 8,7,7,9,8,9,7,8,8,9 请问第11枪小A小B的成绩会是多少?
(抽样方法与样本量)
从样本推论总体的方法:统计推断 (区间估计,假设检验等)
请问: 计算CVTE的男生的平均身高 推算CVTE的女生的平均体重 推算从14楼到食堂的平均时间
名词解释
变量与随机变量
Variable and random variable
变量——可以测量的任何特征或属性 Any characteristic or attribute that can be measured。 例如:热量值、蛋白质含量、碳水化合物含量。 随机变量——在概率论中称变量为随机变量
3. 众数(mode)
胖子和浩子都会修板子,下面是两人去年每月的修板数量 胖子: 77,78,82,81,81,80,81,79,79,81,83,79 浩子 86,87,65,90,85,96,47,86,86,92,55,85 请问可以用平均数来推测下一个月两人的休班量吗?
均值、中位数、众数三者关系
x( n 1) xn / 2
/2
x1n / 2
2
n为奇数 n为偶数
特点:仅仅利用了中间的1~2个数据
2. 中位数(median)
小A和小B是好战友,周日相约去靶场打靶 小A前10枪的成绩是: 10,10,10,0,10,10,0,10,10,10 小B前10枪的成绩是 8,7,7,9,8,9,7,8,8,9 请问第11枪小A小B的成绩会是多少?
总体:根据研究目的确定的同质研究对象 的全体(集合)。如成年人的身高。 分有限总体与无限总体
样本:从总体中随机抽取的部分观察单位。如
某单位男士的身高
总1. C体VT与E 样& T本V事业部
2. TV事业部 & 技术支持部 3. 技术支持部 & BT1战队 4. 平台支持部法:抽样。
有序变量(ordinal variable): 等级资料(优、良、中、差)
变量
胖子的体重 PQ组的出差天数 苹果5S手机的待机时间 刘畅每月发放订单软件软件个数 丽仪跑100米的时间 3553软件的编译时间 订单软件的重测次数 订单软件的重测率
名词解释
平均指标
总称为平均数(average)反映了资料的集中趋势(central tendency)
统计学基础
基础统计的必要性
在测定阶段中收集材料以分析的方法使用。 把工程的Xs与 Ys特性化资料用数值显示。 用以前的工程和执行DATA推定未来时使用。 高级统计性问题解决方法的基础而使用。 基本统计概念不是根据直观而是创出根据事实的语言。
名1. 总词体解与释样本 Population and sample
1. 算术均数(arithmetic mean),简称均值(mean) 2. 几何均数(geometric mean) 3. 中位数 (median) 4. 众数(mode) 5. 调和均数(harmonic mean) 6. 截尾平均值(5% trimmed mean)
1. 均值(mean)
X X1 X 2 X n X
正态分布时: 均值=中位数=众数 正偏态分布时:均值>中位数>众数 负偏态分布时:均值<中位数<众数
名波动词(解v释ariation)指标
反映数据的离散度(Dispersion )。即个体观察值的波动程度。 常用的指标有:
1. 极差(Range) (全距) 2. 百分位数与四分位数间距
Percentile and Quartile range 3. 方差 Variance 4. 标准差 Standard Deviation 5. 变异系数 Coefficient of Variation