三角形“四心”向量形式的结论及证明(附练习答案)

合集下载

向量形式下的三角形四心相关结论

向量形式下的三角形四心相关结论

向量形式下的三角形四心相关结论
向量形式下的三角形四心相关结论三角形是几何学中的重要概念之一,其四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。

在向量形式下,我们可以得出一些有关这四个点的重要结论。

重心是三角形内部三条中线的交点,用向量表示为G=(A+B+C)/3,其中A、B、C分别是三角形的三个顶点。

重心具有平衡的作用,对于任意一点P,PG的向量和PA、PB、PC 的向量和为零。

外心是三角形外接圆的圆心,用向量表示为O=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三个边长。

外心具有唯一性,且到三角形三个顶点的距离相等。

内心是三角形内切圆的圆心,用向量表示为I=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三条边的长度。

内心到三角形三个边的距离相等,且与三角形的角度有关。

垂心是三角形三条高的交点,用向量表示为H=A+B+C。

垂心到三角形三个顶点的距离相等,且与三角形的角度有关。

综上所述,向量形式下的三角形四心具有一些重要的性质。

研究这些结论不仅可以帮助我们更好地理解三角形的几何特性,还可以应用于解决一些与三角形相关的问题。

平面向量痛点问题之三角形“四心”问题(四大题型)(课件)高一数学新教材(人教A版2019必修第二册)

平面向量痛点问题之三角形“四心”问题(四大题型)(课件)高一数学新教材(人教A版2019必修第二册)

5
又 = 12 + 2 = 3,∴ = 9 ,
1
2
5
9
5
9
∵ = + = + ,∴ = = +
5
5
5
∴ + = 9 + 18 = 6.
5
,∴
18
5
5
= , = 18,
9
典型例题
题型三:外心定理
【典例3-1】(2024·吉林长春·高一东北师大附中校考阶段练习)已知点 O是△ABC的外心,AB=4,AC
2
1
则 × 4 × = × 6 × 4 × 2 + 16 ,得3 + 4 = 2②,
4
1
4
1
11
①②联立解得 = 9, = 6,所以 + = 9 + 6 = 18.故选:C.
典型例题
题型三:外心定理
【变式3-1】(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点 O是△ABC


+ ��
sin


= || ( + ) = 2|| ,
所以点在三角形的中线 上,则动点P的轨迹一定经过△ 的重心.故选:D.
典型例题
题型二:内心定理
【典例2-1】(2024·高一课时练习)已知点O是边长为 6的等边△ABC的内心,
则 + ⋅ + =
1

2
1
1
1
+ 3 ⋅ = 2 ⋅ + 3 2 = 30;
所以 2 = 45,由 = 30 2可得 = 2 10,即2 = 40;

三角形四心向量结论

三角形四心向量结论

三角形四心向量结论
三角形四心向量结论:
1、三角形有四个中心:重心,质心,内心,中心。

2、重心:三角形的重心是三角形两条边的交点,即三边的重心线的交点,是三边的平分线的交点,也就是三条边的中点。

3、质心:三角形的质心是三角形的三条边的重心,也就是三边的向量矢量的重心,以及三角形的面积重心。

4、内心:内心是三角形三个内角的公共点,是三角形的垂心,也叫外心,但是它不是三角形三边的重心。

5、中心:中心是三角形三个顶点的共同中点,它在三边上,也就是三条边的向量矢量中点。

它是三边中等分线的交点,也是三角形三条边的垂心。

专题08 三角形”四心“向量形式的充要条件(解析版)

专题08 三角形”四心“向量形式的充要条件(解析版)

三角形”四心“向量形式的充要条件本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:ABC 的重心⇔::1:1:1A B C S S S =⇔ABC 的内心⇔::::A B C S S S a b c =⇔ABC 的外心sin 2:sin 2:sin 2C S A B C =⇔sin ABC 的垂心⇔::tan :tan A B C S S S A =ASCS BSA.外心B.内心【答案】B【法一】由a b c S OA S OB S OC ⋅+⋅+⋅uu r uu u r uuu r 由0a OA b OB c OC ⋅+⋅+⋅= 得OA =- 根据平面向量基本定理可得b a S S -=-所以b a S b S a =,c a S cS a=,延长CO 交AB 于E ,延长BO 交AC 则||||b a S AE S BE =,又b a S b S a =,所以||||AE b BE a ==所以CE 为ACB ∠的平分线,同理可得BF 是ABC ∠的平分线,【法二】记点O 到AB 、BC 、C A 的距离分别为123h h h ,,,212OBC S a h =⋅ ,312OAC S b h =⋅ ,112OAB S c h =⋅ ,因为0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅= △△△,则233111=0222a h OAb h OBc h OC⋅⋅+⋅⋅+⋅⋅ ,即2310a h OA b h OB c h OC ⋅⋅+⋅⋅+⋅⋅= ,又因为0a OA b OB c OC ⋅+⋅+⋅=,所以123h h h ==,所以点P 是△ABC 的内心.故选:B【反思】设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则O 为ABC ∆的内心⇔0aOA bOB cOC ++=.利用结论可直接得到O 为ABC 的内心.例题2:已知G 是ABC ∆的重心,且满足56sin 40sin 35sin 0AGA BGB CGC ++=,求角B【详解】因为G 是ABC ∆的重心,所以0GA GB GC ++=,所以56sin :40sin :35sin 1:1:1A B C =,所以sin :sin :sin 5:7:8A B C =,由正弦定理::sin :sin :sin 5:7:8a b c A B C ==,由余弦定理,2222225871cos 22582a cb B ac +-+-===⨯⨯,因为(0,)B π∈,所以3B π=.【反思】设G 是ABC ∆的重心,直接利用奔驰定理结论O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=,所以在本例中,已知56sin 40sin 35sin 0AGA BGB CGC ++=可得到56sin :40sin :35sin 1:1:1A B C =,从而得到sin :sin :sin 5:7:8A B C =,再利用正弦定理,余弦定理求解.例题3:设点O 在ABC ∆内部,且5370OA OB OC ++=,则ABC ∆与AOC ∆的面积之比为.【详解】因为点O 在ABC ∆内部,满足奔驰定理0A B C S OA S OB S OC ⋅+⋅+⋅=,且5370OA OB OC ++=,所以::5:3:7A B C S S S =,从而得到::(537):35:1ABC AOC S S ∆=++=【反思】奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅=,对于满足条件的选择,填空题,都可以直接使用该结论.三、针对训练举一反三一、单选题1.(2022·全国·高三专题练习)平面上有ABC 及其内一点O ,构成如图所示图形,若将OAB ,OBC △,OCA 的面积分别记作c S ,a S ,b S ,则有关系式0a b c S OA S OB S OC ⋅+⋅+⋅=uu r uu u r uuu r r.因图形和奔驰车的logo 很相似,常把上述结论称为“奔驰定理”.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若满足ASCS BSA .外心B .内心【答案】B【详解】由a b c S OA S OB S OC ⋅+⋅+⋅uu r uu u r uuu r 由0a OA b OB c OC ⋅+⋅+⋅= 得OA =- 根据平面向量基本定理可得b a S S -=-所以b a S b S a =,c a S cS a=,延长CO 交AB 于E ,延长BO 交AC 则||||b a S AE S BE =,又b a S b S a =,所以||||AE b BE a ==所以CE 为ACB ∠的平分线,同理可得BF 是ABC ∠的平分线,是平面向量中一个非常优美的结论,奔驰定理A .25B .12C .16【答案】D【详解】解:O 为三角形ABC 内一点,且满足2OA + ∴233()2()()3OA OB OC OB OA OC OB OA OC OA ++=-+-+-⇒.13C A B C S S S S ==++,△ABC 内的一点,∠BAC ,∠ABC ,∠A .若230OA OB OC ++=,则:A S S B .若2OA OB == ,5π6AOB ∠=,C .若O 为△ABC 的内心,34OA OB +=设AF m =,tan A ∠又:tan BE AE EC A =∠由AB FC AC BE ⋅=⋅S 的三个内角,以下命题正确的有(A .若0OA OB OC ++=,则O 为ABC B .若230OA OB OC ++=,则::A B S S C .若5π||||2,6OA OB AOB ==∠= ,2OA B :若2,OE OB OD == 所以AOE DOE S S S == 则::1:2:3A B C S S S =,正确;C :由题设1225π6ins 2C S =⨯⨯⨯=所以0OF OE OD ++=,即O 为而16C EOF S S =,则6EOF S = ,故所以1391244ABC S =++= ,错误;D :由BOC BAC π∠+∠=,则OB 同理,||||cos OB OA OB OA BOA ⋅=∠A .O 为ABC 的外心B .BOC ∠C .::cos :cos :cos OA OB OC A B C = D .:A S S 【答案】BCD【详解】依题意,()OA OB OB OC OB OA OC ⋅=⋅⇔⋅-= 同理OA ⊥CB ,OC ⊥AB ,则O 为ABC 的垂心,A 错误;AB ,AC 于P ,Q ,由选项2OBC ACB π∠+∠=,OCB ∠又OBC OCB BOC π∠+∠+∠=A .O 为ABC 的垂心B .AOB ACBπ∠=-∠C .sin :sin :sin ::OA OB OC BAC ABC ACB ∠∠∠=D .tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=【答案】ABDOB OC ⋅ ,即OA OB OB OC ⋅-⋅ 0CA =,OB CA ⊥ ,AB,正确;因为OA CB ⊥,所以90ADB ∠=o ,BAO Ð因为OB CA ⊥,所以90BEA ∠= ,ABO Ð则(90AOB ABO BAO ππ∠=-∠-∠=-A .O 为ABC 的垂心B .C .:sin :si n :n :si O A A OB O C C B =D .【答案】ABD【详解】对于A ,OA OB OB OC ⋅=⋅ ,(OB OA ∴⋅由A 可知:AD BC ⊥,BE ⊥AOE C ∴∠=∠,又AOE ∠+∠对于C ,由B 可得:OA OB ⋅= 同理可得:OB OC OB OC ⋅=-⋅对于②:记点P 到AB 、为PBC PAC S PA S PB ++ △△a h b h PA PB c h PC +⋅⋅⋅+。

