(独家)(通用版)中考数学总复习专题全汇总

合集下载

通用版2022年九年级数学中考复习专题:与中点有关的辅助线做法

通用版2022年九年级数学中考复习专题:与中点有关的辅助线做法

A F
E
BPD
C
九年级中考数学复习
2、如图等腰△ABC中,AB=AC,P是BC上一点,求证:PA2=AB2-PB×PC。 A
BP
C
九年级中考数学复习
3、如图,钝角△ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC, DE的中点。求证:MN⊥DE。
ND EA
B
M
C
九年级中考数学复习
A
A
A
A
B
D
C
E
B
D
C
B
E
DCBDC NhomakorabeaF
E
要点诠释:有些几何题在利用“倍长中线”证完一次全等三角形后,还需再证一次 全三角形,即:“二次全等”。
类型三:构造中位线
已知三角形的两边有中点,可以连接这两个中点构造中位线;已知一边中点,可 以在另一边上取中点,连接构造中位线;已知一边中点,过中点作平行线可构成相 似三角形。如图1,任意三角形ABC两边的中点D、E连接后,可得DE∥BC,DE=1BC
E
A
F
B
D
C
九年级中考数学复习
7、如图,在△ABC中,D为AC上一点,AB=CD,F是AD的中点,M为BC的中点, 连接MF并延长BA的延长线于点E
E j AG FD
B
M
C
九年级中考数学复习
8、如图在四边形ABCD
形面积的四分之一。
3、连接任意四边形四边的中点得到平行四边形,连接矩形四边的中点得到的是菱形
,连接菱形四边的中点得到的是矩形,连接正方形四边的中点得到的是正方形。
九年级中考数学复习
【例题精讲】
类型一:构造中线

专题二次函数-中考数学第一轮总复习课件(全国通用)

专题二次函数-中考数学第一轮总复习课件(全国通用)
(1)该抛物线是由抛物线y=x2_向__左__1_个__单__位__,_再__向__下__4_个__单__位___ 考 点 平移得到的;
真 (2)写出该抛物线关于x轴,y轴和原点对称的抛物线解析式:

一般式
顶点式

关于x轴对称:__y_=_-_x_2_-_2_x_+_3__;__y_=_-_(_x_+_1_)_2_+_4__。

关于y轴对称:__y_=__x_2_-_2_x_-_3__;__y_=__(_x_-_1_)_2_-_4__。


关于原点对称:_y_=_-_x_2_+_2_x_+_3__;__y_=_-_(_x_-_1_)_2_+_4__。
考点4 二次函数的图象的变换
检 1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛
考 交于点A(-1,5),点A与y1的顶点B的距离是4.
点 (1)求y1的解析式;
真 (2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,

求y2的解析式.


提 升
考点2 求二次函数的解析式
检 1.已知抛物线y=ax2+bx+c与x轴的交点是A(-1,0),B(3,0),与y 测
轴的交点是C,顶点是D.若四边形ABDC的面积是18,求抛物线的 考 点 解析式. y=-2x2+4x+6 或 y=2x2-4x-6
精 练
成立的x的取值范围是( A
)
提 A.x<-4或x>2 B.-4<x<2 C.x<0或x>2 D.0<x<2

考点3 二次函数与一元二次方程
检 1.二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0)(x1 测 <x2),方程ax2+bx+c-a=0的两根为m、n(m<n),则下列判断正

中考数学复习之考点题型全归纳与分层精练(全国通用):专题01 有理数(解析版)

中考数学复习之考点题型全归纳与分层精练(全国通用):专题01 有理数(解析版)

专题01有理数【专题目录】技巧1绝对值的八种常见应用技巧2有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数有理数的相关概念正数大于0的数叫做正数意义:表示具有相反意义的量负数在正数前面加上“-”号的数叫做负数数轴规定了原点、正方向和单位长度的直线叫做数轴相反数只有符号不同的两个数,叫做互为相反数(1)若a,b互为相反数,则a+b=0;(2)0的相反数是0;(3)在数轴上,互为相反数的两个数对应的点到原点的距离相等.绝对值数轴上点a与原点的距离叫做a的绝对值,记作a绝对值具有非负性:)0()0()0(aaaaaa倒数乘积为1的两个实数互为倒数(1)ab=1⇔a,b互为倒数;【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】(2)0没有倒数;(3)倒数等于它本身的数是1和-1.科学计数法把一个数写成a ×10n (其中1≤|a |<10,n 为整数)的形式有理数的运算加法同号两数相加,取原来的符号。

并把它们的绝对值相加。

异号两数相加,取绝对储较大的加数的符号,并用较大数的绝对值减失较小数的绝对值。

加法运算律:①交换律a +b =b +a ;②结合律(a +b )+c =a +(b +c )。

减法减去一个效等于加上这个数的相反数。

即:a -b =a +(-b )。

乘法两数相乘,同号得正,异号得负,并把它们的绝对值相乘几个非零实数相乘。

2024中考数学总复习冲刺专题:中点常见问题及辅助线 通用版

2024中考数学总复习冲刺专题:中点常见问题及辅助线 通用版

中点常见问题及辅助线作法中线等分三角形面积模型一:三角形中线中线等分三角形面积AD 是△ABC 的中线,则 S △ABD =S △ACD = S △AB C .21典型例题1.如图,在∆ABC中,D,E分别是BC,AD的中点,点F在BE上,且EF=2BF. 若S∆BCF=2cm2,则S∆ABC为( ).A.4cm2B.8cm2C.12cm2D.16cm2模型二:三角形中位线任意三角形+中点,构造三角形中位线在三角形中,如果有中点,可构造三角形的中位线DE ∥BC 且DE = BC ,△ADE ∽△ABC ,解决线段之间的相等或比例关系及平行问题.12特点:多个中点出现或平行+中点(中点在平行线上)典型例题2.(2023•泰安中考)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(﹣6,4);Rt△COD中,∠COD=90°,OD=4,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是( )A.3 B.64 C.22 D.2典型例题(2023•泰安中考)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB 在x轴上,点A的坐标为(﹣6,4);Rt△COD中,∠COD=90°,OD=4,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是( )选A. 解:取OB中点N,连接MN,AN.在Rt△OCD中,OD=4,∠D=30°, ∴OC=4, ∵M、N分别是BC、OB的中点, ∴MN= OC=2,在△ABN中,AB=4,BN=3,∴AN=5,在△AMN中,AM>AN﹣MN;当M运动到AN上时,AM=AN﹣MN,∴AM≥AN﹣MN=5﹣2=3,∴线段AM的最小值是3.213.(2023年四川巴中)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( ).A.2cm2B.4cm2C.6cm2D.8cm23.(2023年四川巴中)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( ).A.2cm2B.4cm2C.6cm2D.8cm2模型三:等腰三角形“三线合一”特点:在等腰三角形中,底边有中点.等腰三角形中有底边上的中点时,常作边的中线由等腰三角形“三线合一”得到:∠BAD=∠CAD,AD⊥BC,常常用于解决线段相等及平行问题、角度之间的相等问题.4. 如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,则MN 的长为 .1255.(2023四川自贡)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.5.(2023四川自贡)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.模型四:直角三角形“斜边上的中线”特点:在直角三角形中,有斜边上的中点.在直角三角形中,当遇见斜边中点时,常会作斜边上的中线.在Rt△ABC中,∠C=90°,点D为AB的中点,作斜边上的中线CD,则有CD=AD=BD=作用:①证明线段相等或求线段长; ②构造角相等进行等量代换AB 216.(2023深圳适应性考试)如图,在四边形ABCD中,AB=BC=6,∠ABC=60°,∠ADC=90°, 对角线AC与BD相交于点E,若BE=3DE,则BD=__________.7.(2023四川凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是 _________.6.(2023四川凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是 _________.模型五:倍长中线特点:三角形中出现中线或类中线(与中点有关的线段).当遇见中线或者中点时,可以尝试用倍长中线法构造全等三角形,证线段间的数量关系.7.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是__________.7.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是__________.模型六:圆中弦、弧的中点特点:圆中出现中点.圆中遇到弦、弧的中点,常联想“垂径定理”“圆周角定理”“弦、弧、圆心角、圆周角之间的关系”.8.(2023四川宜宾)如图,已知点A,B,C在⊙O上,C为AB 的中点.若∠BAC=35°,则∠AOB等于( )A.140°B.120°C.110°D.70°模型七:平面直角坐标系中的中点坐标特点:在平面直角坐标系中出现中点.如图,在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),点M 为线段AB 的中点,则点M 的坐标为 .x x y y ++121222(,)9.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C ,抛物线y=﹣x 2+3x+4经过B,C两点,交x轴负半轴于点A ,P 为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.若m< ,设直线MN 交直线BC 于点E ,是否存在这样的m值,使MN =2ME ?若存在,求出此时m的值;若不存在,请说明理由.239(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C ,抛物线y=﹣x2+3x+4经过B,C两点,交x轴负半轴于点A ,P 为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.若m< ,设直线MN 交直线BC 于点E ,是否存在这样的m值,使MN =2ME ?若存在,求出此时m的值;若不存在,请说明理由.23你能用思维导图的方式总结中点问题的常见类型及其辅助线的主要内容吗?。

2024中考数学总复习冲刺专题:尺规作图 通用版

2024中考数学总复习冲刺专题:尺规作图 通用版

“尺规作图”一、教学目标:1.知识与技能:(1)再认识什么是尺规作图,经历五个基本作图的复习与巩固,能在解答题中按要求进行尺规作图(不要求写出具体做法,但需要保留作图痕迹);(2)能在题目中识别出具体是哪种类型的尺规作图,并利用所做的线的性质来解决几何问题。

2.过程与方法:经历五个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。

3.情感、态度与价值观:通过复习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。

二、教学重点:掌握五个基本尺规作图的作法三、教学难点:能利用尺规作图解决实际问题四、教学过程:知识技能梳理1.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

2.五种基本作图:1)作一条线段等于已知线段;2)作已知角的平分线;3)作已知线段的垂直平分线;4)作一个角等于已知角;5)过一点作已知直线的垂线【点在线上、点在线外】。

模块一:五种尺规作图复习1.作一条线段等于已知线段已知:如图所示线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)在射线AP上截取AB=a.则线段AB就是所求作的图形。

2.作线段的垂直平分线(中垂线)或中点3.作已知角的平分线已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P;作射线OP。

则射线OP就是∠AOB的角平分线。

4.作一个角等于已知角已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:1)作射线O′A′;2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;3)以O′为圆心,以OM的长为半径画弧,交O′A′于M′;4)以M′为圆心,以MN的长为半径画弧,交前弧于N′;5)连接O′N′并延长到B′。

初三中考数学总复习资料(备考大全)

初三中考数学总复习资料(备考大全)

2011年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

2024年中考数学常见几何模型全归纳(全国通用)专题31 圆中的重要模型之四点共圆模型(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题31 圆中的重要模型之四点共圆模型(解析版)

专题31圆中的重要模型之四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

【答案】2【分析】首先连接OE,由角器上对应的读数.【详解】解:连接OE,A .13B .52∵在ABC 中,90BAC【答案】30【分析】连接AC 与BD 又易知在Rt ACD △中,【详解】解:连接AC 与∵四边形形ABCD 是矩形,12OA OB OC OD AC又∵DE BF 于E ,即是直角三角形,∴12OE BD ,∴OA OC OD OE ,∴点A B 、、,由旋转的性质可知:AF AB ,【答案】122【分析】(1)根据条件,证明AOD COD△△△△,代入推断即可.(2)通过AOG ABC证明ODF CBF△△,代入推断即可.又∵∵CE CF∴CEF CFE模型2、定边对双直角共圆模型C同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A、B、C、D四个点满足90ABD ACD,结论:A、B、C、D四点共圆,其中AD为直径。

