阴极保护材料行业规范

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、阴极保护概述:金属的腐蚀是一种电化学反应的结果,在这里金属或合金与氧气或其他含氧介质相结合发生电化学反应,最终形成一种稳定状态的化合物。所有的金属都具有回复到最稳定状态的一种趋势。这种趋势体现在贱金属方面尤为明显,这些贱金属被称为活泼金属,具有更低或更负的电位。

海水中金属的电位序列: 镁-148V 锌 -103V 铝 35-H-079V 高精度钢、碳钢 -061V 铸铁 -061V 不锈钢 430 AISI (17% 铬) -057V 不锈钢 304 AISI (18% 铬18% 镍)-053V 铜棒-040V 铜-036V 铝铜合金-032V 镍 -02OV 钛-015V 硅-013V 钼-008V

阴极保护的原理:当两种金属在海水的电解质中发生电连接时,由于电位差,电子从活泼金属向不活泼金属移动。不活泼的金属称为阴极,活泼金属称为阳极。当阳极发生电流时,它在电解质中溶解成离子,同时产生电子。阴极通过与阳极电连接而获得电子。结果就是阴极负极化,起到防腐保护的作用。被保护金属获得了超量的电子而起到防止腐蚀被保护的作用,这样它的表面不会发生任何氧化的化学反应。

阴极保护的方法: 牺牲阳极法是利用电位低的金属或合金(如镁合金、锌合金、铝合金等)作为阳极,通过介质(如:海水等)与被保护金属相连接形成一个电池效应。在阴极(被保护结构)得到保护的同时,阳极不断地被消耗,故称为牺牲阳极。

那么牺牲阳极,保护阴极法究竟是什么?将你要保护的材料(贵重金属)放在阴极位置,牺牲的材料(还原性金属)放在阳极,反应时,阳极氧化溶解牺牲(金属变为金属离子),而在阴极这里金属离子得到电子变为金属单质,从而包覆在阴极材料的表面,因而起到保护的作用,所以叫做牺牲阳极保护阴极。将你要保护的材料(贵重金属)放在正极(阴极)位置,然后将牺牲的材料(还原性金属)放在负极(阳极)位置,反应时,负极(阳极)失电子氧化溶解牺牲(金属变为金属离子),而在正极(阴极)这里金属离子得到电子变为金属单质,从而包覆在正极(阴极)材料的表面,因而起到保护的作用,所以叫做牺牲负极保护正极,也可以叫做牺牲阳极保护阴极。

二、不锈钢在海水中阴极保护研究现状

1不锈钢及其腐蚀特点

1.1概述

不锈钢按在正火状态下的组织形态进行分类,可分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、奥氏体-铁素体双相不锈钢、沉淀硬化不锈钢等。

不锈钢优秀的耐蚀性归因于表面形成了钝化膜,钝化膜主要是铁、铬、镍的混合氧化物,具有很强的自修复能力。稳定的钝化膜具有大的电阻,能大大降低不锈钢基体在腐蚀介质中的腐蚀速率。

加入的合金元素种类和比例不同,得到的钝化膜也有不同的特点,人们据此不断开发出不同性能的不锈钢。

1.2在海水介质中的腐蚀特点

在特殊环境中,不锈钢的钝化膜会被打破,导致的的腐蚀后果会更严重。在含有Cl-等侵蚀性离子、微生物、溶解氧或氧化剂的海洋环境中,Cl-优先吸附于钝化膜上,并与其中的阳离子结合生成可溶性氯化物,钝化膜的修复平衡被打破,使得局部钝化膜被破坏,裸露的微小金属成为阳极,周围钝化膜成为阴极,大阴极小阳极的结构使得阳极电流高度集中,腐蚀迅速向内发展,形成蚀孔(孔径多在20~30?m)。蚀孔的发展过程遵循闭塞腐蚀电池理论。当蚀孔形成后,孔