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用答案版)————————————————————————————————作者:————————————————————————————————日期:三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等; (3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证明:延长AO 交BC 于D ,如图必有:||||OA OD S S S OAB OCA OBC =+∆∆∆,||||BC BD S S S OAB OCA OAB =+∆∆∆,||||BC CD S S S OAB OCA OCA =+∆∆∆; ---(*)由D O A ,,共线,得:0||||=+OD ODOA OA进而得:0||||=+⋅OD OA OA OD ----------------① 由C D B ,,共线,得:OC BC BD OB BC CD OD ⋅+⋅=|||||||| ----------② 由①②得:OA OA OD ⋅||||0||||||||=⋅+⋅+OC BC BD OB BC CD 代入(*)结论 得+⋅+∆∆∆OA S S S OAB OCA OBC +⋅+∆∆∆OB S S S OAB OCA OCA 0=⋅+∆∆∆OC S S S OABOCA OAB消去分母得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证毕.另证:作AC OG AB OH //,//,如图:AGOH 为平行四边形;由OC S OB S OA S OAB OCA OBC ⋅+⋅+⋅∆∆∆)()(AC OA S AB OA S OA S OAB OCA OBC +⋅++⋅+⋅=∆∆∆ AC S AB S OA S OAB OCA ABC ⋅+⋅+⋅=∆∆∆)(AC S SAB S S OA S ABCOAB ABC OCA ABC ⋅+⋅+=∆∆∆∆∆ )(AC ACAHAB AB AG OA S ABC ⋅+⋅+=∆ )(AH AG OA S ABC ++=∆ 0)(=+=∆AO OA S ABC .AB CODAB CODHFEG反方向思考:设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 必有:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS S S S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S S S S ∆∆∆==::::::211332321λλλλλλλλλ. 验证式思考:先证引理:若b a ,不共线,对p ,有0=⋅p a 且0=⋅p b ,必有.0=p证明:若.0≠p 必有p a ⊥且p b ⊥,得b a //,与题设矛盾,故必有.0=p 再证:设α=∠BOC ,β=∠COA ,则βαπ--=∠2AOB ; 由)(OC S OB S OA S OA OAB OCA OBC ⋅+⋅+⋅∆∆∆OC OA S OB OA S OA S OAB OCA OBC ⋅+⋅+⋅=∆∆∆2ββαπβαπβαcos )2sin(21)2cos(sin 21sin 212⋅⋅⋅--⋅⋅+--⋅⋅⋅⋅⋅+⋅⋅⋅=OC OA OB OA OB OA OA OC OA OC OB ]cos )sin()cos(sin [sin 212ββαβαβα+-++⋅⋅=OC OB OA )]}(sin[{sin 212βαβα+-+⋅⋅=OC OB OA 0)]sin([sin 212=-+⋅⋅=ααOC OB OA ; 有对称性知:0)(=⋅+⋅+⋅∆∆∆OC S OB S OA S OB OAB OCA OBC ,又OA ,OB 不共线, 故:必有0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 成立. 一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)略证:1:1:1::=∆∆∆GAB GCA GBC S S S ,得:0=++GC GB GA .变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔=='A 'B 'C OABCABCO02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S OAB OCA OBC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S HAB HCA HBC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=. 又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a cb a OCc OB b OA a OI ++⋅+⋅+⋅=⇔0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.ABDOHCE略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ , 则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 3.O 是ABC ∆所在平面上一定点,动点P 满足)cos cos (CAC AC BAB AB OA OP ++=λ,R ∈λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 4.O 是ABC ∆所在平面上一定点,动点P 满足)sin sin (CAC AC BAB AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是ABC ∆所在平面上一定点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r,R ∈λ, 则点P 的轨迹一定通过ABC △的( ).A .外心B .内心C .重心D .垂心6.O 是ABC ∆所在平面上一定点,动点P 满足])21()1()1[(31OC OB OA OP λλλ++-+-=,*R ∈λ , 则点P 的轨迹一定通过ABC △的( ).A .内心B .垂心C .重心D .AB 边的中点 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( ) A .2 B .23C .3D .6 10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S ∆∆=2λ,ABC PAB S S∆∆=3λ.BCA M N G定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎪⎪⎭⎫⎝⎛+BC AC AC AB AB 且21||||=⋅AC AC AB AB , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形 D .既非等腰又非直角三角形二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 4 . 19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 20.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 22.在ABC ∆中,1,3,==⊥AD BD BC AB AD ,则=⋅AD AC3 .三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB =u u u u v u u u v ,AN y AC =u u u v u u u v ,求证:113x y+=.解:由N G M ,,三点共线,得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP从而得:3211)(||2121222121=⋅-+=-==OP OP OP OP P P P P 同理可得:3||||1332==P P P P ,即321P P P∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值. 解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521221|)(|21||22=++=+⋅+=+=b b a a b a AD221162025214421|)2(|21||22=+-=+⋅-=-=b b a a b a BE 故:.919149142212393||||,cos ==⋅=⋅>=<BE AD BEAD BE AD'A 'B 'C OABCA BED C27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