2)定边对双直角模型(异侧型)条件:若平面上A、B、C、D四个点满足90ABC ADC,结论:A、B、C、D四点共圆,其中AC为直径。

【点睛】本题考查了圆的直径所对的圆周角为【点睛】此题主要考查圆内接四边形,直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质等知识点,解答此题的关键是添加辅助线构造特殊三角形,求出线段.模型3、定边对定角共圆模型条件:如图1,平面上A 、B 、C 、D 四个点满足ADB ACB ,结论:A 、B 、C 、D 四点共圆.条件:如图2,AC 、BD 交于H ,AH CH BH DH ,结论:A B C D 、、、四点共圆.例1.(2023·江苏·九年级假期作业)如图,在Rt ABC 中,∠BAC =90°,∠ABC =40°,将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上.(1)求∠BAD 的度数;(2)求证:A 、D 、B 、E 四点共圆.【答案】(1)10°;(2)见解析【分析】(1)由三角形内角和定理和已知条件求得∠C 的度数,由旋转的性质得出AC =AD ,即可得出∠ADC =∠C ,最后由外角定理求得∠BAD 的度数;(2)由旋转的性质得到∠ABC =∠AED ,由四点共圆的判定得出结论.【详解】解:(1)∵在Rt ABC 中,∠BAC =90°,∠ABC =40°,∴∠C =50°,∵将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上,∴AC =AD ,∴∠ADC =∠C =50°,∴∠ADC =∠ABC +∠BAD =50°,∴∠BAD =50°-40°=10°证明(2)∵将 ABC 绕A 点顺时针旋转得到 ADE ,∴∠ABC =∠AED ,∴A 、D 、B 、E 四点共圆.【点睛】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.例3.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE 绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC,∴△ACE ≌△BCD (SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H,如图:∵△ACE ≌△BCD ∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD 4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos 30DG∴AF =AE -FE 80;【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例4.(2022·贵州遵义·统考中考真题)探究与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D ,那么A ,B ,C ,D 四点在同一个圆上.探究展示:如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D (依据1)B D ∵180AEC B点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆)点B ,D 在点A ,C ,E 所确定的O 上(依据2)点A ,B ,C ,E 四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:__________;依据2:__________.(2)图3,在四边形ABCD 中,12 ,345 ,则4 的度数为__________.(3)拓展探究:如图4,已知ABC 是等腰三角形,AB AC ,点D 在BC 上(不与BC 的中点重合),连接AD .作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E与判定,掌握以上知识是解题的关键.模型4、对角互补共圆模型P条件:如图1,平面上A、B、C、D四个点满足ABC ADC,结论:A、B、C、D四点共圆.条件:如图2,BA、CD的延长线交于P,PA PB PD PC,结论:A、B、C、D四点共圆.A.2B.22【答案】A【分析】先根据等腰三角形的性质可得,,,A B E D四点共圆,在以BE为直径的圆上,连接【答案】43/113【分析】过点B作BH AM交F,点A,M,B,C四点共圆,得法求解,12AMBS AM DE△【详解】解析:过点B作BH 于点,如图所示:【答案】52 2【分析】连接BD并延长,利用四点共圆的判定定理得到的性质和圆周角定理得到DBF性质解答即可得出结论.(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD 时,O 是四边形AEBD O 的切线;(3)已知1206BC ,,点M 是边BC 的中点,此时P 是四边形出圆心P 与点M 距离的最小值.【答案】(1)证明见解析(2)证明见解析(3)32(3)解:如图所示,作线段AB 的垂直平分线,分别交∵120AB AC BAC ,,∴B课后专项训练1.(2023秋·河北张家口·九年级校考期末)如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【答案】D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【详解】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选D.【点睛】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.,.下2.(2023·安徽合肥·校考一模)如图,O是AB的中点,点B,C,D到点O的距离相等,连接AC BD列结论不一定成立的是()A .12B .3=4C .180ABC ADCD .AC 平分BAD【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD .即点A 、B 、C 、D 都在圆O 上.A .∵ AB AB ,∴12 ,故A 不符合题意;B .∵ BCBC ,∴3=4 ,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ,故C 不符合题意;D .∵ BC 和CD不一定相等,∴BAC 和DAC 不一定相等,∴AC 不一定平分BAD ,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.3.(2023·江苏宿迁·九年级校考期末)如图,在Rt ABC △中,90ACB ,3BC ,4AC ,点P 为平面内一点,且CPB A ,过C 作CQ CP 交PB 的延长线于点Q ,则CQ 的最大值为()【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.4.(2023·北京海淀·九年级校考期中)如图,点接AC,BD.请写出图中任意一组互补的角为【答案】DAB【分析】首先判断出点【答案】130【分析】根据题意得到四边形【详解】解:由题意得到∴四边形ABCD为圆∵∠ABC=50°,∴∠【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.6.(2023·浙江金华·A.3B.1∵PE AB 于点E ,PD AC 于点,∴90AEP ADP ,∴180AEP ADP ,∴A 、E 、D 四点共圆,PA 是直径,在Rt PDC 中,45C ,∴△是等腰直角三角形,45APD ∴APD △也是等腰直角三角形,45PAD ,∴PED PAD ∴45AED ,∴AED C ,∵EAD CAB ,∴AED ∽设2AD x ,则2PD DC x ,22x ,如图2,取AP 的中点O 则2AO OE OP x ,∵604515EAP BAC PAD ,过E 作EM AP 于M ,则EM x,cos30OM OE ,∴36222OM x x ,∴6226222AM x x x ,由勾股定理得: 222226222AE AM EM x x +【答案】3632 /323 【分析】数形结合,根据动点的运动情况判断点【详解】解:如图旋转,连接以BC 为直径作O ,以AE 为半径作在ABD △和ACE △中AB AC AD AE BAD CAEPBC PBA ACB PBC 90BAC BPC EAD ∵,122AB ∵,A 的半径为62∴又∵90BAC EAD ,CAD,∵33BC ,OP BC∵MQ,MC与圆O相切,1QOM COM COP 【答案】(1)见详解(2)证明:如下图所示由题意可知AC 逆时针旋转90得到边AE ,90E ACB ,则90ACB ∵,AE BF ∥,90 ∵,90EFC ,,F ,E 四点共圆..∵四边形ABCD是菱形,AC,且 GOC GCO90==∵, 点90DHC DOC=BDF OCH=,且BF OM ∵, 点==90AED AOD尝试应用如图2,点D 为等腰Rt ABC △外一点,AB AC ,BD CD ,过点A 的直线分别交DB 的延长线和CD 的延长线于点N ,M ,求证:12ABN ACM S S AN AM △△.问题拓展如图3,ABC 中,AB AC ,点D ,E 分别在边AC ,BC 上,60BDA BEA ,AE ,BD ,直接写出BE 的长度(用含a ,b 的式子)∵ABC 为等腰直角三角形,∴AB AC , 又∵BD CD ,即:=90BDC ,∴A 、B 在ABN 与ACE △中,AB AC ABN ACE BN CE,∴∴BAN BAE CAE BAE BAC ∴1122AME AMC S AE AM AN AM S S △△∴60AFB BAF ABF ,AB AF AC ,∵60BDA BEA ,∴A 、D 、E 、B 、F 五点共圆,则:13 ,24 ,60BEF AEB ,【答案】问题情境:见解析;问题解决:(1)102;(2)13522【分析】[问题情境]连结AC ,取AC 的中点O ,连结OB 、OD ,根据直角三角形斜边上的中线等于斜边的一半,可得OD OA OC OB ,以此即可证明;[问题解决](1)根据题意可得225AE AD DE ,由[问题情境]结论可知A 、D 、E 、据圆周角定理以及正方形的性质可得45PDE PAE ,则PAE △为等腰直角三角形,设AP 长为a ,根据勾股定理列出方程,求解即可;(2)由[问题情境]结论可知A 、D 、E 、P 四点共圆,过点O 作OG AD 于点G ,作OH 接OB 交O 于点P ,连接PB ,根据题意可得四边形MBNP 为矩形,则要求MN 的最小值,即求值,根据平行线的性质和中点的定义可得OG 为ADE V 的中位线,得1AG ,12OG ,同理可证四边形1【翻折】(1)如图1,将DEF 沿线段AB 翻折,连接CF ,下列对所得四边形ACBF 的说法正确的是平分CBF 、CAF ,②AB 、CF 互相平分,③12ACBF S AB CF 四边形,④A 、C 、B 、F 四点共圆.AB 垂直平分CF ,故②ABC ABF ACBF S S S 四边形1122AB AB FG 12AB CG 取AB 的中点O ,连接CO FO ,ABC ABF △、△均为直角三角形,∴OB OC OA OF ,∴A 、B 、F 四点共圆,故()沿线段向左平移,∴AB CF ,CF BE 的中点,∴BE BD BF特殊情况分析:(1)如图1,正方形ABCD 中,点P 为对角线时针旋转ADC 的度数,交直线BC 于点Q .小明的思考如下:连接DQ ,∵AD CQ ∥,90ADC DCQ ,∴ACQ DAC ∵90DPQ ,∴180DPQ DCQ ,∴点D P Q 、、PDQ PCQ DQP PCD∵在菱形ABCD 中BC AD ∥,180ADC DCQ ,DPQ ADC ,∵180DPQ DCQ ,∴点P C Q 、、、共圆,∴DQP ACD ,ACB PDQ ,∵AC 为菱形ABCD 的对角线,ACB ACD ,∴PDQ DQP ,∴ DP PQ ;(3)解:3PQ 或3.由于点P 为对角线AC 上一个动点,分两类情况讨论如下:所示:180302ADC ACD,。

中考数学复习之考点题型全归纳与分层精练(全国通用):专题12 一次函数(解析版)

中考数学复习之考点题型全归纳与分层精练(全国通用):专题12 一次函数(解析版)

专题12一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义一次函数与正比例函数一次函数与正比例函数的定义如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.一次函数与正比例函数的关系一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线。

它可以由直线y=kx平移得到.它与x轴的交点为0,kb,与y轴的交点为(0,b).【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标.3、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象一次函数的图象与性质函数系数取值大致图象经过的象限函数性质y =kx (k ≠0)k >0一、三y 随x 增大而增大k <0二、四y 随x 增大而减小y =kx +b (k ≠0)k >0b >0一、二、三y 随x 增大而增大k >0b <0一、三、四k <0b >0一、二、四y 随x 增大而减小k <0b <0二、三、四的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.2.已知关于x 的函数y =kx -2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式.4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值.5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值.【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是()7.若函数y 2+6(x≤3),(x>3),则当y =20时,自变量x 的值是()A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是()A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是()11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0.参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1,解得m =-1.2.解:若关于x 的函数y =kx -2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1,当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x -2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9.②若k<0,则y 随x 的增大而减小,则当x=1时y=1,即k+b=1.综上可知,k+b的值为9或1.5.解:因为点P到x轴的距离为4,所以|a|=4,所以a=±4,当a=4时,P(2,4),此时4=-2+m,解得m=6.当a=-4时,同理可得m=-2.综上可知,m的值为-2或6.6.D7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y=450-9x,自变量x的取值范围是0≤x≤50,且x为整数.9.D10.A11.<;≥技巧2:一次函数的两种常见应用【类型】一、利用一次函数解决实际问题题型1:行程问题1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300km;②乙车比甲车晚出发1h,却早到1h;③乙车出发后2.5h追上甲车;④当甲、乙两车相距50km时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个2.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4g且不超过10g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10t以内(包括10t)的用户,每吨收水费a元;一个月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10cm2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数表达式;(2)画出此函数的图像.参考答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b =2.5k+b,=4.5k+b.=110,=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k =60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8h后.设经过x1h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3h恰好装满第1箱,再经过2h恰好装满第2箱.4.解:(1)y甲=477x,y乙(0≤x≤3),+318(x>3).(2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x+318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12.故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ;②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6;③当点P 在边CD 上运动,即7≤x≤10时,y =12×4(10-x)=-2x +20.所以y 与x 之间的函数表达式为y (0≤x <3),(3≤x <7),2x +20(7≤x≤10).(2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2=-x +4,=x +2的解为()A =3=1B =1=3C =0=4D =4=02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a)-y =0,+y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)+y =4,-y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4mx +y =n ,+y =f =4,=6,则直线y =mx +n 与y =-ex +f 的交点坐标为()A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.=3,=-2=2,=1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y 轴的交点坐标是()A .(0,-7)B .(0,4)CD -37,【类型】三、方程组的解与两个一次函数图像位置的关系6+y =2,+2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定()A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 21x +y =b 1,2x -y =-b 2的解的情况是()A .无解B .有唯一解C .有两个解D .有无数解【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式.9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方-y =0,+y -b =0=1,=2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1)=3,=1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×=34.4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b +b =-1,k +b =3,=-2,=1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以把A(3,-3),B y =kx +b +b =-3,+b =0,=-43,=1.则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______.【答案】m=﹣3【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数,∴29030m m=解得m=-3.故答案是:-3.【题型】二、正比例函数的图像与性质例2、若正比例函数12y x 经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为()A .12y yB .12y y C .12y y D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x ,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x 图象上的点,∴112y ,21y ,∵112,∴12y y .故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx 的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A . 1,2B .1,2 C .2,3D .3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx 的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B .【题型】四、一次函数的图像例4、若m ﹣2,则一次函数 11y m x m 的图象可能是()A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数 11y m x m 的图象经过一,二,四象限,故选:D .【题型】五、一次函数的性质例5、设k 0 ,关于x 的一次函数2y kx ,当12x 时的最大值是()A .2kB .22k C .22k D .2k 【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案.【详解】∵一次函数2y kx 中0k ,∴y 随x 的增大而减小,∵12x ,∴当1x 时,122y k k 最大,故选:A .【题型】六、求一次函数解析式例6、直线y kx b 在平面直角坐标系中的位置如图所示,则不等式2kx b 的解集是()A .2x ≤B .4xC .2xD .4x 【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集.【详解】解:根据图像得出直线y kx b 经过(0,1),(2,0)两点,将这两点代入y kx b 得120b k b ,解得112b k,∴直线解析式为:112y x,将y=2代入得1212x ,解得x=-2,∴不等式2kx b 的解集是2x ,故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx (k 为常数且0k )的图像经过点(-2,0),则关于x 的方程 530k x 的解为()A .5xB .3x C .3x D .5x 【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵ 53y k x 是由3y kx 的图像向右平移5个单位得到的,∴将一次函数3y kx 的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0)∴当y=0时,方程 530k x 的解为x=3,故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k 经过点(1,1)P ,当kx b x 时,则x 的取值范围为()A .1xB .1 xC .1xD .1x 【答案】A【分析】将(1,1)P 代入(0)y kx b k ,可得1k b ,再将kx b x 变形整理,得0bx b ,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k ,可得1k b ,即1k b ,整理kx b x 得, 10k x b ,∴0bx b ,由图像可知0b ,∴10x ,∴1x ,故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为()A .2B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x 得,12x y,∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=123×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y (千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0 1.680 2.6k bk b,解得:80128 kb,∴y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1);(2)根据图象可知:货车甲的速度是80÷1.6=50(km/h )∴货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx 经过 11,y , 22,y ,且12y y ,它的图象可能是()A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2,∴y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4),∴它的图象可能是B 选项,故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx 经过 11,A y , 22,B y 两点,且12y y ,则k 的取值范围是()A .0kB .0kC .0kD .不能确定【答案】C【分析】根据一次函数的增减性可得出结论.【详解】∵1212,y y ,∴函数y 随x 的增大而减小.∴k <0,故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.3.一次函数2y x m 的图象经过第一、二、四象限,则m 可能的取值为()A .-1B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m 的图象经过第一、二、四象限,∴0m ,∴m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数 0y kx b k ,当0,0k b 时,一次函数图象经过第一、二、三象限;当0,0k b 时,一次函数图象经过第一、三、四象限;当0,0k b 时,一次函数图象经过第一、二、四象限;当0,0k b 时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x 的图象经过()A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可.【详解】解:∵31y x 中0k ,∴一次函数图象经过第二、四象,∵0b ,∴一次函数图象经过一、二、四象限.故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键.5.若23y x b ,y 是x 的正比例函数,则b 的值是()A .0B .23C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b ,即可求得b 值.【详解】解:∵y 是x 的正比例函数,∴23=0b ,解得:23b ,故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点 2,0A 的函数的解析式:______.【答案】24y x (答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点 2,0A 的函数的解析式可以为24y x ,故答案为:24y x (答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________.【答案】24y x 【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4,即y =2x -4,故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式.(2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠?【答案】(1)142y x ;2500204020020x x y x x (2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y ,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x ,∴184020k ,∴142k ,∴1142y x ;乙商店:当0<x≤20时,设22y k x ,∴2100020k ,∴250k ,∴250y x ,当x >20时, 2100020500.84020y x x ,∴ 2500204020020x x y x x;(2)当x>20时,令12y y ,即4020042x x ,∴x =100,y =4200,∴m =100,∴m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元;(3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数 32y k x k 01k 有意义的k 的值可能为()A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k ,解得:32k . 01k 有意义的条件为:1010k k ,解得:1k 且0k .将两个关于k 的解集综合,得到k 的范围是:12k 且0k .根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k,解得:32k01k 有意义,则1010k k,解得:1k 且1k 综上所述,k 的取值范围是:12k 且0k .A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x 与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若△ABC 的面积为6,则m 的值为()A .1B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据△ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x 与x 轴、y 轴分别交于A ,B 两点,当x =0时,y =4,∴点B (0,4),∴OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,∴AC =m ,∵△ABC 的面积为6,∴1462m ´=,解得:m =3.故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是()A .B .C .D .【答案】C 【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,∴-k <0,即k >0,∴一次函数y =-kx +k 的图象经过一、二、四象限.故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质:①当k >0,b >0时,图象过一、二、三象限;②当k >0,b <0时,图象过一、三、四象限;③当k <0,b >0时,图象过一、二、四象限;④当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m 的图像关于直线1y 对称后经过坐标原点,则m 的值为()A .1B .2C .1D .2 【答案】A【分析】由题意一次函数32y x m 与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y 对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m 中,令0x ,则2y m ,∴一次函数32y x m 与y 轴的交点为(0,2m ),∵点(0,2m )与原点关于直线1y 对称,∴22m ,∴1m ;故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题.5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是()A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km。

