第五章 振幅调制电路

合集下载

什么是振幅调制电路它在电子电路中的作用是什么

什么是振幅调制电路它在电子电路中的作用是什么

什么是振幅调制电路它在电子电路中的作用是什么振幅调制电路在电子电路中扮演着重要的角色,它用于将基带信号调制到载波信号上,以实现信号的传输和处理。

本文将介绍振幅调制电路的基本原理、作用和应用。

一、振幅调制电路的基本原理振幅调制电路主要由振幅调制器和功率放大器组成。

振幅调制器用于将基带信号通过调制器的调制作用,调制到高频载波信号上,以实现信息信号的传递。

而功率放大器则用于将调制后的信号进行放大,以便在传输过程中保持信号的稳定性和传输距离。

二、振幅调制电路的作用振幅调制电路在电子电路中起到了至关重要的作用,其主要作用包括以下几点:1. 信号传输:振幅调制电路可以将基带信号通过调制过程转换为具有较高频率的载波信号,从而实现信号的传输。

通过调制可以将信息信号带到远距离,扩大了信号的传输范围。

2. 信息处理:振幅调制电路可以对信号进行调制和处理,实现信号的编码、解码和压缩等功能。

通过对信号的调制处理,可以实现对音频、视频等信息的传输和处理。

3. 抗干扰性能:振幅调制电路对于外界电磁信号的干扰具有一定的抵抗能力。

通过调制和解调过程,可以减小信号受到干扰的程度,提高信号的抗干扰性能。

4. 节约资源:通过信号的调制和压缩处理,振幅调制电路可以减小信号的带宽,从而使得信号的传输需要的资源更少。

这对于网络传输和资源开销方面具有重要意义。

5. 数据传输:振幅调制电路可以将数字信号转换为模拟信号进行传输。

在数字通信中,振幅调制电路扮演着将数字信号转换为模拟信号的重要角色。

三、振幅调制电路的应用振幅调制电路在通信领域有着广泛的应用,主要体现在以下几个方面:1. 无线电广播:振幅调制电路在无线电广播领域是非常常见的应用之一。

广播电台通过振幅调制将音频信号调制到载波信号上,然后进行传输和接收。

这种调制方式可以使得广播信号传输的范围更大,并实现多路信号的同时传输。

2. 电视传输:振幅调制电路在电视传输中也是非常重要的一部分。

电视信号通常由音频和视频两个部分组成,振幅调制电路负责将这两部分信号调制到载波信号上,然后进行传输和接收。

AM调制的基本理论

AM调制的基本理论

实际调制信号的调幅波形
1) 表示方法
ii ) 数学表达式 v AM Vm ( t ) cosct Vcm ( 1 Ma cost ) cosct
KaVm Vm max Vm min Ma 1 Vcm Vm max Vm min
称振幅调制的调制度
v vc
t
t
2) 二极管调制器
i) 电路 ii) 工作原理
i iD 1 iD 2 2( v V0 ) K1 ( ct ) RD 2RL
i AM
2V0 2Vm cosct cost cosc t RL RL
vo i AM RL
iii) 讨论:其中LC带通滤波器,中 心频率为C , BW3dB 2
vAM(t)
t
vAM(t)
t
vAM(t)
t
1) 表示方法
v AM MaVcm MaVcm Vcm cos c t cos( c )t cos( c )t 2 2
i) 表示方法
iv) 矢量表示
2) 能量关系:
Pav音频信号一个周期内在负载RL上的平均功率
V ( 1 Ma cost ) (高频一周期的平均功率) PL 2RL 2 Ma 1 2 Pav PLdt P0 ( 1 ) P0 PSB 2 0 2
2 cm 2
2 2 Ma Vcm P0 称为上下边带总功率 其中 P0 称为载波功率,PSB 2 2RL

现象:
R 克服条件: M a RL
RΩ = RL ∥Ri2 称为检波 器的音频交流负载,RL 为直流负载。
克服措施:

RL =RL1+RL2, 若Rg大: RL1≈(0.1~0.2)RL2;