三角形“四心”向量形式的结论及证明

三角形“四心”向量形式的结论及证明

三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。

它们的位置可以用向量的形式来描述。

本文将分别介绍三角形“四心”的向量形式以及其证明。

1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。

假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。

证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。

而中线的坐标可以通过两个顶点的坐标的平均值得到。

因此,重心的坐标是三个顶点坐标的平均值。

根据向量加法的性质,可以得到上述结论。

2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。

用O表示外心。

假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。

其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。

证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。

根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。

根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。

与三角形四心相关的向量结论

与三角形四心相关的向量结论

与三角形四心相关的向量结论.doc
下面是一些与三角形的四个特殊点(重心、外心、内心和垂心)相关的向量结论:
1. 重心:三角形的重心是三条中线的交点,表示为G,并且满足以下向量等式:
AG + BG + CG = 0
2. 外心:三角形的外心是三角形外接圆的圆心,表示为O,并且满足以下向量等式:
AO = BO = CO = R(半径)
3. 内心:三角形的内心是三角形内切圆的圆心,表示为I,并
且满足以下向量等式:
AI = BI = CI = r(半径)
4. 垂心:三角形的垂心是三条高线(从顶点到对边垂直的线段)的交点,表示为H,并且满足以下向量等式:
AH + BH + CH = 0。

三角形四心向量形式的结论及证明附练习答案

三角形四心向量形式的结论及证明附练习答案

三角形“四心”向量形成的充耍条件应用在学习了《平面向量》一章的基础容之后,学生们通过课堂例题以员课后习题陆续接触了有关三角形重心、垂心、外心、心向量形式的充要条件。

现旧纳总结如下:一.知识点总结____________________1 ) 0 是AABC 的重心 <=> OA+OB + OC=0若0 是AABC 的重° , | SaBOC = SaaOC = SaaOB = 3 Smbc jj OA+OB+OC = 0 PG = ^(PA + PB + PC) OG为AABCtf}重心.2)o 是AABC的垂心<=>OA 6B = OB OC = OC OA若0 是AABC(非直角三角形)的垂心,U| S ABOC5S AAOCS S AZ\OB =tan A:tan B:tan C故tan AOA + tan BOB + tan COC = 63 )0 是AABC 的外心<=> IOAI=IOBI=IOCI(或=而2 =疋2)若0是AABC的外心则S ABOC:S AAOC: S M()B = slnZBOC:sinZAOC :sinZAOB = sin2A : sln2B : sin2C故sin2AOA + sln2BOB + sin2COC = 64)0是心AABC的充要条件是贰(亘-亘)=而(亘-匹)=显(亘-JL)=oIABI AC I BA I IBCI I CAI ICBI引IS单位向量,使条件变鶴更简洁。

如果记入瓦说,不的单位向量为兀瓦恳,则刚才0是AABC 心的充要条件可以写成:OA.(e[+e^) = OB.(e[ + e^) = OC.(e^ + e^) = 00是AABC心的充要条件也可以是aOA + bOB + cOC = 0若0 是AABC 的心,则S AB()c:S AA<)c: Su()B=a: b: c故aOA + bOB + cOC = OggsinAOA + slnBOB + sinCOC = 6.\AB\PC+\BC\PA+\CA\PB = O^ P ^ABC的心;向量兄(輕+姿)(几工0)所在直线il AABC的心(是ABAC的角平分线IABI IACI所在直线);(-).将平面向量与三角形心结合考查例1・0是平面上的一罡点,ABC是平面上不共线的三f点,动点P满竺+丝),几w[o,p )则P 点的珈迷一定通11MBC 的( KI(A )外心(B )心(C )重心(D )垂心解析:因为丝是向量丽的单位向量设丽与疋方向上的单位向量分别为勺和J, JHI 一〜OP-dA = AP原式可化为AP = A (e { +勺),由菱形的基本性质知AP 平分ABAC, SI )么在A4BC中,AP 平分Z3AC,则知选B.点评:2ii®给人的M 象当然是“新颖、陌生J 首先箔是什么?没见过!想想,一个非零M向量除以它的模不就是单位向量?此题所用的部必须是简单的基本知识,如向量的加减法、向量 的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,乂能迅速地wtiiffg 到一起, 解fiiii-^rnjg 也没有。

