等腰三角形的性质教案及教学设计说明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题等腰三角形的性质

教材上海教育出版社九年义务教育课本数学七年级第二学期

内容第十四章《三角形》14.5等腰三角形

[教学目标]

(1)通过观察,操作,说理等活动,自主探究等腰三角形的性质,掌握并能够应用等腰三角形的性质解决简单问题.

(2)体会实验归纳和逻辑推理这两种研究方法的区别与联系.

(3)学习分类讨论以解决问题的数学思想方法,感悟添加辅助线在解题中的应用,提高逻辑思维能力和解决问题的能力.

(4)在开放的互动中体验数学发现的快乐.

[教学重点]

探究等腰三角形的性质,运用等腰三角形的性质解决简单问题.

[教学难点]

等腰三角形“三线合一”性质的灵活应用.

[教学过程]

教学设计说明

一、教材分析

1、地位与作用

等腰三角形对于学生学习和研究图形的轴对称性具有重要意义,它的图形直观地显示出轴对称的特征,它所具有的性质简明地体现出轴对称的内涵;由等腰三角形揭示的“等边对等角”和“等角对等边”的几何事实,是边与角相互联系和转化的基本依据,是平面几何体系中的支柱性定理之一;本节内容起到了重要

的承上启下作用,既用它作为运用全等三角形的判定和性质进行推理论证的载体,又由此对三角形的研究呈现出从特殊到一般的过程,随着等腰三角形性质的学习和研究的深入,学生的逻辑推理的能力将有所增强;实验与论证相辅相成,帮助学生从实验几何向论证几何过渡.

2、学情

在认知基础上,本节课是在学习全等三角形性质以及判定之后,学生对等腰三角形已有直观认识并知道等腰三角形是轴对称图形,由此来研究等腰三角形的性质.

在学习心理上,学生求知欲强,想象力丰富,乐于参加活动,但也存在注意力易分散等不足,因此在教法上,既要充分发挥学生的主体作用,让学生自己观察、大胆猜想、严密论证,又要适时发挥教师的引导、点拨作用.通过师生之间,生生之间的融洽合作,使学习活动变得生动有序.

在分析教材和学情的基础上,本节课的教学作了适当的调整,考虑到学生已学过轴对称图形,并且知道等腰三角形是轴对称图形,所以将“等腰三角形是轴对称图形”这一性质提前到第一个性质进行研究,让学生从已有的认知基础上慢慢打开等腰三角形性质的探究之门.

二、教学过程设计

本节课引导学生从已有的认知和生活经验出发,通过情景创设以及对教学内容的“问题化”组织,将教学内容转化为符合学生心理特点的问题情境,提出开放性的问题让学生进行合作探索,激发学生的学习兴趣,促进学生的自主探究与合作交流.经历实验操作—猜想—归纳—说理证实的数学研究过程,体验知识的形成与应用,感受数学研究的一般方法.

现对教学过程具体说明如下:

(一)创设情景引入课题

本节课的设计从生活中常见的含有等腰三角形的建筑图片这一情景引入课题《等腰三角形的性质》,让学生感到数学来源于生活,也激起了学生的求知欲望.

(二)探索新知渐进升华

1、基于学生对等腰三角形是轴对称图形的直观认识,引导学生猜测,对称

轴可能是顶角平分线所在的直线、底边中线所在的直线或底边高所在的直线,而这些猜测将在接下来的学习探究中得到证实.

2、通过学生经历操作实验—归纳猜想—说理证实的数学研究过程,探究出等腰三角形等边对等角的特殊性质,这个过程中,学生的学习活动在操作实验的基础上,过渡到逻辑推理,促进学生的几何认知水平得到新的发展,同时教学中注意数学思想方法的渗透,例如添加辅助线.

3、在“等边对等角”的论证过程中,有三种辅助线的添法,由此猜想到这三条辅助线是重合的,并进一步证实,同时在教学中注意数学思想方法的渗透(如何证明三条线重合)在这一过程中也证实了对称轴的猜测.

(三)利用新知巩固应用

例1:学生获得新的认知后,通过变式训练使学生能够利用所学等腰三角形的特殊性质解决一些简单的问题,在应用中感知等腰三角形性质的优越性.

例2:体会分类讨论数学思想.并清楚等腰三角形底角与顶角的取值范围.

例3:学生讨论,寻找等量关系,并对其中一个等量关系进行证明,可用多种方法,如果用等腰三角形的性质来解决可大大简化.再次让学生感知等腰三角形性质的优越性.

(四)自我反思总结收获

通过学生的自我小结,培养学生的归纳能力,鼓励学生质疑反思.前几节课上有学生发现:自己手中的等腰三角形沿对称轴不断翻折下去始终会得到等腰三角形.教师提醒其他同学观察自己手中的等腰三角形是否也存在此类情况?引导学生思考这位同学手中的等腰三角形有何特殊性?实际上是一个等腰直角三角形,教师准备了一个探究性问题适时地与学生探究,把课延续到课后.

(五)、布置作业

作业的布置重视让不同层次的学生都能得到发展,并为下节课学习作情景准备.(课后P107-3的练习,学生用不同方法画出原来的三角形,那么是否一定是等腰三角形?作为下节课引入新课的情景)

三、课后反思

本节课把等腰三角形三个性质的探究顺序作了调整,意在学生原有认知基础上获得新知,更加符合学生的认知规律,充分调动学生思维,有效激发学生探究

新知的积极性,从等腰三角形对称性研究到证明等腰三角形两底角相等;从翻折叠合到三种方法的符号语言说明,然后又顺理成章地收敛到三线合一,再对等腰三角形对称轴的猜测得以证实,水到渠成.等腰三角形的三个性质一气呵成,既发展学生的逻辑思维能力,又激发学生思维的开放性.在例题的处理上,如广找等量关系,鼓励用不同的方法证明两线段相等,发散学生的思维.在教学过程中注重数学思想方法的渗透,如添加辅助线、证明三线合一,又如分类讨论方法的使用.尤其在课的结尾学生能够提出问题,与我准备的一个探究性问题有很大的联系,令我欣喜若狂,这使学生感受到数学的魅力.教学中关注作业环节的设计,重视让不同层次的学生都能得到发展,并开发作业在教学过程中承前启后的过渡作用,本节课的作业引发的思考是下一节课带进课堂的问题,使课与课之间建立联系.

由于我们学校地处上海的远郊,学生来自于村、镇,所以我的教学设计是根据学生的实际数学学习水平而制定的,实际授课时,课堂气氛活跃,学生思维积极取得了满意的教学效果。

相关文档
最新文档