2024年中考数学常见几何模型全归纳(全国通用)专题18 全等与相似模型之十字模型(原卷版)

2024年中考数学常见几何模型全归纳(全国通用)专题18 全等与相似模型之十字模型(原卷版)

专题18全等与相似模型之十字模型几何学是数学的一个重要分支,研究的是形状、大小和相对位置等几何对象的性质和变换。

在初中几何学中,十字模型就是综合了上述知识的一个重要模型。

本专题就十字模型相关的考点作梳理,帮助学生更好地理解和掌握。

模型1.正方形的十字架模型(全等模型)“十字形”模型,基本特征是在正方形中构成了一个互相重直的“十字形”,由此产生了两组相等的锐角及一组全等的三角形。

1)如图1,在正方形ABCD中,若E、F分别是BC、CD上的点,AE⊥BF;则AE=BF。

2)如图2,在正方形ABCD中,若E、F、G分别是BC、CD、AB上的点,AE⊥GF;则AE=GF。

3)如图3,在正方形ABCD中,若E、F、G、H分别是BC、CD、AB、AD上的点,EH⊥GF;则HE=GF。

模型巧记:正方形内十字架模型,垂直一定相等,相等不一定垂直.例2.(2023年辽宁省丹东市中考数学真题)如图,在正方形CD上,AE与BF相交于点G例3.(2023安徽省芜湖市九年级期中)、交于G,连接CE DF确的有()A.1个B.2例4.(广西2022-2023学年九年级月考)E不与点AB重合),连接DE(2)探究:如图②,在正方形合),连接EF,作EF的垂线分别交边AD,BC于点G,H,垂足为O.若E为AB中点,1DF ,4AB ,求GH的长.(3)应用:如图③,在正方形ABCD中,点E,F分别在BC,CD上,BE CF,BF,AE 相交于点G.若3AB ,图中阴影部分的面积与正方形ABCD的面积之比为2:3,则ABG的面积为______,ABG的周长为______.模型2.矩形的十字架模型(相似模型)矩形的十字架模型:矩形相对两边上的任意两点联结的线段是互相垂直的,此时这两条线段的的比等于矩形的两边之比。

通过平移线段构造基本图形,再借助相似三角形和平行四边的性质求得线段间的比例关系。

如图1,在矩形ABCD中,若E是AB上的点,且DE⊥AC,则DE BC AC AB.如图2,在矩形ABCD中,若E、F分别是AB、CD上的点,且EF⊥AC,则EF BC AC AB.如图3,在矩形ABCD中,若E、F、M、N分别是AB、CD、AD、BC上的点,且EF⊥MN,则EF BC MN AB.H分别为AD、BC、AB、CD,P是BC边上的一个动点,将)如图1,当点P与点C重合时,与点B,C均不重合时,取EF①求证:四边形MEPF是平行模型3.三角形的十字架模型(全等+相似模型)1)等边三角形中的斜十字模型(全等+相似):如图1,已知等边△ABC,BD=EC(或CD=AE),则AD=BE,且AD和BE夹角为60°,△ABC。

2024年中考数学常见几何模型全归纳(全国通用)专题24 最值模型之将军饮马模型(原卷版)

2024年中考数学常见几何模型全归纳(全国通用)专题24 最值模型之将军饮马模型(原卷版)

专题24最值模型之将军饮马模型“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗,由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

将军饮马问题从本质上来看是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主,本专题就将军饮马问题进行梳理及对应试题分析,方便掌握。

在解决将军饮马模型主要依据是:两点之间,线段最短;垂线段最短;涉及的基本方法有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:m ABmmABm【最值原理】两点之间线段最短。

上图中A’是A关于直线m的对称点。

例2.(2023·广东广州·校考一模)如图,在E、F分别为BC、BD上的动点,则例4.(2022·内蒙古赤峰点 30A ,,点E 是CD A .23B .3例.(山东济宁九年级校考期末)如图,例7.(2023·湖北黄冈·统考模拟预测)如图,点B C,则AE DE135例8.(2023·山东枣庄·统考中考真题)如图,抛物线另一点B,点M是抛物线的顶点,直线AM与轴交于点(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接模型2.求多条线段和(周长)最小值【模型解读】在直线m 、n 上分别找两点P 、Q ,使PA +PQ +QB 最小。

(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:nnnmn(3)两个点都在内侧:nmBn(4)台球两次碰壁模型1)已知点A 、B 位于直线m ,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.2)已知点A 位于直线m ,n 的内侧,在直线m 、n 分别上求点P、Q 点PA +PQ +QA 周长最短.【最值原理】两点之间线段最短。

二元一次方程组-中考数学一轮复习考点专题复习大全(全国通用)

二元一次方程组-中考数学一轮复习考点专题复习大全(全国通用)