三角形“四心”优美的向量统一形式

三角形“四心”优美的向量统一形式

三角形“四心”优美的向量统一形式三角形“四心”的向量的统一形式:x是△abc的心λxa+μxb+υxc=0其中,重心的充要条件最简单,也容易证明。

而内心、外心、重心的证明则比较困难,受此启发,笔者联想到既然有统一的结构,是否可以借用重心的充要条件证明其它“三心”的情况呢?因为要借用重心的向量形式来证明,所以还要给出重心的另一性质:g为△abc的重心的充要条件是s=△gab=s△gbc=s△gca= s△abc.(图1)一、重心(中线交点)1.g是△abc的重心ga+gb+gc=0证明:设g是△abc的重心,如图2,延长ag交bc于点d.因为g为△abc的重心,所以d为bc的中点,有gd= (gb+gc)且ga=-2gd 因此ga+gb+gd+gc=0,反之亦成立.2.设p是△abc所在平面内任意一点,则pg= (pa+pb+pc)g为△abc的重心证明:g是△abc的重心ga+gb+gc=0 gp+ap+gp+pb+gp+pc=03pg=pa+pb+pc pg= (pa+pb+pc)二、内心(内角平分线交点,内切圆圆心)1.i是△abc的内心aia+bib+cic=0(其中a,b,c分别为△abc 的三个内角a,b,c所对的边长).证明:设i是△abc的内心,如图3,作向量ia’=aia,ib=bib,ic’=cic连结,得到△a’b’c’.因为i为△abc内心,所以内心i到△abc各边的距离为△abc的内切圆的半径,设为r.s△ib’c’= |ib’|·|ic’|sin∠bic= b|ib|·c|ic|·sin∠bic=b·cs△ibc=bc· ar= abcr同理可得s△ibc= abcr,s△ic’a’= abcr所以s△ia’b’=s△ib’c’=s△ic’a’= abcr,i为的重心,有ia+ib+ic=0即ala+bib+cic=0成立,反之亦成立.2.i是△abc的内心(sina)la+(ainb)ib+(sinc)ic=0证明:根据i是△abc的内心aia+bib+cic=0,由正弦定理得i是△abc的内心(sina)ia+(subb)ib+(sinc)ic=03.设p是△abc所在平面内任意一点,i为△abc内心pi=证明:i是△abc的内心aia+bib+cic=0aip+aip+bip+bpb+cip+cpc=0 pi=三、外心(三边垂直平分线交点,外接圆圆心)1.p是△abc外心(sin2a)pa+(sin2b)pb+(sin2c)pc=0证明:设p是△abc的外心,如图4,作向量pa=(sin2a)pa,pb=(sin2b)pb,pc(sin2c)pc连结a′,b′,c′,得△a′b′c′.因为p为△abc外心,所以外心p到△abc各顶点的距离为△abc 的外切圆的半径,设为r,且∠bpc=2a.s△pb’c’= |pb’|·|pc’|sin∠b’p’c’= sin2b|pb|sin2c·|pc|sin∠bpc=sin2bsin2c r2sin2a= r2sin2asin2bsin2c同理可得s△pa’b’= r2sin2asin2b·sin2c,s△p’c’a’= r2sin2asin2bsin2c△所以s△pa’b’=s△pa’b’=s△pa’b’ s△pa’b’,得p为△a′b′c′的重心,有pa’+pb’+pc’=0即(sin2a)pa+(sin2b)pb+(sin2c)pc=0成立,反之亦成立.2.p是△abc的外心(acosa)·pa+(bcosb)·pb+(ccosc)pc=0 证明:根据p是△abc的外心(sin2a)·pa+(sin2b)·pb+(ccosc)pc=0由正弦定理得p是△abc的外心(acosa)·pa+(bcosb)·pb+(ccosc)pc=03.设p是△abc 所在平面内任意一点,o为△abc的外心po=证明:o为△abc的外心(sin2a)oa+(sin2b)+(sin2c)oc=0 (sin2a)op+(sin2a)pa+(sin2b)op+(sin2b)pb+(sin2b)op+(sin2c)pc=0po=四、垂心(高线交点)1.h是△abc的垂心ha·hb=hb·hc=hc·ha证明:由ha·hb=hb·hc hb(hc-ha)=0 hb·ac=0 hb⊥ac同理hc⊥ab故h是△abc的垂心,反之亦然.2.h是△abc的垂心证明:由ha2+bc2=hb+ac2ha2-hb2+bc2+bc2-ac2=0(ha+hb+bc+ac)·ba=02hc·ba=0 hc⊥ab同理ha⊥bc,故h是△abc的垂心,反之亦然.3.h是△abc(非直角三角形)的垂心(tana)ha+(tanb)hb+(tanc)hc=0证明:设h是△abc的垂心,如图5,作向量连结a′,b′,c′,得到△a′b′c′.s△hcb= |hb’|·|hc‘|sin∠b’hc’= (tanb)|hb|·(tanc)|hc|·sin∠bhc=tanbtanc·s△hbc=tanc· |bc|·|hd|因为h为△abc垂心,所以∠bhd=∠acb,∠chd=∠abc.所以有|bd|=|hd|tan∠bhd=|hd|tanc|bd|=|hd|tan∠bhd=|hd|tanc|cd=|hd|tan∠chd=|hd|tanb.又因为|ad|=|bd|tanb.|ad|=|cd|tanc,所以|ad|2=|bd|·|cd|tanbtanc=|hd|2 (tanbtanc)2即|ad|=|hd|tanbtanc所以s△hbc= |bc|·|ad|=s△hbc同理可得s△hbc=s△abc;s△hb’c’=s△abc所以s△ha’b’=s△hb’c’=s△hc’a’= s△a’b’c’h为△a′b′c′的重心,从而ha’+hb’+hc’=0,即(tana)ha’+(tanb)hb+(tanc)hc=0成立,反之亦成立.4.h是△abc(非直角三角形)的垂心·ha+ ·hb+ ·hc=0·ha+ ·hb+ ·hc=0.证明:由 =tana, =tanb, =tanc及正弦定理得h是△abc的垂心(tana)ha+(tanb)hb+(tanc)=0 ·ha+ ·hb+ ·hc=0 ·ha+ ·hb·hc=0(tana)hp+(tana)pa+(tanb)hp+(tanb)pb+(tanc)hp+(tanc)pc=0再由余弦定理得h是△abc的垂心·ha ·hb ·hc=05.设p是△abc(非直角三角形)所在平面内任意一点,h是△abc 的垂心pa=证明:h是△abc的垂心(tana)ha+(tanb)hb+(tanc)hc=0(tana)hp+(tana)pa+(tanb)hp=(tanc)hp+(tanc)pc=0 ph=向量是高中教材的重要内容之一,它具有代数和几何的“双重身份”,所以它的引入给传统的中学数学带来了无限生机和活力,使我们对量的数学表达的认识进入了一个崭新的领域。

三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的结论及证明(附练习答案)
例6.已知向量,,满足条件++=0,||=||=||=1,
求证:△P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6题)
证明:由已知+=-,两边平方得·=,
同理·=·=,∴||=||=||=,从而△P1P2P3是正三角形.
反之,若点O是正三角形△P1P2P3的中心,则显然有++=0且||=||=||,即O是△ABC所在平面内一点,
则.
证明:,,

点评:(1)证法运用了向量加法的三角形法则,
证法2运用了向量加法的平行四边形法则.(2)
若与重合,则上式变0.
(四).将平面向量与三角形外心结合考查
例7若为内一点,,则是的()
A.内心B.外心C.垂心D.重心
解析:由向量模的定义知到的三顶点距离相等。故是的外心,选B。
点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合。
点评:本题需要扎实的平面几何知识,平行四边形的对角线互相平分及三角形重心性质:重心是三角形中线的内分点,所分这比为。本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合。
变式:已知分别为的边的中点.则.
证明:
..
变式引申:如图4,平行四边形的中心为,为该平面上任意一点,
(A)外心(B)内心(C)重心(D)垂心
事实上OB⊥CA故选答案D
例3:已知O为三角形ABC所在平面内一点,且满足
,则点O是三角形ABC的()
(A)外心(B)内心(C)重心(D)垂心
事实上由条件可推出故选答案D
例4:设是平面上一定点,A、B、C是平面上不共线的三点,
动点P满足,,则动点P的轨迹一定通过△ABC的()