外被腐蚀产物阻塞,内外的电流和扩散受到阻滞,孔内成为闭塞区,主要发生阳极反应,不锈钢基体被腐蚀。而阴极反应转移到孔外进行,蚀孔迅速发展,孔内逐渐累积的金属离子发生水解,pH降低。Cl-由孔外迁入孔内,孔内Cl-浓度增高,H+和Cl-形成强腐蚀性的盐酸,小孔腐蚀开始自催化加速。孔蚀迅速发展,成为不锈钢构筑物的巨大隐患。

缝隙腐蚀是局部腐蚀的一种。应用在海洋工程中的不锈钢构筑物普遍存在异物或结构上的缝隙,缝内溶液中物质交流被阻滞,缺氧、闭塞的缝隙区具有和孔蚀闭塞区相同的特点。缝隙腐蚀发展过程与孔蚀类似,一旦发生,缝隙内溶液pH下降,Cl-浓度逐渐增大,也产生自催化性加速腐蚀。

奥氏体不锈钢在海水环境中除了容易受到Cl-的侵蚀,还容易当外部存在应力时发生应力腐蚀开裂。胡建朋、刘志勇等利用动电位扫描、交流阻抗谱、慢应变速率拉伸(SSRT)及SEM表面分析方法,探索了304不锈钢在模拟海水环境中发生SCC的敏感性及断裂特征和机理,结果发现,304不锈钢在模拟海水溶液中呈钝化状态,出现应力腐蚀敏感性,且裂纹扩张为穿晶开裂,在深海中的SCC机制为氢致开裂。

应力促进不锈钢材料的钝化膜破裂和自催化效应。在临界pH以下时,应力、H+、Cl-协同作用还可以加速不锈钢的应力腐蚀,应力部位成为腐蚀电池阳极,钝化膜完整部位成为腐蚀电池阴极,大阴极小阳极的自催化加速效应使得蚀孔和缝隙腐蚀向纵深发展。

2不锈钢阴极保护

阴极保护是通过给要保护的金属材料施加阴极电流,使阴极上只发生还原反应,氧化反应则发生在辅助电极上,从而金属受到保护,不会被夺去电子而发生腐蚀。这种方法被广泛应用于海水环境中,可以保护金属构筑物。依据提供电流的方法不同,阴极保护可分为牺牲阳极阴极保护法和外加电流阴极保护法。

50多年前就有人发现,阴极保护可以对包括点蚀、缝隙腐蚀在内的局部腐蚀形成有效保护。小伦诺克斯等人研究了24Ni-20Cr-6.5Mo、26Cr-1Mo、22Cr-13Ni-5Mn、216四种不同型号的不锈钢在海水中的耐蚀性能,同时还研究了外加电流法和牺牲阳极法对这几种不锈钢的阴极保护效果。结果发现,两种保护下的试样经过长期海港与室内暴露实验后,腐蚀痕迹非常微小,大多数情况下,各类局部腐蚀倾向都能被有效抑制。

2.1不锈钢阴极保护对闭塞区的影响

闭塞区溶液具有强烈的腐蚀性,缺氧、低pH值、较高的氯离子浓度、闭塞等是它的主要特性。

Fontana等认为,局部腐蚀发生时,闭塞区pH开始下降,至临界值以下后,闭塞区发生钝化-活化转变,电位突降,放氢开始,腐蚀加速,此时闭塞区的pH值、溶液成分、电极电位与外部明显不同,蚀孔、缝隙腐蚀过程都存在自催化加速腐蚀效应。

Peterson等研究表明,在施加阴极保护时,缝隙内的pH值不但不会下降,反而升高。

刘幼平等采用恒电位模拟闭塞电池的方法,研究极化电位对局部腐蚀闭塞区化学、电化学状态的影响。在施加阴极保护时,随外部电位变负,闭塞区的电位下降,pH值增大,电位-pH条件由原来的“腐蚀区”可下降到“免蚀区”。当闭塞区溶液的pH值上升到临界值以上并取消阴极极化时,闭塞区的电位从“免蚀区”上升到“钝化区”,腐蚀速度也比阴极极化前明显减小,但存在加速腐蚀

相关文档
最新文档