考向10 二元一次方程组【考点梳理】1、二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程的解。

2、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

3、解二元一次方程组的基本思想:消元思想:基本方法是:代入消元法和加减消元法4、解三元一次方程的基本方法是:一元二元(消元)三元(消元)→→ 【题型探究】题型一:二元一次方程组的基础概念1.(2022·四川成都·模拟预测)已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的算术平方根为( )A .±2B .2C .±2D .22.(2021·山东滨州·二模)已知关于x 、y 的方程组21254x y k x y k +=-⎧⎨+=+⎩的解满足x +y =5,则k 的值为( )A .52B .2C .3D .53.(2022·福建福州·校考一模)已知12x y =⎧⎨=⎩是二元一次方程组的解,则43m n +的立方根为( )A .1±B 32C .± 32D .1-题型二:二元一次方程组的解法4.(2022·河北保定·统考二模)解二元一次方程组253x y y x -=⎧⎪⎨⎪=+⎩①②,把②代入①,结果正确的是( )A .235x x -+=B .235x x ++=C .2(3)5x x -+=D .2(3)5x x +-=5.(2022·广西贺州·统考二模)二元一次方程组3103219x y y x ++=⎧⎨=+⎩的解是( )A .25x y =-⎧⎨=-⎩B .25x y =⎧⎨=⎩C .25x y =⎧⎨=-⎩D .25x y =-⎧⎨=⎩6.(2022·山东临沂·统考二模)若二元一次联立方程式2143221x y x y +=⎧⎨-+=⎩的解为,x a y b ==,则a b +之值( )A .192B .212C .7D .13题型三:二元一次方程组的特殊解法7.(2022·统考二模)我们知道二元一次方程组233345x y x y -=⎧⎨-=⎩的解是31x y =⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x y x y +--=⎧⎨+--=⎩,它的解是( ) A .123x y =-⎧⎪⎨=⎪⎩B .123x y =-⎧⎪⎨=-⎪⎩C .123x y =⎧⎪⎨=⎪⎩D .123x y =⎧⎪⎨=-⎪⎩8.(2023·江西·九年级专题练习)若实数x ,y 满足22227{3x y xy x y xy ++=+-=,则20222022x y +的值是( ) A .202221+B .202221-C .202221-+D .202221--9.(2022·山东聊城·统考三模)若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组111222()()()()a m n b m n c a m n b m n c -++=⎧⎨-++=⎩的解是( )A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩B .1252m n ⎧=⎪⎪⎨⎪=⎪⎩C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩题型四:解二元一次方程组的应用10.(2022·山东聊城·统考中考真题)关于x ,y 的方程组2232x y k x y k -=-⎧⎨-=⎩的解中x 与y 的和不小于5,则k 的取值范围为( ) A .8k ≥ B .8k >C .8k ≤D .8k <11.(2022春·全国·九年级)已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解32x y =⎧⎨=⎩.则关于x ,y 的方程组111222(1)(1)a x b y c a x b y c --=⎧⎨--=⎩的解是( )A .42x y =⎧⎨=-⎩B .12x y =⎧⎨=⎩C .32x y =⎧⎨=-⎩D .42x y =⎧⎨=⎩12.(2021·四川德阳·统考中考真题)关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y=x 上方,那么k 的取值范围是( )A .k >1B .k >﹣1C .k <1D .k <﹣1题型五:列二元一次方程组13.(2022·江苏苏州·苏州市振华中学校校考模拟预测)某校运动员进行分组训练,若每组5人,余2人,若每组6人,则缺3人,设运动员人数为x 人,组数为y ,则根据题意所列方程组为( ) A .5263y x x x =+⎧⎨+=⎩B .5263y x y x =+⎧⎨-=⎩C .5263y x y x =-⎧⎨=+⎩D .5263y x y x =-⎧⎨=-⎩14.(2022·浙江宁波·校考三模)《九章算术》卷八方程第十题原文为∶“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为,x y ,则可列方程组为( ) A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩C .2502503x y x y -=⎧⎪⎨+=⎪⎩ D .2502503x y x y -=⎧⎪⎨-=⎪⎩ 15.(2022·广东东莞·校考二模)我国古代《孙子算经》中有道题,原文是:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:现有一些人坐车,如果每车坐三个人,则还剩余二辆车没有人坐;如果每车坐二人,则有9人需要步行,问共有多少人?几辆车?设共有x 人,y 辆车,则下列符合题意的方程组是( ) A .()192123y x x y ⎧=-⎪⎪⎨⎪=-⎪⎩B .()1231922x y y x ⎧=+⎪⎪⎨⎪=+-⎪⎩C .()123192x x y y x ⎧=+-⎪⎪⎨⎪=+⎪⎩D .()()122193x y y x ⎧=-⎪⎪⎨⎪=-⎪⎩题型六:二元一次方程组的实际应用16.(2019·甘肃兰州·校联考中考模拟)某服装店用5700元购进A ,B 两种新式服装,按标价售出后可获得毛利润3600元(毛利润=售价-进价),这两种服装的进价,标价如表所示.(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A 种服装按标价的9折出售,B 种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?17.(2023·重庆黔江·校联考模拟预测)冬天是吃羊肉的好时节.白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,羊肉就是各大超市的畅销品.某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.(1)羊腿和羊排的售价分别是每斤多少元?(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,每斤羊排可盈利8元,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?18.(2022·广西玉林·校考模拟预测)小颖在完成一项“社会调查”作业时,需要调查城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入=基本工资(固定)+送餐单数奖励”的方法计算薪资,调查中获得如下信息:送餐每单奖金为a元,送餐员月基本工资为b元.(1)列方程组求a、b的值;(2)若月送餐单数超过300单时,超过部分每单奖金增加1元,假设月送餐单数为x单,月总收入为y元,请写出y 与x之间的函数关系式,并求出送餐员小李计划月总收入不低于5200元时,他每月至少要送餐多少单?【必刷基础】一、单选题19.(2022·内蒙古赤峰·模拟预测)已知x,y满足方程组23353240x yx y+=⎧⎨+=⎩,则x y+的值为()A.15 B.18 C.20 D.2220.(2022·江苏宿迁·模拟预测)小红家离学校1500米,其中有一段为上坡路,另一段为下坡路,她去学校共用了18分钟,假设小红上坡路的平均速度是2千米/时,下坡路的平均速度是3千米/时,若设小红上坡用了x分钟,下坡用y分钟,根据题意可列方程组为()A.23150018x yx y+=⎧⎨+=⎩B.231.5606018x yx y⎧+=⎪⎨⎪+=⎩C.231518x yx y+=⎧⎨+=⎩D.2315606018x yx y⎧-=⎪⎨⎪+=⎩21.(2020·贵州遵义·统考二模)已知x、y是二元一次方程组3735x yx y-=⎧⎨-=⎩的解,那么x y-的值是()A.2 B.3 C.2-D.3-22.(2022·山东威海·统考一模)已知关于x,y的二元一次方程组=12+=3ax byax by-⎧⎨⎩的解为=1=1xy⎧⎨-⎩,那么代数式2a b-的值为()A.-2 B.2 C.3 D.- 323.(2022秋·广东深圳·九年级校考期中)如果|x+y-1|和2(2x+y-3)²互为相反数,那么x,y的值为()A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=-⎩C.21xy=⎧⎨=-⎩D.21xy=-⎧⎨=-⎩24.(2022·广东揭阳·揭阳市实验中学校考模拟预测)如果关于x,y的方程组436626x yx my-=⎧⎨+=⎩的解是整数,那么整数m的值为()A.4,4-,5-,13B.4,4-,5-,13-C.4,4-,5,13D.4-,5,5-,1325.(2022·辽宁盘锦·校考一模)《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y 钱,可列方程组为()A .8374x y x y -=⎧⎨+=⎩B .8374y x y x -=⎧⎨-=⎩C .8374x y x y -=⎧⎨-=⎩D .8374x yx y +=⎧⎨-=⎩26.(2022秋·浙江杭州·九年级杭州外国语学校校考阶段练习)若方程组2383217x y x y -=⎧⎨-=⎩,设2x y a +=,2x y b -=,则的值为( ) A.±B.C.D.27.(2022·重庆·模拟预测)《增删算法统宗》提到:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?……”其大意是:今有绢与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,问绢与布各有多少.设绢有x 疋,布有y 疋,依据题意可列方程组为( )A .30509057043x y x y +=⎧⎪⎨+=⎪⎩ B .30905057043x y x y +=⎧⎪⎨+=⎪⎩ C .30905057034x y x y +=⎧⎪⎨+=⎪⎩ D .30509057034x y x y +=⎧⎪⎨+=⎪⎩ 28.(2022·浙江衢州·统考中考真题)某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x 克,1节7号电池的质量为y 克,列方程组,由消元法可得x 的值为( )A .12B .16C .24D .2629.(2022·河北沧州·统考二模)解方程组3231x y x y +=⎧⎨-=⎩①②.(1)下面给出了部分解答过程:将方程②变形:2251x y y +-=,即()251x y y +-=③ 把方程①代入③得:… 请完成解方程组的过程;(2)若方程的3231x yx y+=⎧⎨-=⎩解满足034ax y<-<,求整数a的值.30.(2022秋·重庆九龙坡·九年级重庆市杨家坪中学校考期末)五一期间,璧山区丁家街道天天农家乐的草莓和枇杷相继成熟,为了吸引更多游客走进乡村,体验采摘乐趣,天天农家乐推出采摘草莓和采摘枇杷两种方式:采摘1公斤草莓的费用比采摘1公斤枇杷的费用多15元,采摘2公斤草莓和1公斤枇杷的费用共90元.(1)求采摘1公斤草莓和1公斤枇杷的费用分别是多少元?(2)根据去年采摘情况表明,平均每天采摘草莓30公斤,采摘枇杷20公斤.天天农家乐决定今年采摘枇杷的价格保持不变,采摘草莓的价格下调,采摘草莓的费用每降价3元,采摘草莓的数量会增加2公斤.天天农家乐要想平均每天的收益为1386元,请问采摘草莓每公斤应降价多少元?【必刷培优】一、单选题31.(2023·全国·九年级专题练习)方程组23x yx y+=⎧⎨+=⎩■的解为2xy=⎧⎨=⎩■,则被遮盖的前后两个数分别为()A.1、2 B.1、5 C.5、1 D.2、432.(2022春·山东德州·九年级校考阶段练习)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩33.(2022·河北石家庄·校联考三模)如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30 cm,两块竖放的墙砖比两块横放的墙砖高50 cm,则每块墙砖的截面面积是()A .400 cm 2B .600 cm 2C .800 cm 2D .900 cm 234.(2022·江苏盐城·统考三模)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设绳子长为x 尺,木头长为y 尺,根据题意所列方程正确的是( )A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩ D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩35.(2022·福建福州·福建省福州屏东中学校考一模)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则y x 的值为( )A .1B .8C .9D .-8二、填空题36.(2022·云南昆明·云大附中校考模拟预测)若1∠与2∠互补,3∠与1∠互余,23120∠+∠=︒,则21∠-∠=______. 37.(2022·重庆·重庆八中校考模拟预测)五一期间,商场为吸引顾客,每半小时进行一次现金抽奖活动,顾客只需要花a 元即可购买一张奖券,奖券面值有a 元,b 元,c 元三种(a b c <<且皆为整数).甲、乙、丙三人从下午两点至下午六点,一共参加了k 轮活动,每轮每人只能购买一张,且每轮三人刚好获得a 元,b 元,c 元奖券各一张.晚饭时,甲说:我今天赚了430元;乙说:我一次也没有抽到过c 元奖券,还有3次都是最小面值的,只赚了120元;丙说:我三种都抽到了,一共有360元奖券,赚了220元!则甲抽到了_______次c 元奖券.38.(2022·重庆·校考二模)“几处早莺争暖树,谁家春燕啄春泥”,阳春三月,春暖花开,某校决定组织该校七年级全部学生进行春游活动,需要租用甲、乙、丙三种不同型号的巴士出行.已知甲种巴士的载客人数是乙种巴士载客人数的2倍,丙种巴士每辆载客40人,且丙种巴士的载客人数不低于乙种巴士的载客人数,不超过甲种巴士的载客人数.现在学校预计租用甲、丙两种巴士共10辆及若干辆乙种巴士,这样七年级学生刚好能全部坐满每辆车,且乘坐乙种巴士和丙种巴士的有440人.结果在出发前若干学生因故不能参加春游活动,这样学校就可以少租1辆乙种巴士,且有一辆乙种巴士还空了5个位置(其余车辆仍是满载),这样乘坐甲种巴士和乙种巴士的共505人,则该校七年级有______学生.39.(2022·江苏扬州·校考三模)《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为__________.40.(2021·重庆綦江·校考三模)某水果批发商决定在今年5月份进购一批水果:苹果、菠萝、哈密瓜和葡萄.已知每件苹果的价格是每件菠萝价格的4倍,每件葡萄的价格是每件哈密瓜价格的32倍.另外,购进哈密瓜的件数是苹果件数的2倍,购进菠萝的件数是葡萄件数的3倍,且哈密瓜件数的2倍和菠萝件数的总和不超过600件.已知一件哈密瓜和一件菠萝的价格之和为40元,最后,购进四种水果的总费用为13200元,则今年5月份用于购进哈密瓜和葡萄的总费用的最大值为______元.41.(2021·四川成都·三模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m 的最小值为_________________.42.(2019·北京门头沟·统考中考模拟)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完:如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组________.三、解答题43.(2022·四川成都·四川省成都市七中育才学校校考模拟预测)随着全国疫情防控取得阶段性进展,各学校在做好疫情防控工作的同时积极开展开学准备工作.为方便师生返校后测体温,某学校计划购买甲、乙两种额温枪.经调研得知:购买1个甲种额温枪和2个乙种额温枪共需700元,购买2个甲种额温枪和3个乙种额温枪共需1160元. (1)求每个甲种额温枪和乙种额温枪各多少元;(2)该学校准备购买甲、乙两种型号的额温枪共50个;要求总费用不超过11750元,其中购买甲种额温枪不超过15个.请问学校有几种购买方案,哪一种方案费用最低,并求出最低费用.44.(2022·河南周口·周口市第一初级中学校考模拟预测)某校为活跃班级体育大课间,计划分两次购进一批羽毛球和乒乓球.第一次分别购进羽毛球和乒乓球30盒和15盒,共花费675元;第二次分别购进羽毛球和乒乓球12盒和5盒,共花费265元.若两次购进的羽毛球和乒乓球的价格均分别相同. (1)羽毛球和乒乓球每盒的价格分别是多少元?(2)若购买羽毛球和乒乓球共30盒,且乒乓球的数量少于羽毛球数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.45.(2022·重庆大渡口·重庆市第三十七中学校校考二模)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元. (1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a 元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的6a,而第三周草莓的销售总额为(6200100)a 元,求a 的值.46.(2022·河南洛阳·统考一模)新学期伊始,某文具店计划购进甲、乙两种书包.已知购进甲书包2个和乙书包1个共需140元;购进甲书包3个和乙书包2个的花费相同. (1)求甲、乙两种书包每个的进价分别是多少元?(2)文具店决定甲种书包以每个50元出售,乙种书包以每个80元出售,为满足市场需求,需购进甲、乙两种书包共100个,且甲种书包的数量不少于乙种书包数量的3倍,请你求出获利最大的进货方案,并确定最大利润.47.(2022·江苏淮安·统考中考真题)端午节前夕,某超市从厂家分两次购进A 、B 两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A 品牌粽子100袋和B 品牌粽子150袋,总费用为7000元;第二次购进A 品牌粽子180袋和B 品牌粽子120袋,总费用为8100元. (1)求A 、B 两种品牌粽子每袋的进价各是多少元;(2)当B 品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B 品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?48.(2022·广东韶关·校考三模)三个小球分别标有2-,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,……,这样一共摸了13次.若记下的13个数之和等于4-,平方和等于14.求这13次摸球中,摸到球上所标之数是0的次数.参考答案:1.B【详解】解:把21x y =⎧⎨=⎩代入二元一次方程组81mx ny nx my +=⎧⎨-=⎩得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩,32-=2,∴2故选:B .【点睛】本题考查了二元一次方程的解,解题的关键是掌握加减消元的思想.2.B【分析】首先解方程组,利用k 表示出x 、y 的值,然后代入5x y +=,即可得到一个关于k 的方程,求得k 的值.【详解】解:21254x y k x y k +=-⎧⎨+=+⎩①② , 由⨯②2-①得399x k =+,解得33x k =+,把33x k =+代入①得3321k y k ++=-,解得2y k =--.5x y +=,3325k k ∴---=,解得2k =.故选B .【点睛】本题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.正确解关于x 、y 的方程组是关键.3.D【分析】将12x y =⎧⎨=⎩代入81mx ny nx my -=⎧⎨+=⎩,得到关于m ,n 的方程组,再用代入消元法求解方程组,得到m ,n 的值,即可求得43m n +的值,再根据立方根的定义即可求解.【详解】解:12x y =⎧⎨=⎩是二元一次方程组81mx ny nx my -=⎧⎨+=⎩的解2821m n n m -=⎧∴⎨+=⎩①② 由①得82m n =+,将82m n =+代入②,得()2821n n ++=,解得3n =-,将3n =-代入82m n =+,得()823=2m =+⨯-,()43=4233=-1m n ∴+⨯+⨯-,1-的立方根为1-,43m n ∴+的立方根为1-,故选:D .【点睛】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法、立方根的求法是解题的关键.4.C【分析】利用代入消元法计算得到结果,即可作出判断.【详解】解:解二元一次方程组253x y y x -=⎧⎨=+⎩①②,把②代入①, 则结果正确的是2(3)5x x -+=,故选:C .【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.5.D【分析】把第一个方程变形为y =﹣3x -1,代入3y =2x +19,求出x 的值,再把x 的值代入y =﹣3x -1,得到y 的值,即可得到方程组的解.【详解】解:3103219x y y x ++=⎧⎨=+⎩①② 由①得y =﹣3x -1③把③代入②得3(﹣3x -1)=2x +19解得x =﹣2把x =﹣2代入③得y =﹣3×(﹣2)-1=5∴原方程组的解是25x y =-⎧⎨=⎩ 故选:D【点睛】此题考查了二元一次方程组的解法,利用代入消元法或加减消元法将方程组转化成一元一次方程是解题的关键.6.D【分析】先求出二元一次方程组的解,然后代入代数式求解即可.【详解】解:解方程组2143221x y x y +=⎧⎨-+=⎩得112x y =⎧⎨=⎩因为二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x a y b=⎧⎨=⎩, 所以a =1,b =12,所以a +b =13.故选D .【点睛】题目主要考查解二元一次方程组,求代数式的值,熟练掌握解二元一次方程组的方法是解题关键.7.C【分析】先仿照已知方程组的解建立一个新的方程组,再解新的方程组即可.【详解】解:∵233345x y x y -=⎧⎨-=⎩ 的解是31x y =⎧⎨=⎩, ∴由方程组()()()()22133133214315x y x y ⎧+--=⎪⎨+--=⎪⎩可得:213311x y +=⎧⎨-=⎩, 解得123x y =⎧⎪⎨=⎪⎩. 故选:C .【点睛】本题考查了二元一次方程组的解,以及解二元一次方程组,利用了类比的方法,熟练掌握方程组的解法是解答本题的关键.8.A【分析】先根据题意方程组,得到xy =2,x 2+y 2=5;在根据完全平方公式,得出(x+y )2=9;再得到x ,y 的值,代入即可得到.【详解】根据方程组22227{3x y xy x y xy ++=+-= ; 得到225{2x y xy +== , 从而解得312431242211{{{,{1122x x x x y y y y =-===-=-===-,, ;将以上x 和y 的值代入20222022x y +,当112{1x y ==,20222022x y +=2022202220222+1=2+1 ; 当221{2x y ==,20222022x y +=20222+1 , 当332{,1x y =-=-20222022x y +=20222+1;当441{2x y =-=-,20222022x y +=20222+1;故答案为:A【点睛】本题考查了二元一次方程组的解法的拓展,二元二次方程组,解题的关键是熟悉并灵活应用二元一次方程组的方法,用到整体代入思想,以及完全平方公式.9.A【分析】利用关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩得到关于m ,n 的方程组,从而求出m 、n 即可.【详解】解:∵关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩, 把关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩看作是关于(m −n )和(m +n )的二元一次方程组, ∴23m n m n -=⎧⎨+=-⎩, 解得:1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩, 故选:A .【点睛】此题考查了二元一次方程组的解及解二元一次方程组,利用了类比的方法,弄清题中方程组解的特征是解本题的关键.10.A【分析】由两式相减,得到3x y k +=-,再根据x 与 y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得3x y k +=-,根据题意得:35k -≥,解得:8k ≥.所以k 的取值范围是8k ≥.故选:A .【点睛】本题考查二元一次方程组、不等式,将两式相减得到x 与y 的和是解题的关键.11.A【分析】仿照已知方程组的解确定出所求方程组的解即可.【详解】解:∵()()11122211a x b y c a x b y c ⎧--=⎪⎨--=⎪⎩变形为()()()11122211a x b y c a x b y c ⎧-+-=⎪⎨-+-=⎪⎩() 又∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解32x y =⎧⎨=⎩. ∴方程组()()()11122211a x b y c a x b y c ⎧-+-=⎪⎨-+-=⎪⎩()的解满足132x y -=⎧⎨-=⎩ ∴42x y =⎧⎨=-⎩故选A .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值,熟练掌握换元思想是解本题的关键.12.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得, 315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ∵点P (a ,b )总在直线y =x 上方,∴b >a , ∴731155k k +>--,解得k >-1,故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解.13.C【分析】根据题意可得等量关系:①学生人数25-=⨯组数;②学生人数36+=⨯组数,根据等量关系列出方程组即可.【详解】解:设运动员人数为x 人,组数为y ,则根据题意所列方程组为5263y x y x =-⎧⎨=+⎩, 故选:C【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键是根据等量关系列出方程.14.A【分析】根据题意可得,甲的钱+乙所有钱的一半50=,乙的钱+甲所有钱的2503=,据此列方程组可得. 【详解】解:根据题意得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.15.A【分析】根据“如果每车坐三个人,则还剩余二辆车没有人坐;如果每车坐二人,则有9人需要步行”可列出关于x 、y 的二元一次方程组即可.【详解】解:根据题意, 可得()192123y x x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 故选:A .【点睛】本题主要考查了二元一次方程组的应用,解题关键是找准等量关系,正确列出二元一次方程组.16.(1)购进A 型服装45件,购进B 型服装30件(2)服装店比按标价出售少收入1410元【分析】(1)设购进A 型服装x 件,B 型服装y 件,根据“某服装店用5700元购进A ,B 两种新式服装,按标价售出后可获得毛利润3600元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用少收入的钱数=每件A 型服装少挣的钱数×销售数量+每件B 型服装少挣的钱数×销售数量,即可求出结论.【详解】(1)设购进A 种服装x 件,购进B 种服装y 件,根据题意得:()()601005700100601601003600x y x y +=⎧⎨-+-=⎩, 解得:4530x y =⎧⎨=⎩ 答:购进A 型服装45件,购进B 型服装30件;(2)100(10.9)45160(10.8)30⨯-⨯+⨯-⨯1000.1451600.230=⨯⨯+⨯⨯=450+9601410=(元).答:服装店比按标价出售少收入1410元.【点睛】本题考查了二元一次方程组的应用以及有理数的混合运算,找准等量关系,正确列出二元一次方程组是解题的关键.17.(1)羊腿和羊排的售价分别是38元,40元(2)超市老板应该购进120斤羊腿,60斤羊排,才能使得这批羊肉卖完时获利最大,最大利润是1200元【分析】(1)根据题意可以列出二元一次方程组,解方程组即可求出羊腿和羊排的售价;(2)设购进羊腿x 斤,这批羊肉卖完时总获利为w 元,根据题意得出w 与x 的函数关系式,再根据一次函数的性质解答即可.【详解】(1)解:设羊腿的售价每斤为a 元,羊排的售价每斤为b 元,根据题意,得:432722116a b a b +=⎧⎨+=⎩, 解得3840a b =⎧⎨=⎩, 答:羊腿和羊排的售价分别是38元,40元;(2)解:设购进羊腿x 斤,这批羊肉卖完时总获利为w 元,根据题意,得:120x ≥,()6818021440w x x x =+-=-+,20-<,w ∴随x 的增大而减小,∴当120x =时,w 有最大值,212014401200w =-⨯+=最大,此时,18012060(-=斤),答:超市老板应该购进120斤羊腿,60斤羊排,才能使得这批羊肉卖完时获利最大,最大利润是1200元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.18.(1)22800a b ==,(2)22800(0300)32500(300)x x y x x +≤≤⎧=⎨+>⎩,月总收入不低于5200元时,每月至少要送餐900单.【分析】(1)根据月工资=基本工资+奖金工资,列二元一次方程组即可解出a 、b 的值,。