三角形“四心”向量形式的综合应用

三角形“四心”向量形式的综合应用

三角形“四心”向量形式的应用结论1:若点G 为△ABC 所在的平面内一点,0GA GB GC →→→→++=⇔点G 为△ABC 的重心。

证明:由0GA GB GC →→→→++=,得。

设BC 边中点为M ,则,所以,即点G 在中线AM 上。

设AB 边中点为N ,同理可证G 在中线CN 上,故点G 为△ABC 的重心。

结论2:若点G 为△ABC 所在的平面内一点,⇔点G 为△ABC 的重心。

证明:由,得,得0GA GB GC →→→→++=。

练习:1.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的外心,动点P 满足))]()21()1()1[(31R ∈++-+-=λλλλ,则P 的轨迹一定通过△ABC 的( D )A .内心B .垂心C .外心D .重心分析:取AB 边的中点M ,则OM OB OA 2=+,由))]()21()1()1[(31R ∈++-+-=λλλλ可得 )21(3)(223λλ++=-++=,所以MC MP 321λ+=)(R ∈λ,即点P 的轨迹为三角形中AB 边上的中线,故选D 。

2.已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足OP = 13(12OA +12OB +2OC),则点P 一定为三角形ABC 的 ( B )A.AB 边中线的中点B.AB 边中线的三等分点(非重心)C.重心D.AB 边的中点3.已知O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:)(++=λ,则P 的轨迹一定通过△ABC 的 (C )A 外心 B 内心 C 重心 D 垂心4.已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++,[0,)λ∈+∞, 则动点P 的轨迹一定通过△ABC 的( A ) A. 重心 B. 垂心 C. 外心 D. 内心解:由已知得()||sin ||sin AB ACAP AB B AC Cλ=+,由正弦定理知||sin ||sin AB B AC C = ,∴()||sin AP AB AC AB Bλ=+ , 设BC 的中点为D ,则由平行四边形法则可知点P 在BC 的中线AD 所在的射线上,所以动点P 的轨迹一定通过△ABC 的重心,故选A .结论3:若点O 为△ABC 所在的平面内一点,⇔点O 为△ABC 的垂心。

三角形四心的向量性质及证明

三角形四心的向量性质及证明

符号说明:‎“AB”表‎示向量,“‎|AB|”‎表示向量的‎模【一些‎结论】:以‎下皆是向量‎1 若P‎是△ABC‎的重心PA‎+PB+P‎C=02‎若P是△‎A BC的垂‎心PA*P‎B=PB*‎P C=PA‎*PC(内‎积)3 ‎若P是△A‎B C的内心‎a PA+b‎P B+cP‎C=0(a‎b c是三边‎)4 若‎P是△AB‎C的外心|‎P A|=|‎P B|=|‎P C|(‎A P就表示‎A P向量‎|AP|就‎是它的模)‎5 AP‎=λ(AB‎/|AB|‎+AC/|‎A C|),‎λ∈[0,‎+∞) 则‎直线AP经‎过△ABC‎内心6 ‎A P=λ(‎A B/|A‎B|cos‎B+AC/‎|AC|c‎o sC),‎λ∈[0,‎+∞) 经‎过垂心7‎AP=λ‎(AB/|‎A B|si‎n B+AC‎/|AC|‎s inC)‎,λ∈[0‎,+∞)‎或 AP=‎λ(AB+‎A C),λ‎∈[0,+‎∞) 经过‎重心8.‎若aOA=‎b OB+c‎O C,则0‎为∠A的旁‎心,∠A及‎∠B,∠C‎的外角平分‎线的交点‎【以下是一‎些结论的有‎关证明】‎1.O是‎三角形内心‎的充要条件‎是aOA向‎量+bOB‎向量+cO‎C向量=0‎向量充分‎性:已知‎a OA向量‎+bOB向‎量+cOC‎向量=0向‎量,延长‎C O交AB‎于D,根据‎向量加法得‎:OA=‎O D+DA‎,OB=O‎D+DB,‎代入已知得‎:a(O‎D+DA)‎+b(OD‎+DB)+‎c OC=0‎,因为O‎D与OC共‎线,所以可‎设OD=k‎O C,上‎式可化为(‎k a+kb‎+c) O‎C+(aD‎A+bDB‎)=0向量‎,向量D‎A与DB共‎线,向量O‎C与向量D‎A、DB不‎共线,所‎以只能有:‎k a+kb‎+c=0,‎a DA+b‎D B=0向‎量,由a‎D A+bD‎B=0向量‎可知:DA‎与DB的长‎度之比为b‎/a,所‎以CD为∠‎A CB的平‎分线,同理‎可证其它的‎两条也是角‎平分线。

高考数学二级结论快速解题:专题09 三角形”四心“向量形式的充要条件(解析版)

高考数学二级结论快速解题:专题09 三角形”四心“向量形式的充要条件(解析版)

专题09三角形”四心“向量形式的充要条件一、结论1、三角形“四心”:重心,垂心,内心,外心(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