第五章 振幅调制、解调及混频讲解

第五章 振幅调制、解调及混频讲解
(4)频率调制:调制信号控制载波频率,使已调波的频率随调制 信号线性变化。
(5)相位调制:调制信号控制载波相位,使已调波的相位随调 制信号线变化。
( 6)解调方式:
振幅检波 振幅调制的逆过程 鉴频 调频的逆过程 鉴相 调相的逆过程 (7)振幅调制分三种方式:
普通调幅( AM ) 抑制载波的双边带调幅(DSB ) 单过带调制(SSB )
密码
信号 载波信号:(等幅)高频振荡信号
正弦波 方波 三角波 uc Uc cos(ct )
锯齿波
已调信号(已调波):经过调制后的高频信号(射频信号)
(1) 调制:用调制信号去控制载波信号的某一个参量的过程。 (2)解调:调制的逆过程,即从已调波中恢复原调制信号的过程。
休息1 休息2
(3)振幅调制:由调制信号去控制载波振幅,使已调信号的振 幅 随调制信号线性变化。

)t

可见,调幅波并不是一个简单的正弦波,包含有三个频率分量:
载波分量(c ) : 不含传输信息
上边频分量c : 含传输信息 下边频分量c : 含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 maUc
1 2
maU
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
第5章 振幅调制、解调及混频
5.1 概述 5.2 振幅调制原理及特性 5.3 振幅调制电路 5.4 调幅信号的解调 5.5 混频器原理及电路
返回 休息1 休息2
5.1概述
振幅调制
解调(检波)
属于 频谱线性搬移电路
混频(变频)
语言
定义: 调制信号:需要传输的信号(原始信号)

第五章振幅调制电路

第五章振幅调制电路

Vm (t ) V0 kaV cost ,式中 k a 为比例常数
即:
Vm (t ) V0 (1 kaV cost ) V0 (1 ma cost ) V0
k aV V0
式中ma为调制度,
第5-8页

ma
常用百分比数表示。
v AM V0 (1 ma cost ) cos0t
第5-10页

©湖南第一师范学院廖永忠
通信电子线路电路 电子教案
第5章 振幅调制电路
图 5.2.2
由非正弦波调制所得到的调幅波
V0 Vmin m下 V0
©湖南第一师范学院廖永忠
Vmax V0 m上 V0
第5-11页

通信电子线路电路 电子教案
第5章 振幅调制电路
2. 普通调幅波的频谱
通信电子线路电路 电子教案
第5章 振幅调制电路
5.1.1 5.1.2 5.1.3
调幅波的概念 普通调幅信号的功率分析 DSB和SSB
第5-1页

©湖南第一师范学院廖永忠
通信电子线路电路 电子教案
第5章 振幅调制电路
1.定义
高频振荡
缓冲 声音
倍频 话筒
高频放大
调制
发 射 天 线
音频放大
将要传送的信息装载到某一高频载频信号上去的过程。
信号带宽 B 2Ωmax
调制信号 载波
Ωmax max
调幅波 下边带 第5-13页

ω0
上边带
o ω0-Ωmax ω0+Ωmax ©湖南第一师范学院廖永忠
通信电子线路电路 电子教案
第5章 振幅调制电路
v (t ) Vo (1 ma cosΩt) cos ot