2024中考数学总复习冲刺专题:手拉手模型(全等与相似)通用版

2024中考数学总复习冲刺专题:手拉手模型(全等与相似)通用版

《“手拉手”模型常用结论的证明及应用》手拉手模型,也叫整体旋转法,是中考最重要的模型之一,全国一年176套中考卷中,有40%的卷子考到此模型。

手拉手模型分为“全等手拉手”和“相似手拉手”,在解决手拉手模型的问题时,需要灵活运用全等三角性和相似三角形的性质与判定方法,以及轴对称的性质和判定方法来进行证明。

同时,还需要掌握基本的手拉手模型形式及其变形情况,才能更好的解决相关问题。

一、教学目标知识与技能:了解手拉手模型的组成条件,探究“全等手拉手”模型和“相似手拉手”模型的常用结论,会利用手拉手模型来解决几何问题;过程与方法:在探究手拉手模型常用结论的过程中,培养分析问题、解决问题的能力,培养模型思想;情感态度与价值观:养成主动探索、获取知识的习惯,感受探索的乐趣和成功的体验,激发学生学好数学的愿望和信心.二、重点难点重点:探索全等手拉手模型、相似手拉手模型的常用结论;难点:利用旋转、全等、相似等知识解决手拉手模型的相关问题.三、教学过程(一)全等手拉手模型精典例题例1:如图,在线段BD上取一点A,在同侧作等边△ABC和等边△ADE,连接BE、CD,求证:(1)△ABE≌△ACD;(2)BE=CD;(3)△AFB≌△AGC;(4)△AFE≌△AGD;(5)△AFG是等边三角形;(6)∠COB=∠CAB;(7)OA平分∠BOD;(8)FG//BD.例2:如图,已知正方形ABCD和正方形DEFG有公共顶点D,连接AG,CE,相交于点H.求证:(1)△ADG≌△CDE;(2)AG⟂CE;(3)HD平分∠AHE;(4)AC2+EG2=AE2+CG2.跟踪练习1.(2022秋•界首市校级月考)如图,AB=AC,AD=AE,∠BAC=∠DAE,∠BAD=30°,∠ACE=25°,则∠ADE的度数为()A.50°B.55°C.60°D.65°2.(2023秋•江阳区校级月考)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.43.(2020春•富县期末)如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE 的度数.4.(2019秋•新都区期末如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.(二)相似手拉手模型精典例题例3:如图,已知△ABC∽△ADE,求证:(1)△ABD∽△ACE;(2)∠BFC=∠BAC.跟踪练习1.如图,四边形ABCD中,AB=3,BC=2,AC=AD,∠ACD=60°,则对角线BD长的最大值为()A.5B.2C.2D.12.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A.5B.5.5C.6D.73.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并把它们的底角顶点连接起来,形成一组全等的三角形,那么把具有这个规律的图形称为“手拉手”图形.(1)如图1,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,则有△BAD≌.(2)如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一条直线上,连接CE,试探究线段BE,CE,DE之间的数量关系,并说明理由.(3)如图3,△ABC为等腰直角三角形,∠BAC=90°,∠AEC=135°,求证:BE⊥CE.(三)手拉手综合题例5:(2019•玄武区一模)如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则=()A.B.C.D.例6:(2022•深圳中考)已知△ABC是直角三角形,∠ABC=90°,AB=3,BC=5,AE =2,连接CE,以CE为底作直角三角形CDE,且CD=DE.F是AE边上的一点,连接BD和BF,且∠FBD=45°,则AF长为.跟综练习1.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.2.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).四、教学反思本节课从全等手拉手模型、相似手拉手模型、手拉手综合题三个模块进行探索,题目从易到难,每个模块都有两个精典例题,2-4道跟综练习。

最新精编中考数学15大专题总复习汇总(共计181页)

最新精编中考数学15大专题总复习汇总(共计181页)

16.比较大小:3________ 17.若 =2.449,
y=________. 18.比较大小: ﹣3________cos45° (填“>”“=”或“<”).
19.一个正数的平方根分别是 x+1 和 x﹣5,则 x=________. 20.化简( -1)0+( )-2+ =________. =0,则以 x,y 的值为两边长的等腰三角形的周长是
a=± 3,再根据二次根式的性质得出 B 的值,通过比较即可得出答案。 11.【答案】B 【解析】 A、∵ B、∵﹣|﹣ |=﹣ ,∴5 和 ,﹣(﹣ )= 两数相等,故此选项不符合题意; ,∴ 和 是互为相反数,
故此选项符合题意; C、∵﹣ D、∵﹣5 和 故答案为:B. 【分析】分别化简各项中的不最简数,然后根据相反数的定义判断. 12.【答案】D 【解析】 根据题意,得: (舍去), A. B. C.方程 D. 是无理数,故不符合题意. 是实数,实数和数轴上的点是一一对应的, 的解是: 不是 可以在数轴上表示,故不符合题意. =﹣2 和 =﹣2,∴ 和 两数相等,故此选项不符合题意;
.
Hale Waihona Puke ,故此数据不合题意; ,故此数据不合题意;
=0,故此数据符合题意;
,0,2 时代入二次根式,计算出结果,能开得尽方的
∴b<c<a,
∴a、b、c 中最小的数是 b. 故答案为:B. 【分析】分数越大则和它相乘的字母所代表的数就越小. 10.【答案】A 【解析】 由题意得 a= ,B=3, a=± B ,故答案为:A.【分析】根据平方根的定义得出
D.0 是整数,属于有理数,D 不符合题意; 故答案为:A. 【分析】无理数:无限不循环小数,由此即可得出答案. 2.【答案】A 【解析】 :∵22=2,(-2)2=4,∴4 的平方根是± 2. 故答案为:A. 【分析】平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根,由此即可得出答 案. 3.【答案】C 【解析】 :4= 与 , ,

2024年中考数学常见几何模型全归纳(全国通用)专题03 三角形中的倒角模型(原卷版)

2024年中考数学常见几何模型全归纳(全国通用)专题03 三角形中的倒角模型(原卷版)

专题03三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型近年来各地中考中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题“8”字模型、“A”字模型与三角板模型进行梳理及对应试题分析,方便掌握。

模型1、“8”字模型图1图28字模型(基础型)条件:如图1,AD、BC相交于点O,连接AB、CD;结论:①A B C D。

;②AB CD AD BC8字模型(加角平分线)条件:如图2,线段AP平分∠BAD,线段CP平分∠BCD;结论:2∠P=∠B+∠D33例4.(2023春·广东深圳·七年级统考期末)定理:三角形任意两边之和大于第三边.(1)如图1,线段AD ,BC 交于点E ,连接AB ,CD ,判断AD BC 与AB CD 的大小关系,并说明理由;(2)如图2,OC 平分AOB ,P 为OC 上任意一点,在OA ,OB 上截取OE OF ,连接PE ,PF .求证:PE PF ;(3)如图3,在ABC 中,AB AC ,P 为角平分线AD 上异于端点的一动点,求证:PB PC BD CD .(1)直接利用上述基本图形中的任意一种,解决问题:如图2,AP 、CP 分别平分BAD 、 (2)将图2看作基本图形,直接利用(1)中的结论解决下列问题:①如图3,直线AP 平分BAD 的外角 P 的度数.②在图4中,AP 平分BAD D 的关系(直接写出结果,无需说明理由)模型2、“A”字模型A.180 B.例4.(2023秋·广西·八年级专题练习)如图所示,DAE 的两边上各有一点,B C ,连接BC ,求证180DBC ECB A .例5.(2023·广东八年级课时练习)如图,已知在ABC 中,40A ,现将一块直角三角板放在ABC 上,使三角板的两条直角边分别经过点,B C ,直角顶点D 落在ABC 的内部,则ABD ACD ∠∠().A .90B .60C .50D .40例6.(2023秋·河南信阳·八年级校联考期末)(1)如图1,ABC 为直角三角形,90A ,若沿图中虚线剪去A ,则12 __________;(2)如图2,在ABC 中,40A ,剪去A 后成为四边形,则12 __________;(3)如图2,根据(1)和(2)的求解过程,请归纳12 与A 的关系是______________;(4)若没有剪去A ,而是将A 折成如图3的形状,试探究12 与A 的关系,并说明理由.模型3、三角板模型【模型解读】由一副三角板拼凑出的几个图形我们称他们为三角板模型。

2024年中考数学常见几何模型全归纳(全国通用)专题39 重要的几何模型之中点模型(二)(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题39 重要的几何模型之中点模型(二)(解析版)

专题39重要的几何模型之中点模型(二)中点模型是初中数学中一类重要模型,它在不同的环境中起到的作用也不同,主要是结合三角形、四边形、圆的运用,在各类考试中都会出现中点问题,有时甚至会出现在压轴题当中,我们不妨称之为“中点模型”,它往往涉及到平分、平行、垂直等问题,因此探寻这类问题的解题规律对初中几何的学习有着十分重要的意义。

常见的中点模型:①垂直平分线模型;②等腰三角形“三线合一”模型;③“平行线+中点”构造全等或相似模型(与倍长中线法类似);④直角三角形斜边中点模型;⑤中位线模型;⑥中点四边形模型。

本专题就中点模型的后三类模型进行梳理及对应试题分析,方便掌握。

模型1:直角三角形斜边中线模型定理:直角三角形斜边上的中线等于斜边的一半.如图1,若AD为Rt ABC△斜边上的中线,则:(1)12AD BCBD DC;(2)ABD△,ACD△为等腰三角形;(3)2ADB C,2ADC B.DCBAMMAB CDAB CD图1图2拓展:如图2,在由两个直角三角形组成的图中,M为中点,则(1)AM MD;(2)2AMD ABD.模型运用条件:连斜边上的中线(出现斜边上的中点时)【答案】3【分析】根据直角三角形的性质得到即可求出DE.【详解】解:∵∠ACB=90°,点【答案】252/12.5【分析】本题考查了直角三角形的性质、等腰三角形的性质、三角形外角的定义及性质、三角形的面积,由直角三角形斜边上的中线等于斜边的一半可得BAM ABM,A.3【答案】A【分析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知度最大,即可求解.BA.BE BC【答案】C【分析】由旋转的性质可得可证BCE是等边三角形,【详解】解:∵将ABC 绕点C 按顺时针方向旋转一定角度后得到DEC ,∴AC CD ,BC CE ,AB DE ,60BCE ACD ,30ACB DCE ,∴BCE 是等边三角形,∴BE BC ,故A 正确,不符合题意;∵90ABC ,30ACB ,点F 是边AC 的中点,∴60BAC ,AF FC BF ,∴ABF △是等边三角形,∴AB AF BF CF DE ,在ABC 和CFD △中,AC DC BAC FCD AB CF,∴(SAS)ABC CFD ≌,∴BC DF ,90DFC ABC ,30CDF ACB ,故B 正确,不符合题意;∴BE BC DF ,BF DE ,∴四边形BEDF 是平行四边形,故D 正确,不符合题意;∵30GCF DCF DCE ,∴2CG GF ,∵30CDF ACB GCD ,∴2CG DG GF ,故C 不正确,符合题意;故选:C .【点睛】本题考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用各知识点是解题的关键.模型2:中位线模型三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