2、设O 为ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC 的外心 ||||||2sin aOA OB OC A.(2)O 为ABC 的重心 0OA OB OC.(3)O 为ABC 的垂心 OA OB OB OC OC OA.(4)O 为ABC 的内心 0aOA bOB cOC.3、奔驰定理奔驰定理:设O 是ABC 内一点,BOC ,AOC ,AOB 的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC.说明:本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:①O 是ABC 的重心 ::1:1:1A B C S S S 0OA OB OC.②O 是ABC 的内心 ::::A B C S S S a b c 0aOA bOB cOC.③O 是ABC 的外心::sin 2:sin 2:sin 2A B C S S S A B C sin 2sin 2sin 20A OA B OB C OC.OAB CASCS BS④O 是ABC 的垂心::tan :tan :tan A B C S S S A B C tan tan tan 0A OA B OB C OC.奔驰定理是三角形四心向量式的完美统一.二、典型例题1.(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC则O 为ABC 的()A .外心B .内心C .重心D .垂心【答案】B 【解析】记点O 到AB 、BC 、C A 的距离分别为123h h h ,,,212OBC S a h ,312OAC S b h ,112OAB S c h ,因为0OBC OAC OAB S OA S OB S OC △△△,则233111=0222a h OAb h OBc h OC ,即2310a h OA b h OB c h OC ,又因为0a OA b OB c OC,所以123h h h ,所以点P 是△ABC 的内心.故选:B【反思】设O 为ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则O 为ABC 的内心 0aOA bOB cOC .利用结论可直接得到O 为ABC 的内心.2.(2021·全国·高一课时练习)已知O 是△ABC 所在平面上的一点,若OA OB OC 0,则点O 是△ABC 的()A .外心B .内心C .重心D .垂心【答案】C 【解析】作BD ∥OC ,CD ∥OB ,连接OD ,OD 与BC 相交于点G ,则BG=CG (平行四边形对角线互相平分),∴OB OC OD ,又OA OB OC 0,可得OB OC =-OA ,∴OD =-OA ,∴A ,O ,G 在一条直线上,可得AG 是BC 边上的中线,同理,BO ,CO 也在△ABC 的中线上.∴点O 为三角形ABC 的重心.故选:C.【反思】设O 为ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则O 为ABC 的重心 0OA OB OC.利用结论可直接得到O 为ABC 的重心.3.(多选)(2022·全国·高三专题练习)在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是()A.满足||||||OA OB OC,则点O 是ABC 的外心B .满足0NA NB NC,则点N 是ABC 的重心C .满足PA PB PB PC PC PA,则点P 是ABC 的垂心D .满足(0||||AB AC BC AB AC,且12||||AB AC AB AC ,则ABC 为等边三角形【答案】ABCD 【解析】解:对于A ,因为||||||OA OB OC,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC 得:2ND NA,所以||:||2:1AN ND ,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC 得:()0PA PC PB ,即0AC PB,所以AC PB ;同理可得:AB PC ,所以点P 是ABC 的垂心,故C 正确;对于D ,由()0||||AB AC BC AB AC得:角A 的平分线垂直于BC ,所以AB AC ;由12||||AB AC AB AC得:1cos 2A ,所以3A ,所以ABC 为等边三角形,故D 正确.故选:ABCD .【反思】设O 为ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC 的外心 ||||||2sin aOA OB OC A.(2)O 为ABC 的重心 0OA OB OC.(3)O 为ABC 的垂心 OA OB OB OC OC OA.4.已知G 是ABC 的重心,且满足56sin 40sin 35sin 0A GA B GB C GC,则B =.【答案】3【分析】要牢记,,OA OB OC前面的系数之比为1:1:1,求得三内角的正弦比,再利用正、余弦定理求得.【解析】∵G 是ABC 的重心,∴0GA GB GC∴56sin :40sin :35sin 1:1:1A B C ∴sin :sin :sin 5:7:8A B C 由正弦定理,::sin :sin :sin 5:7:8a b c A B C 由余弦定理,2222225871cos 22582a cb B ac∵(0,)B ,∴3B.【反思】利用奔驰定理在三角形四心中的具体形式:O 是ABC 的重心::1:1:1A B C S S S 0OA OB OC,可得到56sin :40sin :35sin 1:1:1A B C ,通过进一步利用三角形的正余弦定理,求出角B .三、针对训练举一反三一、单选题1.(2021·宁夏·银川一中高三阶段练习(理))ABC 中,a 、b 、c 分别是BC 、AC 、AB 的长度,若a OA b OB c OC O,则O 是ABC 的()A .外心B .内心C .重心D .垂心【答案】B【详解】,OB OA AB OC OA AC 0aOA bOB cOCOA AB aOA b c OA ACa b c OA b AB c AC||||bAB cAC bc AB AC OA a b c a b cAB ACOA 在BAC 的角平分线上,同理OB在ABC 的角平分线上,点O 为三角形ABC 的角平分线的交点故点O 是三角形的内心.故选:B.2.(2021·山东枣庄·高一期中)已知点G 是三角形ABC 所在平面内一点,满足0GA GB GC,则G 点是三角形ABC 的()A .垂心B .内心C .外心D .重心【答案】D【详解】因为0GA GB GC,所以GA GB GC CG ,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O,如图所示:则CG GD,所以13GO CO ,点O 是AB 边的中点,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,所以G 点是三角形ABC 的重心.故选:D .3.(2021·福建·厦门市湖滨中学高二开学考试)若O 是平面上的定点,A ,B ,C 是平面上不共线的三点,且满足OP OC CB CA(R ),则P 点的轨迹一定过ABC 的()A .外心B .内心C .重心D .垂心【答案】C【详解】因为OP OC CB CA(R ),所以CP CB CA ,所以CB CA在ABC 的边AB 上的中线所在直线上,则CB CA在ABC 的中线所在直线上,所以P 点的轨迹一定过ABC 的重心,故选:C4.(2021·全国·高一课时练习)若O 是平面内一定点,A ,B ,C 是平面内不共线的三点,若点P 满足2OB OC OP +λAP(λ∈(0,+∞)),则点P 的轨迹一定通过△ABC 的()A .外心B .内心C .重心D .垂心【答案】C 【详解】设线段BC 的中点为D ,则有1(2OD OB OC),因此由已知得OP OD +λAP ,即OP OD =λAP ,于是DP =λAP,则//DP AP ,因此P 点在直线AD 上,又AD 是△ABC 的BC 边上的中线,因此点P 的轨迹一定经过三角形ABC 的重心.故选:C5.(2022·全国·高三专题练习)设O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足()AB AC OP OA AB AC, 0, ,则动点P 的轨迹一定通过△ABC 的()A .外心B .内心C .重心D .垂心【答案】B 【详解】因为()AB ACOP OA AB AC,所以()AB ACAP AB AC,如图,设,AB ACAE AF ABAC都是单位向量,则由向量的加法法则可得四边形AETF 是菱形,所以AP AT,AT 平分BAC ,所以动点P 的轨迹一定通过△ABC 的内心,故选:B6.(2022·全国·高三专题练习)在ABC 中,CB a =,CA b=,且sin sin a b OP OC m a B b A=+,m R ,则点P 的轨迹一定通过ABC 的()A .重心B .内心C .外心D .垂心【答案】A 【详解】过C 作CH AB ,交AB 于H ,取AB 中点D ,连接CD,如图所示:根据三角函数定义可得sin sin a B b A CH,因为sin sin a b OP OC m a B b A=+,所以=+m OP OC a b CH,即2m CP CD CH,即点P 的轨迹在中线CD 上,而三角形三边中线的交点为该三角形的重心,所以点P 的轨迹一定通过ABC 的重心.故选:A 二、多选题7.(2021·广东广州·高一期末)已知O ,N ,P ,I 在ABC 所在的平面内,则下列说法正确的是()A .若||||||OA OB OC ,则O 是外心B .若PA PB PB PC PC PA u u u r u u u r u u u r u u u r u u u r u u u r,则P 是垂心C .若0NA NB NC,则N 是重心D .若0CB IA AC IB BA IC,则I 是内心【答案】ABC 【详解】根据外心的定义,易知A 正确;对B ,0PB PA PC PB CA PB CA,同理可得:,PA CB PC AB ,所以P 是垂心,故B 正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意2NA NB ND NC,则||2||NC ND ,同理可得:||2||,||2||NA NE NB NF ,则N 是重心,故C 正确;对D ,由题意,,,CB IA AC IB BA IC ,则I 是垂心,故D 错误.故选:ABC.8.(2021·重庆实验外国语学校高一期中)对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,内心为Q ,则下列结论正确的是()A .212AO AB ABB .GA GB GA GC GB GCC .0HA HB HC D .若A P Q 、、三点共线,则存在实数 使||||AB AC AP AB AC【答案】AD 【详解】解:对于A :给定的ABC ,其外心为O ,所以2211()22AO AB AD DO AB AB DO AB AB,故A 正确;对于B :由于点G 为给定的ABC 的重心,故0GA GB GA GC GA CB,故B 错误;对于C :点H 为给定的ABC 的垂心,所以()0AH HB HC AB HC,因为重心为G ,则有 11,33AG AB AC BG BA BC ,13CG CA CB ,所以0GA GB GC,若0HA HB HC,则点H 为重心,与题意矛盾,因为故C 错误;对于D :由于点P 在A 的平分线上,所以AB AC AB AC 和为单位向量,所以||||AB AC AB AC 在A 的平分线上,所以存在实数 使()||||AB ACAP AB AC,故D 正确.故选:AD .9.(2021·广东·东莞市光明中学高一阶段练习)点O 在ABC 所在的平面内,则以下说法正确的有()A .若0OA OB OC ,则点O 是ABC 的重心.B .若0||||||||AC AB BC BA OA OB AC AB BC BA,则点O 是ABC 的内心.C.若()()0OA OB AB OB OC BC ,则点O 是ABC 的外心.D .若OA OB OB OC OC OA,则点O 是ABC 的垂心.【答案】ABCD 【详解】对A ,设D 为BC 中点,由于()2OA OB OC OD,所以O 为BC 边上中线的三等分点(靠近点D ),所以点O 是ABC 的重心,故A 正确;对B ,向量,||||AC ABAC AB分别表示在边AC 和AB 上的单位向量AC 和 AB ,记它们的差为向量B C ,则当0||||AC AB OA AC AB时,即OA B C 时,点O 在BAC 的平分线上,同理由0||||BC BA OB BC BA可得点O 在ABC 的平分线上,所以点O 是ABC 的内心,故B 正确;对C ,OA OB 是以OA OB ,为邻边的平行四边形的一条对角线,而AB是另一条对角线,则由()0OA OB AB 可得该平行四边形为菱形,即||||OA OB,同理由()0OB OC BC 可得||OC OB ∣∣,所以点O 是ABC 的外心,故C 正确;对D ,由OA OB OB OC 得0OA OB OB OC,则0OB CA ,所以OB CA ,同理可得,OA BC OC AB ,所以点O 是ABC 的垂心,故D 正确.故选:ABCD.三、填空题10.(2020·四川·遂宁中学高一阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C, 0, ,则动点P 的轨迹一定通过ABC 的________(填序号).①内心②垂心③重心④外心【答案】④设BC 的中点为D ,∵2cos cosOB AB A O OC AB C A B C P C ,∴cos cos AB AC O C OD B P AB A C ,即cos cosAB AC DP AB C A B C ,两端同时点乘BC ,∵ BC DP =cos cos B AB AC A C B AC BC BC = cos cos cos cos AB BC B AC BC C AB B AC C =BC BC =0,所以DP BC ,所以点P 在BC 的垂直平分线上,即P 经过△ABC 的外心故答案为:④.四、解答题11.(2021·全国·高一课时练习)已知三角形的三条中线交于一点G (也称为三角形的重心),且点G 将每条中线分为2:1的两段(如图,:2:1AG GM ).设ABC 三个顶点分别为 11,A x y , 22,B x y , 33,C x y ,求证:(1)点G 的坐标为123123,33x x x y y y;(2)0GA GB GC .【答案】(1)证明见解析(2)证明见解析【解析】(1)设 ,G x y , 22,B x y ∵, 33,C x y 且M 为BC 中点,2323,22x x y y M又 11,A x y ∵ 11=,GA x x y y ,2323,22x x y y GM x y:2:1AG GM ∵=2GA GM 232311,2,22x x y y x x y y x y2312312222x x x x x y y y y y12312333x x x x y y y y G 的坐标为123123,33x x x y y y (2)M ∵为BC 中点,+=2GB GC GM =2GA GM ∵0GA GB GC。