电子教案-高频电子教案(第三版)-高频电子教案(第三版)-5fuxi-电子课件

电子教案-高频电子教案(第三版)-高频电子教案(第三版)-5fuxi-电子课件
第 5 章 振幅调制、解调与混频电路
振幅调制的基本原理 相乘器电路 振幅调制电路 振幅检波电路 混频电路
一、三种调幅方式的比较 1. 单频调制表达式 AM: uO Um0 (1 ma cos Ωt )cos ωct
DSB: uO = kaU mcos t coswct SSB: uO =1/2[ kaU mcos( /-wc)t]
2. 混频电路的组成模型
uL(t) us(t)
AMXY uO(t)
X
BPF
uI(t)
Y
中频已调波
fc
uL(t)
本机振荡
载f频I 已变调换波后的新
fL 调幅收音机: fI = 465 kHz
fI = fL+ f调c 制类型和调 或 fI = fL– fs 制(当参f数L>不f变c )。
fI = fs – fL (当 fL< fc)
当 fI > fc 称为上混频
当 fI < fc 称为下混频
ur(t) us(t)
AMXY u’O(t)
X
LPF
uO(t)
ur(t) — 与载波同频 同相的同步信号
Y
乘积型同步检波电路组成模型
2. 失真
u
1. 惰性失真
原因:
RC过大放电慢,C上电压不 能跟随输入调幅波幅度下降。
现象
ma越大,Ω越大,越容易产生惰性失真。
2. 负峰切割失真
uO
原因:
检波电路的交流负载电 阻和直流负载电阻相差太大。 u
例 解:
(设ωc为Ω的整数倍)
BW = 2F
求带宽
例 解:
(设ωc为Ω的整数倍)
BW = F
求带宽

第五章振幅调制与解调PPT课件

第五章振幅调制与解调PPT课件
调制信号
Ω
载波
调幅波
下边频
ω0
上边频
ω0-Ω ω0+Ω
19
(2) 限带信号的调幅波
v A
(t)
M
V01
n
mncosΩntco s 0t
V0co s 0t
n
12mncos(0 Ωn)t 12mncos(0 n)t
V0co s 0t n 12mncos(0 n)t n 12mncos(0 n)t
c2
频谱搬移
5
2. 调制的原因 可实现的回路带宽
基带信号特点:频率变化范围很大。
低频(音频): 20Hz~20kHz
fmax 1000 f m in
BW 20k 2 f0 10k
高频(射频): 高频窄带信号
AM广播信号: 535 ~1605kHz,BW=20kHz
f max 3 f min
v0V0cos0t
ma 0 0ma 1
maa 1
17
图 5.2.2 由非正弦波调制所得到的调幅波
m上
Vmax V0 V0
m下
V0
Vmin V0
18
2. 普通调幅波的频谱 (1)由单一频率信号调 幅
vA( M t) V 0(1m aco Ω )scto0 ts V 0co0 ts 1 2m aco0s Ω ()t1 2m aco0s Ω ()t
2. 调制的原因 从切实可行的天线出发
为使天线能有效地发送和接收电磁波,天线的几何 尺寸必须和信号波长相比拟,一般不宜短于1/4波长。
音频信号: 20Hz~20kHz 波长:15 ~15000 km 天线长度: 3.75 ~3750km
4
2. 调制的原因 便于不同电台相同频段基带信号的同时接收

振幅调制电路

振幅调制电路
振幅调制电路有两个输入端和一个输出端,如图 5.2 所 示 。 输 入 端 有 两 个 信 号 : 一 个 是 输 入 调 制 信 号 uΩ(t)=UωmcosΩt= Uωm cos2πFt,称之为调制信号,它 含有所需传输的信息;另一个是输入高频等幅信号, uc(t)=Ucmcosωct=Ucmcos2πfct,称之为载波信号。其中, ωc=2πfc,为载波角频率;fc为载波频率。
uo(t)= Amuc(t)uΩ(t)
=AmUΩm cosΩt Ucmcosωct
(5―10)
由上式可得双边带调幅信号的波形,如图5.9(a)所示。
根据(5―10)式可得双边带调幅信号的频谱表达式为
uo
(t)
1 2
AmUmUcm[cos(c
)t
cos(c
)t]
(5―11)
u(t)
Am uo(t)=Amu(t)uc(t)
(5―2)
4) 普通调幅信号的频谱结构和频谱宽度
将式(5―1)用三角函数展开:
Uo (t) Uomct mUom cos t cosct
Uom
cosct
1 2
maUom
cos(c
)t
1 2
maUom
cos(c
)t
(5―3)
u(t)
t uc(t)
t
uo(t)
Uo mmax
Uo mmin
t
Uo m(1+macos t)
(5―5)
可以看到,uo(t)的频谱结构中,除载波分量外, 还有由相乘器产生的上、下边频分量,其角频率为
(ωc±Ω)、(ωc+2Ω)…(ωc±nmaxΩ)。这些上、下 边频分量是将调制信号频谱不失真地搬移到ωc两边, 如图5.7所示。不难看出,调幅信号的频谱宽度为调制 信号频谱宽度的两倍,即