2024中考数学总复习冲刺专题:《作平行线构造相似三角形》通用版

2024中考数学总复习冲刺专题:《作平行线构造相似三角形》通用版

《作平行线构造相似三角形》一、知识技能梳理相似三角形是初中数学中重要的内容,应用广泛:可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。

作平行线构造成比例线段及相似三角形是常见的添加辅助线的规律,其本质是构造“A ”型或“X ”型图形。

二、学习过程模块一:作平行线构造双A 型例1.如图,在△ABC 中,点D 、E 分别在BC 、AC 上,且BD=DC ,31=AC AE ,求FDAF的值。

解法1:过点D 作DG ∥BE ,交AC 于点G易证1==BD CDEG CG ,设CD=EG=m ,则EC=2m 又AC AE 31=∴mEG AE ==∴1==EGAEFD AF 解法2:过点E 作EG ∥AD ,交BC 于点G易证32==AC EC AD EG ,设EG=4m ,则AD=6m 又BD DG DC DG ==31∴43==BG BD EG FD ∴m EG FD 343==∴mFD AF 3==∴1=FDAF例2.如图,E 是AC 的中点,直线EH 交AD 于点H ,交CD 的延长线于点B ,且BC=3BD 。

求DHAH的值。

解法1:过点E 作AD 的平行线过点E 作EN ∥AD 交CD 于点N 易得△CEN ∽△CAD ,△BDH ∽△BNE ∴21===CD CN AD EN CA CE ∵BC=3BD,∴DN CD BD ==21∴21==BN BD EN DN ∴41221EN EN AD DH =∴3=DHAH解法2:过点A 作BE 的平行线过点A 作AQ ∥BE 交CB 的延长线于点Q ∴1,===BQBCAE CE BD BQ AD AH ∵BC=3BD ,∴BDBC BQ 3==∴3=DHAH练习11.如图,点O 是四边形ABCD 对角线AC 、BD 的交点,∠BAD 与∠ACB 互补,=,AD =6,AB =7,AC =5,则BC 的长为.【解答】解:过点O 作OM ∥AD 交AB 于M∴=,∴AM=×7=,BM=×7=,∵△BOM∽△BDA,∴,∴OM=,∵∠BAD+∠OMA=180°,∠BAD+∠ACB=180°,∴∠OMA=∠ACB,∴△AMO∽△ACB,∴,∴BC=2.如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D,若BF=3EF,则=()A.B.C.D.【解答】解:过点E作EH∥AD交BC于H,则=,∵BE是△ABC的中线,∴CE=EA,∴CH=HD,∵EH∥AD,∴==3,∴=,故选:B.3.如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.【解答】解:如图,过点D作DF∥AE,则==,∵=,∴DF =2EC ,∴DO =2OC ,∴DO =DC ,∴S △ADO =S △ADC ,S △BDO =S △BDC ,∴S △ABO =S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:4×2=4,此时△ABO 的面积最大为:×4=.故答案为:.模块二:作平行线构造双X 型例1.如图,在△ABC 中,点D 、E 分别在BC 、AC 上,且BD=DC ,31=AC AE ,求FDAF的值。

2024年中考数学常见几何模型全归纳(全国通用)专题04 三角形中的倒角模型(解析版)

2024年中考数学常见几何模型全归纳(全国通用)专题04 三角形中的倒角模型(解析版)

专题04三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。

模型1:高分线模型A .5B .8 【答案】C 【分析】依据直角三角形,即可得到BCE 数,再根据DCE BCD BCE 进行计算即可.【详解】解:50,B CE AB ∵,BCE【答案】(1)10 (2) 12DAE C B (3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ,根据角平分线的定义得到90ADE ,从而求出BAD ,继而根据角的和差得到结果;根据三角形内角和求出119022EAC B 1模型2:双垂直模型结论:①∠A=∠C;②∠B=∠AFD=∠CFE;③AB CD AE BC。

A.130【答案】A【分析】根据题意和直角三角形的两个锐角互余可求得【详解】解:∵BE是∵CD是AB边上的高,A .35B .34【答案】B【分析】根据三角形的高的性质,利用等积法求解即可.【详解】∵12ABC S AB CD 【点睛】本题考查与三角形的高有关的计算问题.【答案】(1)134 (2)152【分析】(1)数形结合,利用三角形内角和定理求解即可得到答案;(2)利用等面积法,由12ABC S BC△【详解】(1)解:∵CF AB ,∴CFB模型3:子母型双垂直模型(射影定理模型)结论:①∠B =∠CAD ;②∠C =∠BAD ;③AB AC AD BC 。