三角形四心的向量表示

三角形四心的向量表示
是∠BAC的角平分线上的任意向量,过内心;
3.(2006陕西)已知非零向量AB与 A满C足
( AB AC ) BC 0且 AB AC 1 ,
| AB | | AC |
| AB | | AC | 2
则△ABC为( ) D A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形
2.在 ABC中,给出 AD 1 AB AC , 2 等于已知AD是 ABC 中 BC边的中线;
3. O是ABC 的重心 OA OB OC 0
4.PG

1 3
(PA

PB

PC)

G
为 ABC 的重心.
例1. P是△ABC所在平面内任一点.G是△ABC的重心
a2b1
|
【总结】(1).是用数量积给出的三角形面积公式; (2).则是用向量坐标给出的三角形面积公式.
例5.如图,在ABC内求一点P,使得: |AP|2 +|BP|2 +|CP|2 的值最小.
解:设AP=m,AB=a,AC=b,则BP=m-a,CP=m-b.

| AP |2 | BP |2 | CP |2
三角形“四心”的向量表 示
一、 外心
三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心。
证明外心定理
证明: 设AB、BC的中垂线交于点O,
则有OA=OB=OC,
A
故O也在AC的中垂线上, 因为O到三顶点的距离相等,
A
故点O是ΔABC外接圆的圆心.
O
因而称为外心.
O
B
C
B
C
若 O 为 ABC内一点,OA OB OC

高一三角形“四心”的向量性质及其应用(含解析)

高一三角形“四心”的向量性质及其应用(含解析)
∆ABC ∆PBC ∆ABC ∆PCA ∆PAB 1 2 3 ∆ABC ∆ABC
1 1 1 1 1 定义 f ( P) = (λ , λ , λ ) ,若 f (G) = ( 1 , , ), f (Q) = ( , , ) 则( ) 3 3 3 2 3 6 A.点 Q 在 ∆ABG 内 B.点 Q 在 ∆BCG 内 C.点 Q 在 ∆CAG 内 D.以上皆不对 解析: G 为重心,画图得知 例 8. 如图,已知点 G 是 ∆ABC 的重心,过 G 作直线与 AB, AC 两边分别交于 M , N 两点,
=
1 5
2 1 AB + AC ,用 O 拆开得: 2 ⋅ OA + 2⋅ OB + OC = 0 , 法 2: AO = 5 5
由奔驰定理可得: S
∆BOC
: S ∆COA : S ∆AOB = 2 : 2 : 1
,则 S
∆ABC
: S ∆AOB = (2 + 2 + 1) : 1 = 5 .
A
2 1 4 1 AB + AC = AD + AC , 法 3: AO = 5 (取 D 为 AB 边的中点) , 5 5 5
∆ABC ∆ABC
∆AOC ∆ABC
⋅ AB +
S ∆AOB ⋅ AC S ∆ABC
A
O B C
两边乘以 S 整理可得: − S 移项整理为 (S − S − S 即得 S ⋅ OA + S ⋅ OB + S 注:若简记三个面积: S = S , S
∆ABC ∆AOC ∆OBC ∆OCA ∆OBC A
A

,S S
∆AOB ∆ABC

,S S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)将平面向量与三角形垂心结合考查“垂心定理”
例2.H是△ABC所在平面内任一点,点H是△ABC的垂心.
由,
同理,.故H是△ABC的垂心.(反之亦然(证略))
例3.(湖南)P是△ABC所在平面上一点,若,则P是△ABC的(D)
A.外心B.内心C.重心D.垂心
解析:由.