高频电子线路第5章ppt课件

高频电子线路第5章ppt课件
2
载波uc
已调波uAM
振荡器
倍频
高频 放大器
调制
话筒
调制信号 放大器 调制信号 uΩ
无线电通信发射机的组成框图
3
5.1.1 普通调幅波
所谓调制,就是使幅度、频率、或相位随调制信号 的大小而线性变化的过程。分别称为振幅调制、频率调 制或相位调制,简称调幅、调频和调相。
解调是调制的相反过程,即从已调波信号中恢复原 调制信号的过程。与调幅、调频和调相相对应,有振幅 解调、频率解调和相位解调,简称检波、鉴频和鉴相。
u A M =U cm (1+M acosΩ t)cosω ct
=U cm cosω ct+M a 2 U cm cos(ω c+Ω )t+M a 2 U cm cos(ω c-Ω )t
载波分量
上边带分量
下边带分量
电 压 振 幅
U Ωm
调幅波的频谱图
U cm
MaUcm / 2
MaUcm / 2

ω c - Ω ω c ωc + Ω
过调幅失真
Ma >1
8
U m (t)= U c m (1+ M a c o sΩ t)
U m m ax=U cm (1+M a) Um m in=Ucm(1-M a)
包络的振幅为:
Um=Umm ax2 -Umm in=UcmM a
调制度
包络振幅
Ma 载波振幅
Um Ucm
9
3. AM调幅波的频谱及带宽
ω
u A M = U c m (1 + M a c o s Ω t)c o s ω c t
= U c m c o s ω c t+ M a 2 U c m c o s ( ω c + Ω ) t+ M a 2 U c m c o s ( ω c -Ω ) t

常州信息职业技术学院

常州信息职业技术学院

安徽广播影视职业技术学院
教案
授课主要内容或板书设计3. 普通调幅信号的表达式
u o=U om(1+m a cosΩ
U om=A U Cm是未经调制的输出载波电压振幅
4.调幅波的波形
5.调幅波的频谱及其带宽
安徽广播影视职业技术学院教案
授课主要内容或板书设计
2. MC1596实现普通调幅的电路
5.2.3 高电平调制电路
一、基极调幅
二、集电极调幅
安徽广播影视职业技术学院
教案
授课主要内容或板书设计
三、二极管包络检波电路中的失真
1. 对角线失真(惰性失真)
——原因:R L C L选得太大,放电太慢,跟不上输入信号包络线的变化。

2.底部切割失真(负峰切割失真)
是指耦合电容C c通过电阻R L放电,对二极管引入一附加偏置电压,导致二极管截止而引入的失真。

工作原理:是将双边带信号与同步信号叠加,叠加后的信号是普通调幅波,然后再经包络检波器,解调出调制信号。

2.M C1596模拟乘法器构成的同步检波器
安徽广播影视职业技术学院
教案
授课主要内容或板书设计
4. 实用混频电路
二、二极管平衡混频电路
三、二极管平衡混频电路(环形混频器)
四、模拟相乘器混频电路
安徽广播影视职业技术学院
教案
授课主要内容或板书设计。

第五章振幅调制..

第五章振幅调制..

表示单位调制信号电压所引起的高频振荡幅度的变化
高频电子线路
二、单频调制
1. 表达式
uΩ (t ) U Ωm cos Ωt U Ωm cos 2Ft
uAM (t ) 〔U cm Ku (t )〕 cos(ct ) 〔U cm KU mcost〕 cos(ct ) U cm ( 1 ma cost〕 cos(ct )
高频电子线路
第 5 章 振幅调制、解调电路
振幅调制:用待传输的低频信号去控制高频载波信 号的幅值 解调:从高频已调信号中还原出原调制信号
振幅调制、解调和混频电路都是频谱线性搬移电路
地位: 通信系统的基本电路
高频电子线路
高频电子线路
高频电子线路
第 5 章 振幅调制、解调电路
概述 调幅信号的基本特性 低电平调幅电路 高电平调幅电路 包络检波 同步检波
uDSB (t ) AM u (t )uc (t )
uDSB (t ) AMUcmUm cos(t ) cos( c t ) Um cos(t ) cos( c t )
1 1 U m cos[(c )t ] U m cos[(c )t ] 2 2
高频电子线路
高频电子线路
5.2.1 普通调幅波(AM)
一、普通调幅波表达式
包络函数(瞬时振幅)U(t)可表示为:
U (t ) U cm U (t ) U cm Ku (t )
U (t ) 与调制电压 u (t )
成正比,代表已调波振幅的变化量;
包络函数所对应的曲线是由调幅波各高频周期峰值所连成的 曲线,称为调幅波的包络。因此,包络与调制信号的变化规 律完全一致,其包含有调制信号的有用信息。