例1.(2023·广东广州·七年级校考阶段练习)如图,在ACB △中,90ACB ,CD AB 于D ,求证:B ACD .【答案】见解析【分析】根据CD AB 可得90ACB CDB ,再根据90B BCD BCD ACD ,即可求证.【详解】证:∵CD AB ,90ACB ∴90ACB CDB又∵180B CDB BCD ,∴90B BCD又∵90ACB BCD ACD ,∴90B BCD BCD ACD ∴B ACD【点睛】此题考查了三角形内角和性质的应用,解题的关键是熟练掌握三角形内角和的性质.例2.(2023·山东泰安·七年级校考阶段练习)如图,AD ,BF 分别是△ABC 的高线与角平分线,BF ,AD 交于点E ,∠1=∠2.求证:△ABC 是直角三角形.【答案】见解析【分析】根据AD 是△ABC 的高线,可得∠BED +∠EBD =90°,根据角平分线的定义可得∠ABE =∠EBD ,观察∠BED 与∠AEF 的位置,可知是一组对顶角,进而进行等量代换可得∠AEF +∠ABE =90°,至此结合已知不难得到∠AFE +∠ABE =90°,由此解题.【详解】证明:由题意得:AD ⊥BC ,BF 平分∠ABC ,∴∠BED +∠EBD =90°,∠ABE =∠EBD ,∴∠BED +∠ABE =90°,又∵∠AEF =∠BED ,∴∠AEF +∠ABE =90°,m 时,如图所示,求证:(1)若90说明理由;若不成立,请比较【答案】(1)见解析;【分析】(1)证明1802180CFE CEF m BCD m BCD m ,再分两种情况可得结论.【详解】(1)证明:∵AE 是角平分线,∴CAE BAE ,∵ 0180ACB CDB m m ,90m ,∴90ACB CDB ,∴90ACD BCD BCD B ,∴ACD B ,∵CFE ACD CAE ,CEF B BAE ,∴CFE CEF .(2)不成立.理由如下:∵CFE CAF ACF ,CEF B EAB ,CAE BAE ,∴CFE CEF ACF B ,∵ 0180ACB CDB m m ,∴ 1802180CFE CEF m BCD m BCD m 当90m 时,21800CFE CEF m ,∴CFE CEF ;当90m 时,21800CFE CEF m ,∴CFE CEF .【点睛】本题考查的是三角形的角平分线是含义,三角形的内角和定理的应用,三角形的外角的性质,不等式的性质,熟记三角形的外角的性质是解本题的关键.A.1B.2【答案】B【分析】连接BD,由垂直平分线得求得2CD .【点睛】本题考查垂直平分线的性质,三角形内角和定理,平分线导出角之间关系是解题的关键.2.(2023秋·浙江·八年级专题练习)()则ABCA.50 B【答案】B,那么【分析】设CA.10【答案】C【分析】根据题意证明ACD 的面积等于ABD △的面积;②CEG CGE ;③2ACF ABE ;④AH BH .A .①②③④B .①②③C .②④D .①③【答案】B 【分析】①根据三角形中线平分三角形的面积,即可判断ACD 的面积等于ABD △的面积;②先根据同角的余角相等证得CAB BCG ,再根据角平分线的定义得出ABE CBE ,最后根据三角形外角的性质得出CEG CAB ABE ,CGE CBE BCG ,即可得证;③先根据同角的余角相等证得ACF CBF 再根据角平分线的定义得出2CBF ABE ,于是推出2ACF ABE ;④无法证得AH =BH .【详解】解:∵AD 是ABC 的中线,∴CD BD ,∴ACD 的面积等于ABD △的面积,故①正确;∵BE 是ABC 的角平分线,∴ABE CBE ,∵CF 是ABC 的高线,∴90CFA ,∴90CAB ACF ,∵90ACB ,∴90ACF BCG ,∴CAB BCG ,∵CEG 是ABE 的一个外角,∴CEG CAB ABE ,∵CGE 是BCG 的一个外角,∴CGE CBE BCG ,∴CEG CGE ,故②正确;∵CF 是ABC 的高线,∴90CFB ,∴90CBF BCF ,∵90ACB ,∴90ACF BCF ,∴ACF CBF ,∵BE 是ABC 的角平分线,∴2CBF ABE ,∴2ACF ABE ,故③正确;无法证得AH =BH ,故④错误;故正确的有①②③故选∶B .【点睛】本题考查了三角形的面积,三角形外角的性质,同角的余角相等,角平分线的定义,熟练掌握这些性质是解题的关键.5.(2023·湖北十堰·八年级统考期末)如图,在ABC 中,BAC 90=,6AB =,AC 8=,BC 10=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面结论:ABE ①的面积=BCE △的面积;AFG AGF =②;FAG ACF 2=③;.AD 24=④.其中结论正确的是()A .①②B .①②④【答案】C 【分析】根据三角形角平分线和高的性质可确定角之间的数量关系;根据三角形的中线和面积公式可确定ABE △和BCE △的面积关系以及求出【详解】解:BE ∵是ABC 的中线【答案】6【分析】过点G 作MG BF FBC BDE ,再由垂直及等量代换得出∵AB AC ,45A ,DE ∴67.5ABC C ,BDE ∴FBC ABC ABF ∵MG BF ,NM ED ,∴【答案】50或25/25或50【分析】根据三角形内角和定理得ABC∴②当90BDE 时,如图2,∴902565BED ,∵BED C CDB ,∴654025CDE ,综上,CDE 的度数为50 或25 .故答案为:50或25.【点睛】本题考查的是直角三角形的两锐角互余,三角形外角的性质,熟知“三角形的外角的性质题的关键.(1)给出下列信息:事项作为条件,余下的事项作为结论,构造一个真命题,并给出证明;条件:______,结论:证明:(2)在(1)的条件下,若(1)如果70CFE ,求B 的度数;(2)试说明:CEF CFE .【答案】(1)50 (2)见解析【分析】(1)根据三角形内角和可得CAF 的度数,根据角平分线的定义可得CAB 的度数,根据直角三角形的性质可得B 的度数;(2)根据直角三角形的两锐角互余可得90CAF CFE ,90DAE AED ,根据角平分线的定义可得CAF DAE ,从而可得CFE AED ,即可得证.【详解】(1)解:90ACB ∵,70CFE ,180907020CAF ,AF ∵平分CAB 交CD 于E ,240CAB CAF ,904050B ;(2)证明:90ACB ∵,90CAF CFE ,CD AB ∵,90ADE ,90DAE AED ,AF ∵平分CAB 交CD 于E ,CAF DAE ,CFE AED ,AED CEF ∵,CEF CFE .【点睛】本题考查了直角三角形的性质,三角形内角和定理,角平分线的定义,熟练掌握直角三角形的性质是解题的关键.10.(2023秋·浙江·八年级专题练习)对于下列问题,在解答过程的空白处填上适当的内容(理由或数学式).如图.在直角ABC 中,CD 是斜边AB 上的高,35BCD .(1)求EBC 的度数;(2)求A 的度数.解:(1)CD AB ∵(已知),CDB ______°,EBC CDB BCD ∵(______),EBC ______°35 ______°(等量代换),(2)EBC A ACB (______),A EBC _____(等式的性质),90ACB ∵(已知),A ______90 ______°(等量代换).【答案】(1)90;三角形的一个外角等于与它不相邻的两个内角和;90;125(2)三角形的一个外角等于与它不相邻的两个内角和;ACB ;125 ;35【分析】(1)根据三角形外角的性质和等量代换进行作答即可;(2)根据三角形外角的性质和等量代换进行作答即可.【详解】(1)解:(CD AB ∵已知),90CDB ,(EBC CDB BCD ∵三角形的一个外角等于与它不相邻的两个内角和).9035125(EBC 等量代换).(2)(EBC A ACB ∵三角形的一个外角等于与它不相邻的两个内角和),(A EBC ACB 等式的性质).90(ACB ∵已知),1259035(A 等量代换).【点睛】本题考查三角形的外角.熟练掌握三角形的一个外角等于与它不相邻的两个内角和,是解题关键.11.(2023·广东中山·八年级校联考期中)如图,在ABC 中,90ACB ,CD AB 于点D ,E 为AB 上一点,AC AE(1)求证:CE 平分DCB ;(2)若CE EB ,求证:3BD AD .【答案】(1)见解析(2)见解析【分析】(1)证明90DCE CED ,90BCE ACE ,再证明CED ACE ,从而可得结论;(2)先证明B BCE ,30B DCE BCE 可得9030ACD DCE BCE ,2AC AD ,24AB AC AD ,从而可得结论.【详解】(1)证:在Rt CDE △中,90DCE CED在Rt ABC △中,90BCE ACE∵AC AE ,∴CED ACE ,∴DCE BCE ,∴CE 平分DCB ;(2)∵CE BE ,∴B BCE∵在Rt CDE △中,90B BCD ,而BCD DCE BCE∴30B DCE BCE∴9030ACD DCE BCE∵在Rt ACD △中,30ACD∴2AC AD∵在Rt ABC △中,30B∴24AB AC AD ,∴3BD AB AD AD .【点睛】本题考查的是三角形的内角和定理的应用,角平分线的定义,等腰三角形的性质,熟练的证明并求解30B DCE BCE 是解本题的关键.12.(2023·浙江温州·八年级校考阶段练习)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E ,(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =1,求AB 的长.【答案】(1)证明见解析(2)AB =4【分析】(1)依据∠ACB =90°,CD ⊥AB ,即可得到∠ACD =∠B ,再根据CE 平分∠BCD ,可得∠BCE =∠DCE ,进而得出∠AEC =∠ACE ;(2)依据∠ACD =∠BCE =∠DCE ,∠ACB =90°,即可得到∠ACD =30°,进而得出Rt △ACD 中,AC =2AD =2,Rt △ABC 中,AB =2AC =4.【详解】(1)∵∠ACB =90°,CD ⊥AB ,∴∠ACD +∠A =∠B +∠A =90°,∴∠ACD =∠B ,∵CE 平分∠BCD ,∴∠BCE =∠DCE ,∴∠B +∠BCE =∠ACD +∠DCE ,即∠AEC =∠ACE ;(2)∵∠AEC =∠B +∠BCE ,∠AEC =2∠B ,∴∠B =∠BCE ,又∵∠ACD =∠B ,∠BCE =∠DCE ,∴∠ACD =∠BCE =∠DCE ,又∵∠ACB =90°,∴∠ACD =30°,∠B =30°,∴Rt △ACD 中,AC =2AD =2,∴Rt △ABC 中,AB =2AC =4.【点睛】本题主要考查了三角形内角和定理与外角的性质、角平分线的定义、直角三角形30°角所对的直角边长度是斜边的一半,解题时注意:三角形内角和是180°,三角形外角等于不相邻两个内角的和.13.(2022秋·河南商丘·八年级统考阶段练习)如图,在ABC 中,AD AE 、分别是ABC 的角平分线和高线,ABC ,()ACB .(1)若35,55 ,则DAE _______;(2)小明说:“无需给出 、的具体数值,只需确定 与 的差值,即可确定DAE 的度数.”请通过计算验证小明的说法是否正确.(1)求DAE 的度数;(2)若【答案】(1)6DAE (2)【分析】(1)根据三角形内角和定理得出12BAE CAE BAC(1)如图1,在Rt ABC △中,90ACB ,(2)如图2,在ABC 中,CD 为ACB 的平分线,(3)在ABC 中,若50A ,CD 是ABC②当ACD 是等腰三角形,∴6550ACB③当BCD △是等腰三角形,∴13013033ACB ④当BCD △是等腰三角形,设BDC BCD x 由三角形的外角性质得:综上,ACB 的度数为【点睛】本题主要考查了等腰三角形的判定与性质、三角形的内角和定理等知识点,较难的是题(确分四种情况讨论是解题关键.16.(2023·安徽安庆·1【答案】(1)20 (2)20【分析】(1)现根据三角形的内角和得到60BAC ,然后利用角平分线得到形的两锐角互余得到10BAD ,计算解题即可;(2)过点DAE HPE ,再根据(1)的计算结果得到答案.【详解】(1)解:∵8040B C ,,【点睛】本题考查三角形的内角和定理,角平分线的性质,直角三角形的两锐角互余,平行线的性质,掌握三角形的内角和定理是解题的关键.18.(2023春·陕西咸阳·八年级统考期中)如图,在ABC 中,90BAC ,AD BC 于点D ,BF 平分ABC 交AD 于点E ,交AC 于点F ,求证:AE AF .【答案】见解析【分析】BF 平分ABC 可得ABF CBF ,再结合90,BAC AD BC 可得90ABF AFB CBF BED ,进而得到AFB BED ,再结合AEF BED 可得AFE AEF ,最后根据等角对等边即可解答.【详解】解:∵BF 平分ABC ,∴ABF CBF ,∵90,BAC AD BC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(通用版)中考数学总复习专题全汇总专题一五大数学思想方法类型一分类讨论思想(2018·临沂中考)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】 (1)先判定四边形BDFA是平行四边形,可得FD=AB,再根据AB=CD,即可得出FD=CD;(2)当GC=GB时,点G在BC的垂直平分线上,分情况讨论,即可得到旋转角α的度数.【自主解答】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.1.(2018·宿迁中考)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A.5 B.4 C.3 D.22.(2018·随州中考)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元) 7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?类型二数形结合思想(2018·齐齐哈尔中考)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(km)和行驶时间t(min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________ km,大客车途中停留了________ min,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速 80 km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.【分析】 (1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a 的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后大客车行驶的路程,从而可得结论;(3)先计算直线CD 的解析式,计算小轿车驶过景点入口6 km 时的时间,再计算大客车到达终点的时间,根据路程与时间的关系可得小轿车行驶6 km 的速度与80 km/h 作比较可得结论.(4)利用路程÷速度=时间计算出大客车所用时间,计算与小轿车的时间差即可. 【自主解答】把问题中的数量关系与形象直观的几何图形有机地结合起来,并充分利用这种结合寻找解题的思路,使问题得以解决.3.(2018·大庆中考)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),点B(3,0),点C(4,y 1),若点D(x 2,y 2)是抛物线上任意一点,有下列结论: ①二次函数y =ax 2+bx +c 的最小值为-4a ; ②若-1≤x 2≤4,则0≤y 2≤5a; ③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确结论的个数是( )A .1B .2C .3D .44.(2018·苏州中考)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx 在第一象限内的图象经过点D 交BC 于点E.若AB =4,CE =2BE ,tan∠AOD=34,则k 的值为( )A .3B .2 3C .6D .125.(2018·上海中考)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写自变量的取值范围)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?类型三 转化与化归思想(2017·江西中考)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长; (2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt△ABC 中利用三角函数即可直接求解;(2)延长FE 交DG 于点I ,利用三角函数求得∠DEI 即可求得β的值,从而作出判断. 【自主解答】把一种数学问题合理地转化成另一种数学问题可以有效地解决问题.在解三角形中,将非直角三角形问题转化为解直角三角形问题,把实际问题转化为数学问题等.6.(2018·山西中考)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积是( )A.4π-4 B.4π-8 C.8π-4 D.8π-87.(2018·黄冈中考)则a-1a=6,则a2+1a2值为______.8.(2018·白银中考)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A 地到B地的路程.已知∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将缩短约多少公里?(参考数据:3≈1.7,2≈1.4)类型四 方程思想(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时, 求证:∠PBD=∠DAB; (2)求证:BC 2-CE 2=CE·DE;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【分析】 (1)由AB 是⊙O 的直径知∠BAD+∠ABD=90°,由PB 是⊙O 的切线知∠PBD+∠ABD =90°,据此可得证;(2)连接OC ,设圆的半径为r ,证△ADE∽△CBE,由AC ︵=BC ︵知∠AOC=∠BOC=90°,再根据勾股定理即可得证;(3)先求出BC ,CE ,再根据BC 2-CE 2=CE·DE 计算可得. 【自主解答】在解决数学问题时,有一种从未知转化为已知的手段就是设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化.9.(2018·白银中考)若正多边形的内角和是1 080°,则该正多边形的边数是________.10.(2018·上海中考)如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F 分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.类型五函数思想(2017·杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数解析式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【自主解答】在解答此类问题时,建立函数模型→求出函数解析式→结合函数解析式与函数的性质作出解答.要注意从几何和代数两个角度思考问题.11.(2018·桂林中考)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数解析式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案类型一【例1】 (1)如图1,连接AF.由四边形ABCD是矩形,结合旋转可得BD=AF,∠EAF=∠ABD.∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,∴四边形BDFA是平行四边形,∴FD=AB.∵AB=CD,∴FD=CD.(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,易知点G也是AD的垂直平分线上的点,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.如图3,当点G位于BC的垂直平分线上,且在BC的左边时,连接CG,B G,DG,同理,△ADG是等边三角形,∴∠DAG=60°,此时α=300°.综上所述,当α为60°或300°时,GC =GB. 变式训练 1.C2.解:(1)设p 与x 之间的函数关系式为p =kx +b , 代入(1,7.5),(3,8.5)得⎩⎪⎨⎪⎧k +b =7.5,3k +b =8.5,解得⎩⎪⎨⎪⎧k =0.5,b =7, 即p 与x 的函数关系式为p =0.5x +7(1≤x≤15,x 为整数). 当1≤x<10时,W =[20-(0.5x +7)](2x +20)=-x 2+16x +260. 当10≤x≤15时,W =[20-(0.5x +7)]×40=-20x +520,即W =⎩⎪⎨⎪⎧-x 2+16x +260(1≤x<10,x 为整数),-20x +520(10≤x≤15,x 为整数).(2)当1≤x<10时,W =-x 2+16x +260=-(x -8)2+324, ∴当x =8时,W 取得最大值,此时W =324. 当10≤x≤15时,W =-20x +520, ∴当x =10时,W 取得最大值,此时W =320.∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元. (3)当1≤x<10时,令-x 2+16x +260=299,得x 1=3,x 2=13, 当W >299时,3<x <13.∵1≤x<10,∴3<x <10.当10≤x≤15时, 令W =-20x +520>299,得x <11.05,∴10≤x≤11.由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为20×(11-3)=160(元).答:李师傅共可获得160元奖金. 类型二【例2】(1)由图形可得学校到景点的路程为40 km ,大客车途中停留了5min ,小轿车的速度为4060-20=1(km/min),a =(35-20)×1=15. 故答案为40,5,15.(2)由(1)得a =15,∴大客车的速度为1530=12(km/min).小轿车赶上来之后,大客车又行驶了(60-35)×107×12=1257(km),40-1257-15=507(km).答:在小轿车司机驶过景点入口时,大客车离景点入口还有507km.(3)设直线CD 的解析式为s =kt +b ,将(20,0)和(60,40)代入得⎩⎪⎨⎪⎧20k +b =0,60k +b =40,解得⎩⎪⎨⎪⎧k =1,b =-20, ∴直线CD 的解析式为s =t -20. 当s =46时,46=t -20,解得t =66.