所以P为的垂心.故选D.
点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直”等相关知识巧妙结合。
则.
证明:,,

点评:(1)证法运用了向量加法的三角形法则,
证法2运用了向量加法的平行四边形法则.(2)
若与重合,则上式变0.
(四).将平面向量与三角形外心结合考查
例7若为内一点,,则是的()
A.内心B.外心C.垂心D.重心
解析:由向量模的定义知到的三顶点距离相等。故是的外心,选B。
点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合。
由题设可设,
即,故Q、G、H三点共线,且QG:GH=1:2
【注】:本例如果用平面几何知识、向量的代数运算和几何运算处理,都相当麻烦,而借用向量的坐标形式,将向量的运算完全化为代数运算,这样就将“形”和“数”紧密地结合在一起,从而,很多对称、共线、共点、垂直等问题的证明,都可转化为熟练的代数运算的论证。
证点G是△ABC的重心,知,得
,有。
又M,N,G三点共线(A不在直线MN上),
于是存在λ,μ,使得,
有=,得,于是得。
三角形“四心”向量形式的充要条件应用
在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下:
一.知识点总结
1)O是的重心;
若O是的重心,则故;
为的重心.
2)O是的垂心;
若O是(非直角三角形)的垂心,则

3)O是的外心(或)
++=0且||=||=||点O是正△P1P2P3的中心.
4、练习
1.已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足=(++2),则点P一定为三角形ABC的( B)
A.AB边中线的中点B.AB边中线的三等分点(非重心)C.重心D.AB边的中点
分析:取AB边的中点M,则,
由=(++2)可得3,
点评:本题需要扎实的平面几何知识,平行四边形的对角线互相平分及三角形重心性质:重心是三角形中线的内分点,所分这比为。本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合。
变式:已知分别为的边的中点.则.
证明:
..
变式引申:如图4,平行四边形的中心为,为该平面上任意一点,
(A)外心(B)内心(C)重心(D)垂心
解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.
点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
∴,即点P为三角形中AB边上的中线的一个三等分点,且点P不过重心。
2.在同一个平面上有及一点O满足关系式:2+2=2+2=2+2,则O为△ABC的( D )
A.外心B.内心C.重心D.垂心
3.已知△ABC的三个顶点A、B、C及平面内一点P满足:,则P为△ABC的( C #43;+=0,||=||=||=1,
求证:△P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6题)
证明:由已知+=-,两边平方得·=,
同理·=·=,∴||=||=||=,从而△P1P2P3是正三角形.
反之,若点O是正三角形△P1P2P3的中心,则显然有++=0且||=||=||,即O是△ABC所在平面内一点,
4.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足:
,则P的轨迹一定通过△ABC的(C )
A.外心B.内心C.重心D.垂心
5.已知△ABC,P为三角形所在平面上的动点,且满足:,则P点为三角形的( D )
A.外心B.内心C.重心D.垂心
6.已知△ABC,P为三角形所在平面上的一点,且点P满足:,则P点为三角形的(B )
∴AB=AC,又=,∠A=,所以△ABC为等边三角形.
9.△ABC的外接圆的圆心为O,两条边上的高的交点为H,,则实数m= 1
10.点O是三角形ABC所在平面内的一点,满足,则点O是△ABC的(B)
(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点
(C)三条中线的交点(D)三条高的交点
11.如图1,已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,,则。
例10.若O、H分别是△ABC的外心和垂心.
求证.
证明若△ABC的垂心为H,外心为O,如图.
连BO并延长交外接圆于D,连结AD,CD.
∴,.又垂心为H,,,
∴AH∥CD,CH∥AD,
∴四边形AHCD为平行四边形,
∴,故.
著名的“欧拉定理”讲的是锐角三角形的“三心”——外心、重心、垂心的位置关系:
(1)三角形的外心、重心、垂心三点共线——“欧拉线”;
将代入=0,
得=0,故G是△ABC的重心.(反之亦然(证略))
例5.P是△ABC所在平面内任一点.G是△ABC的重心.
证明
∵G是△ABC的重心
∴=0=0,即
由此可得.(反之亦然(证略))
例6若 为内一点, ,则 是 的( )
A.内心 B.外心 C.垂心 D.重心
解析:由得,如图以OB、OC为相邻两边构作平行四边形,则,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。
(A)外心(B)内心(C)重心(D)垂心
事实上OB⊥CA故选答案D
例3:已知O为三角形ABC所在平面内一点,且满足
,则点O是三角形ABC的()
(A)外心(B)内心(C)重心(D)垂心
事实上由条件可推出故选答案D
例4:设是平面上一定点,A、B、C是平面上不共线的三点,
动点P满足,,则动点P的轨迹一定通过△ABC的()
即O是△ABC所在平面内一点,
++=0且||=||=||点O是正△P1P2P3的中心.
例9.在△ABC中,已知Q、G、H分别是三角形的外心、重心、垂心。求证:Q、G、H三点共线,且QG:GH=1:2。
【证明】:以A为原点,AB所在的直线为x轴,建立如图所示的直角坐标系。设A(0,0)、B(x1,0)、C(x2,y2),D、E、F分别为AB、BC、AC的中点,则有:
(五)将平面向量与三角形四心结合考查
例8.已知向量,,满足条件++=0,||=||=||=1,
求证△P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6题)
证明由已知+=-,两边平方得·=,
同理·=·=,
∴||=||=||=,从而△P1P2P3是正三角形.
反之,若点O是正三角形△P1P2P3的中心,则显然有++=0且||=||=||.
变式:若H为△ABC所在平面内一点,且
则点H是△ABC的垂心
证明:
0
即0
同理,
故H是△ABC的垂心
(三)将平面向量与三角形重心结合考查“重心定理”
例4.G是△ABC所在平面内一点,=0点G是△ABC的重心.
证明作图如右,图中
连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线.
例1:(2003年全国高考题)是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()
(A)外心(B)内心
(C)重心(D)垂心
事实上如图设都是单位向量
易知四边形AETF是菱形故选答案B
例2:(2005年北京市东城区高三模拟题)为△ABC所在平面内一点,如果,则O必为△ABC的()
A.外心B.内心C.重心D.垂心
7.在三角形ABC中,动点P满足:,则P点一定通过△ABC的(B )
A.外心B.内心C.重心D.垂心
8.非零向量与满足(+)·=0且·=,则△ABC为(D)
A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形
解析:非零向量与满足()·=0,即角A的平分线垂直于BC,
若O是的外心


4)O是内心的充要条件是
引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成:
O是内心的充要条件也可以是
若O是的内心,则
故;
的内心;
向量所在直线过的内心(是的角平分线所在直线);
二.范例
(一).将平面向量与三角形内心结合考查
例1.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的()
(A)外心(B)内心(C)重心(D)垂心
事实上 故选答案D
例5:2005年全国(I)卷第15题“的外接圆的圆心为,两条边上的高的交点为,,则实数=________”
先解决该题:
作直经,连,,有,,,,,故,
故是平行四边形,进而,又

故,所以
相关文档
最新文档