第5章 振幅调制及解调

第5章   振幅调制及解调

ma

0.6
总C功率
所以根据

2uPAaMv =4P6CU2+mP10S0(B13=r1am.d22a2/
s
2
co0s.12t9)6gc=o0s.84C9t6w

3103
rad
/
s
可已得调波的uM频带1宽.2(度1
0.B6=co4s683004062t)=gc6oksH4z62000
21 10.5
T 1s,
0
1 t/s
uAM max 3mV
-0.5
uAM min 1mV
-1
-1.5
-2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
这是一个AM调幅波 c 2 fc 6 104 Hz
2 2 Hz
T
U mo
vo (t)=4cos2 106t 1.6cos2 (106 103)t 0.4cos2 (106 104)t 1.6cos2 (106 103) 0.4cos2 (106 104)t
4
1.6 1.6
0.4
0.4
106 104
106
106 104
106 103 106 103
第5章 振幅调制及解调
第5章 振幅调制及解调
5.1 概述 5.2 振幅调制信号分析 5.3 振幅调制方法 5.4 振幅调制电路 5.5 振幅解调方法 5.6 振幅解调电路
第5章 振幅调制及解调
非电信号
信息
语音、文字、图 像、温度、湿度、 振动、压力等
传感器
已调波
解调:调制的逆过程
调制:把调制信号寄 载在载波上的过程

高频电子线路 第五章 振幅调制与解调

高频电子线路 第五章 振幅调制与解调
1 maV0 cos(0 )t 2
1
调幅波包含三个频率分量:
0 ma/2 0 0+ 0-
载波分量0:不含传输信息 上边频分量0+:含传输信息 下边频分量0-:含传输信息
边频振幅的最大值不能超过载波振幅的二分之一。
2、限带信号调幅
实际上通常的调幅信号是比较复杂的,含有许多频 率分量,因此它所产生的调幅波中的上边频和下边频都 不再是一个,而是许多个,组成所谓的上边频带和下边 频带。
(V0 maV0 cost ) cos0 t
kaV (V0 V0 cost ) cos0 t V0
v0 (V0 ka v ) V0
乘法器
v
相加器 直流
vAM
v0
方法2:
v AM V0 (1 ma cost ) cos0 t
V0 cos0t ma costV0 cos0t
Vm max Vm min Vm max V0 V0 Vm min ma 2V0 V0 V0
峰值调幅度和谷值调幅 度
Vmax Vmin Vmax V0 V0 Vmin ma 2V0 V0 V0
一般调幅度ma越大,调幅越深:
ma 0 ma 1 ma 1
四、AM调幅波中的功率关系
vAM V cos t 1 m V cos( )t 1 m V cos( )t 0 0 0 0 2 a 0 2 a 0
设调幅波输送功率到负载RL上,则载波与边频产生的功 率分别为: (1)载波功率:
Pc
1 2 RL
2 V0
(2)上、下边频功率:
v AM V0 (1 ma cost ) cos0 t