小轿车赶上来之后,大客车又行驶的时间为40-1512×107=35(min),小轿车司机折返时的速度为6÷(35+35-66)=32(km/min)=90 km/h >80km/h.答:小轿车折返时已经超速.(4)大客车的时间:4012=80(min),80-70=10(min).故答案为10. 变式训练 3.B 4.A5.解:(1)设该一次函数解析式为y =kx +b , 将(150,45),(0,60)代入y =kx +b 中得⎩⎪⎨⎪⎧150k +b =45,b =60,解得⎩⎪⎨⎪⎧k =-110,b =60,∴该一次函数解析式为y =-110x +60.(2)当y =-110x +60=8时,解得x =520,即行驶520千米时,油箱中的剩余油量为8升.530-520=10(千米),油箱中的剩余油量为8升时,距离加油站10千米.答:在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.类型三【例3】(1)∵Rt△ABC中,tan A=BCAB,∴AB=BCtan A=BCtan 20°≈20411=55(cm).(2)如图,延长FE交DG于点I,则四边形GHFI为矩形,∴IG=FH,∴DI=DG-FH=100-72=28(cm).在Rt△DEI中,sin∠DEI=DIDE=2830=1415,∴∠DEI≈69°,∴β=180°-69°=111°≠100°,∴此时β不符合科学要求的100°.变式训练6.A 7.88.解:如图,过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=3203,∴BD=CD=320,BC=3202,∴AC+BC=640+3202≈1 088,∴AB=AD+BD=3203+320≈864,∴1 088-864=224(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程将缩短约224公里. 类型四【例4】 (1)∵AB 是⊙O 的直径, ∴∠ADB=90°,∴∠BAD+∠ABD=90°. ∵PB 是⊙O 的切线,∴∠ABP=90°,∴∠PBD+∠ABD=90°, ∴∠BAD=∠PBD.(2)∵∠A=∠DCB,∠AED=∠CEB, ∴△ADE∽△CBE,∴DE BE =AECE ,即DE·CE=AE·BE. 如图,连接OC.设圆的半径为r , 则OA =OB =OC =r ,则DE·CE=AE·BE=(OA -OE)(OB +OE)=r 2-OE 2. ∵AC ︵=BC ︵,∴∠AOC=∠BOC=90°, ∴CE 2=OE 2+OC 2=OE 2+r 2, BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2, ∴BC 2-CE 2=DE·CE.(3)∵OA =4,∴OB=OC =OA =4, ∴BC=OB 2+OC 2=4 2. 又∵E 是半径OA 的中点, ∴AE=OE =2,则CE =OC 2+OE 2=42+22=2 5.∵BC 2-CE 2=DE·CE,∴(42)2-(25)2=DE·25, 解得DE =655.变式训练 9.8 10.127类型五【例5】 (1)①由题意可得xy =3,则y =3x .②当y≥3时,3x ≥3,解得x≤1,∴x 的取值范围是0<x≤1.(2)∵一个矩形的周长为6,∴x+y =3, ∴x+3x =3,整理得x 2-3x +3=0.∵b 2-4ac =9-12=-3<0,∴矩形的周长不可能是6,∴圆圆的说法不对. ∵一个矩形的周长为10,∴x+y =5, ∴x+3x=5,整理得x 2-5x +3=0.∵b 2-4ac =25-12=13>0,∴矩形的周长可能是10, ∴方方的说法对. 变式训练11.解:(1)将点A ,B 的坐标代入函数解析式得⎩⎪⎨⎪⎧9a -3b +6=0,a +b +6=0,解得⎩⎪⎨⎪⎧a =-2,b =-4, ∴抛物线的函数解析式为y =-2x 2-4x +6, 当x =0时,y =6,∴点C 的坐标为(0,6).(2)由MA =MB =MC 得M 点在AB 的垂直平分线上,M 点在AC 的垂直平分线上. 设M(-1,y),由MA =MC 得(-1+3)2+y 2=(y -6)2+(-1-0)2, 解得y =114,∴点M 的坐标为(-1,114).(3)①如图,过点A 作DA⊥AC 交y轴于点F ,交CB 的延长线于点D. ∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°, ∴∠DAO=∠ACO,∠CAO=∠AFO, ∴△AOF∽△COA, ∴AO OF =CO AO , ∴AO 2=OC·OF.∵OA=3,OC =6,∴OF=326=32,∴F(0,-32).∵A(-3,0),F(0,-32),∴直线AF 的解析式为y =-12x -32.∵B(1,0),C(0,6),∴直线BC 的解析式为y =-6x +6, 联立⎩⎪⎨⎪⎧y =-12x -32,y =-6x +6,解得⎩⎪⎨⎪⎧x =1511,y =-2411,∴D(1511,-2411),∴AD=24115,AC =35,∴tan∠ACB=2451135=811.∵4tan∠ABE=11tan∠ACB, ∴tan∠ABE=2.如图,过点A 作AM⊥x 轴,连接BM 交抛物线于点E.∵AB=4,tan∠ABE=2, ∴AM=8, ∴M(-3,8).∵B(1,0),M(-3,8),∴直线BM 的解析式为y =-2x +2.联立⎩⎪⎨⎪⎧y =-2x +2,y =-2x 2-4x +6, 解得⎩⎨⎧x =-2,y =6或⎩⎪⎨⎪⎧x =1,y =0,(舍去)∴E(-2,6).②当点E 在x 轴下方时,如图,过点E 作EG⊥AB,连接BE. 设点E(m ,-2m 2-4m +6), ∴tan∠ABE=GE BG =2m 2+4m -6-m +1=2,∴m=-4或m =1(舍去), 可得E(-4,-10).综上所述,E 点坐标为(-2,6)或(-4,-10).专题类型突破专题二 探索规律问题类型一 数式规律命题角度❶ 数字规律探索(2018·泰安中考)观察“田”字中各数之间的关系:【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【自主解答】解数式规律型问题的一般方法(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字是分数和整数结合时,先把这组数据的所有整数写成分数,然后分别推断出分子和分母的规律,最后得到该组第n项的规律;(3)当所给的代数式含有系数时,先观察其每一项的系数之间是否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称性,然后观察其指数是否存在相似的规律,最后将系数和指数的规律结合起来求得结果.1.(2017·百色中考)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是( )A.-121 B.-100 C.100 D.1212.(2017·十堰中考)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为( )A .32B .36C .38D .403.(2018·枣庄中考)将从1开始的连续自然数按如下规律排列:…则2 018在第________行. 命题角度❷ 数字循环类规律探索(2018·成都中考)已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2 018=__________.【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2 018=336×6+2,此题得解. 【自主解答】数字循环类规律题就是几个数循环出现,解决此类问题时,一般是先求出前几个数,再观察其中隐含的规律,若和序号有关,则第n 个数用含n 的式子表示,用n 除以循环出现的数的个数,找出余数即可找到对应的结果.4.(2017·岳阳中考)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22 017的末位数字是( )A .0B .2C .4D .65.(2016·枣庄中考改编)一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n≥2,且n为整数),则a 2 019=________. 命题角度❸ 等式规律探索(2018·滨州中考)观察下列各式: 1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, …请利用你所发现的规律, 计算1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为________.【分析】 直接根据已知数据变化规律进而将原式变形求出答案. 【自主解答】探索等式规律的一般步骤(1)标序数;(2)对比式子与序号,即分别比较等式中各部分与序数(1,2,3,4,…,n)之间的关系,把其隐含的规律用含序数的式子表示出来,通常方法是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;(3)根据找出的规律得出第n 个等式,并进行检验.6.(2018·黔南州中考)根据下列各式的规律,在横线处填空:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156…,12 017+12 018-________=12 017×2 018.7.(2018·安徽中考)观察以下等式: 第1个等式:11+02+11×02=1,第2个等式:12+13+12×13=1,第3个等式:13+24+13×24=1,第4个等式:14+35+14×35=1,第5个等式:15+46+15×46=1,…按照以上规律,解决下列问题: (1)写出第6个等式:________;(2)写出你猜想的第n 个等式:________(用含n 的等式表示),并证明.类型二 点的坐标规律(2018·东营中考)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和点B 1,B 2,B 3,…分别在直线y =15x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果点A 1(1,1),那么点A 2 018的纵坐标是 ________.【分析】 因为每个A 点为等腰直角三角形的直角顶点,则延长直线交x 轴、y 轴于点N ,M ,构造直角三角形MNO ,作出各点A 垂直于x 轴,利用三角函数值求出各点A 的纵坐标,找出规律可求解. 【自主解答】根据图形寻找点的坐标的变换特点,这类题目一般有两种考查形式:一类是点的坐标变换在直角坐标系中递推变化;另一类是点的坐标变换在坐标轴上或象限内循环递推变化.解决这类问题可按如下步骤进行:(1)根据图形点坐标的变换特点确定属于哪一类;(2)根据图形的变换规律分别求出第1个点,第2个点,第3个点的坐标,找出点的坐标与序号之间的关系,归纳得出第M 个点的坐标与变换次数之间的关系;(3)确定第一类点的坐标的方法:根据(2)中得到的倍分关系,得到第M 个点的坐标;确定第二类点坐标的方法:先找出循环一周的变换次数,记为n ,用M÷n=ω……q(0≤q<n),则第M 次变换与每个循环中第q 次变换相同,再根据(2)中得到的第M 个点的坐标与变换次数的关系,得到第M 个点的坐标.8.(2018·广州中考)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动 1 m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2 018的面积是( A )A .504 m 2B.1 0092 m 2C.1 0112m 2D .1 009 m 29.(2018·威海中考)如图,在平面直角坐标系中,点A 1的坐标为(1,2),以点O 为圆心,以OA 1长为半径画弧,交直线y =12x 于点B 1.过B 1点作B 1A 2∥y 轴,交直线y =2x 于点A 2,以点O 为圆心,以OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y=2x 于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y =12x 于点B 3;过B 3点作B 3A 4∥y轴,交直线y =2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y =12x 于点B 4,…,按照如此规律进行下去,点B 2 018的坐标为______________类型三图形累加型变化规律(2017·潍坊中考)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为________个.【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【自主解答】找图形累加型变化规律的一般步骤(1)写序号,记每组图形的序数为“1,2,3,…n”;(2)数图形个数,在图形数量变化时,要数出每组图形表示的个数;(3)寻找图形数量与序数n的关系,若当图形变化规律不明显时,可利用图示法,即针对寻找第n个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒等量的变化,然后按照定量变化推导出第n个图形的个数.10.(2018·重庆中考)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A.11 B.13 C.15 D.1711.(2018·自贡中考)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 018个图形共有______________个○.类型四图形成倍递变型变化规律(2017·绥化中考)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为________.【分析】记原来三角形的面积为S,第一个小三角形的面积为S1,第二个小三角形的面积为S2,…,求出S1,S2,S3,探究规律后即可解决问题.【自主解答】对于求面积规律探索问题的一般步骤:(1)根据题意可得出第一次变换前图形的面积S;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,归纳出后一个图形的面积与前一个图形的面积之间存在的倍分关系;(3)根据找出的规律,即可求出第M次变换后图形的面积.12.(2017·内江中考)如图,过点A0(2,0)作直线l:y=33x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2 016A2 017的长为( )A.(32)2 015 B.(32)2 016 C.(32)2 017 D.(32)2 01813.(2018·潍坊中考)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3 x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是________.参考答案类型一【例1】 观察“田”字中各数之间的关系得:左上角数字为连续的正奇数;左下角数字为2的整数指数幂;右下角数字则为左上角与左下角两数字的和;右上角的数字为右下角数字与1的差.故此,可知a =28=256,b =15+256=271,c =271-1=270.故答案为270. 变式训练 1.B 2.D 3.45【例2】 ∵S 1=1a ,S 2=-S 1-1=-1a -1=-a +1a ,S 3=1S 2=-a a +1,S 4=-S 3-1=aa +1-1=-1a +1,S 5=1S 4=-(a +1),S 6=-S 5-1=(a +1)-1=a ,S 7=1S 6=1a ,…,∴S n 的值每6个一循环. ∵2 018=336×6+2, ∴S 2 018=S 2=-a +1a .故答案为-a +1a .变式训练 4.B 5.-1 【例3】 1+112+122+1+122+132+1+132+142 +…+1+192+1102 =1+11×2+1+12×3+1+13×4+…+1+19×10=1×9+1-12+12-13+13-14+…+19-110=9+1-110=9910. 故答案为9910.变式训练 6.11 0097.解:(1)16+57+16×57=1(2)根据题意,第n 个分式分母分别为n 和n +1,分子分别为1和n -1, 故答案为1n +n -1n +1+1n ×n -1n +1=1.证明:1n +n -1n +1+1n ×n -1n +1=n +1+n (n -1)+(n -1)n (n +1)=n 2+n n (n +1)=1,∴等式成立.类型二【例4】 ∵A 1(1,1)在直线y =15x +b 上,∴b=45,∴直线解析式为y =15x +45.设直线与x 轴、y 轴的交点坐标分别为点N ,M. 当x =0时,y =45;当y =0时,15x +45=0,解得x =-4,∴点M ,N 的坐标分别为M(0,45),N(-4,0),∴tan∠MNO=MO NO =454=15.如图,作A 1C 1⊥x 轴于点C 1,A 2C 2⊥x 轴于点C 2,A 3C 3⊥x 轴于点C 3. ∵A 1(1,1),OB 1=2A 1C 1=2,∴tan∠MNO=A 2C 2NC 2=A 2C 2NO +OB 1+A 2C 2=A 2C 24+2+A 2C 2=15,∴A 2C 2=32.同理,A 3C 3=94=(32)2,A 4C 4=278=(32)3,…依此类推,点A 2 018的纵坐标是(32)2 017.故答案为(32)2 017.变式训练 8.A 9.(22 018,22 017)类型三【例5】 ∵第1个图由6个正方形和6个等边三角形组成, ∴正方形和等边三角形的个数之和为6+6=12=9+3; ∵第2个图由11个正方形和10个等边三角形组成, ∴正方形和等边三角形的个数之和为11+10=21=9×2+3; ∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的个数之和为16+14=30=9×3+3;… ∴第n 个图中正方形和等边三角形的个数之和为9n +3. 故答案为9n +3. 变式训练 10.B 11.6 055 类型四【例6】 记原来三角形的面积为S ,第一个小三角形的面积为S 1,第二个小三角形的面积为S 2,….∵S 1=14·S=122·S,S 2=14·14S =124·S,S 3=126·S,∴S n =122n ·S=122n ·12·2·2=122n -1.故答案为122n -1. 变式训练 12.B 13.22 019π3专题类型突破专题三 阅读理解问题类型一 定义新的运算(2018·德州中考)对于实数a ,b ,定义运算“◆”:a◆b=例如4◆3,因为4>3,所以4◆3=42+32=5.若x ,y 满足方程组则x◆y=________.【分析】 根据二元一次方程组的解法以及新定义运算法则即可求出答案.【自主解答】定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用※,●,▲,★,&,◎,◆,♂等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面的.1.(2018·金华中考)对于两个非零实数x ,y ,定义一种新的运算:x*y =a x +by .若1*(-1)=2,则(-2)*2的值是________.2.(2016·雅安中考)我们规定:若m =(a ,b),n =(c ,d),则m ·n =ac +bd.如m =(1,2),n =(3,5),则m ·n =1×3+2×5=13. (1)已知m =(2,4),n =(2,-3),求m·n ;(2)已知m =(x -a ,1),n =(x -a ,x +1),求y =m ·n ,问y =m ·n 的函数图象与一次函数y =x -1的图象是否相交,请说明理由.类型二方法模拟型(2018·内江中考)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a}=解决问题:(1)填空:M{sin 45°,cos 60°,tan 60°}=________,如果max{3,5-3x,2x-6}=3,则x的取值范围为________;(2)如果2·M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x-2}=max{9,x2,3x-2},求x的值.【分析】 (1)根据定义写出sin 45°,cos 60°,tan 60°的值,确定其中位数;根据max{a,b,c}表示这三个数中最大数,对于max{3,5-3x,2x-6}=3,可得不等式组,即可得结论;(2)根据已知条件分情况讨论,分别解出即可;(3)不妨设y1=9,y2=x2,y3=3x-2,画出图象,两个函数相交时对应的x的值符合条件,结合图象可得结论.【自主解答】该类题目是指通过阅读所给材料,将得到的信息通过观察、分析、归纳、类比,作出合理的推断,大胆的猜测,从中获取新的思想、方法或解题途径,进而运用归纳与类比的方法来解答题目中所提出的问题.3.(2018·怀化中考)根据下列材料,解答问题. 等比数列求和:概念:对于一列数a 1,a 2,a 3,…,a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即a ka k -1=q(常数),那么这一列数a 1,a 2,a 3…,a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和. 解:令S =1+3+32+33+…+3100, 则3S =3+32+33+…+3100+3101, 因此,3S -S =3101-1,所以S =3101-12,即1+3+32+33+…+3100=3101-12.仿照例题,等比数列1,5,52,53,…,52 018的和为________.4.(2018·随州中考)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式,由于0.7·=0.777…,设x =0.777…,① 则10x =7.777…,②②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315 315…,2.01·8·=2.018 18…) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85 714·=27,则3.7·14 285·=________.(注:0.2·85 714·=0.285 714 285 714…)类型三 学习新知型(2018·自贡中考)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Eu l er ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a >0,a≠1),那么x 叫做以a 为底N 的对数,记作:x =log a N.比如指数式24=16可以转化为4=log 216,对数式2=log 525可以转化为52=25. 我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0);理由如下: 设log a M =m ,log a N =n ,则M =a m,N =a n,。

相关文档
最新文档