第五章 高频电子——振幅调制和解调

第五章 高频电子——振幅调制和解调

第五章 振幅调制和解调
27
二极管调制器
低电平调制电路
晶体管调制器
集成模拟调制器
第五章 振幅调制和解调
28
5.2.1 振幅调制电路基本分类
地位:振幅调制电路是无线电发射机的重要组成部 高电平调制 分。 分类(按功率高低): 低电平调制 ① 高电平调制:调制置于发射机的末端,产生大功率 的已调信号。 ② 低电平调制:调制置于发射机的前端,产生小功率 的已调信号,再通过多级线性功率放大器放大。
3
3. 解调——调制的逆过程,即从已调信号中还原出原 调制信号的过程,也称检波。
基带信号
“附加” “还原”
调制
已调信号
解调
载波信号
第五章 振幅调制和解调
4
分类:
模拟调制
1.按调制信号的形式不同
数字调制 2.按载波的不同 正弦波调制 脉冲调制
第五章 振幅调制和解调
振幅调制(AM) 频率调制(FM) 相位调制(PM)
13
(b) 多频调制
BW=2Fmax
含有若干频率分量。 上边带的频谱结构与 原调制信号的频谱结 构相同,下边带是上 边带的镜像。 多频调制时:
u AM U cm cosct
n 1 U cm mai [cos(c i )t 2 i 1 cos(c i )t ]
第五章 振幅调制和解调
23
该方法对带通滤波器要求较高。要求对要滤除的边带信号 有很强的抑制能力,而对于要求保留的边带信号应使其不 失真地通过。这就要求滤波器在载频处有非常陡峭的滤波 特性。
• 逐级滤波法:
采用了多次调制(频谱搬移) 常用的带通滤波器有:石英晶体滤波器、陶瓷滤波器、声 表面波滤波器。 第五章 振幅调制和解调

第五章振幅调制电路

第五章振幅调制电路

i5
I0 2
(1
th
u2 2UT
)
i6
I0 2
(1 th
u2 2UT
)
UT
kT q
③T1、T2和T3、T4组成的差分对管的电流电压关系
No i1
i5 2
(1
th
u1 2UT
)
Image i3
i6 2
(1
th
u1 2U T
)
i2
i5 2
(1
th
u1 2U T
)
i4
i6 2
(1
th
u1 2U T
3、普通调幅波的波形
①右图是单音频调制普通调幅波
的波形图。
调制信号
②从波形上可以看出:
Ummax Ucm (1 ma )
Ummin Ucm (1 ma )
则调幅指数
ma
U mmax U mmax
U mmin Ummin
载波信号 已调波信号
已调波振幅的包络形状 与调制信号一样第2页/共43页
ma
B 2Fmax
5、结论
调幅过程是一种线性频谱搬移过程将调制信号的频谱由低频被搬移到 载频附近,成为上、下边频带。
第5页/共43页
三、普通调幅波的功率关系
1、普通调幅波中各频率分量之间的功率关系
将普通调幅波电压加在电阻R两端,电阻R上消耗的各频率分量对应的 功率可表示为
①载波功率
POT
1
U
2 cm
第21页/共43页
④分类 根据输入信号的极性可分为:
四象限模拟乘法器 二象限模拟乘法器 一象限模拟乘法器
⑤常用于频率变换的模拟乘法器的型号

ch5.2振幅调制的基本原理.ppt

ch5.2振幅调制的基本原理.ppt
18/25
2. 移相法
u(t) =Umcos t
Ucm cosct
AMXY uO1(t) X
YI
90° 90°
+ uO (t)
移相 移相
– AMXY
Umsin t
Ucm
sinct
X Y
II
uO2(t)
uO1(t) =AMUmUcmcos t cosc t
1 2
AMU mUcm [cos(ωc
Ω)t
第 5 章 振幅调制、解调
振幅调制: 用待传输的低频信号去控制高频载波信号的幅值 解调: 从高频已调信号中还原出原调制信号 振幅调制、解调电路都是频谱线性搬移电路
1/25
Байду номын сангаас
主要要求:
掌握普通调幅波、双边带调幅波和单边带调幅波 的表达式、波形特点、频谱图和频带宽度的计算 掌握线性频谱搬移电路的构成要素和频谱特点 掌握调幅电路的组成模型 理解调幅度的概念与应用
Pmax
[(1
ma )Ucm ]2 2RL
(1 ma)2 Po
AM调制
9/25
三、复杂信号调制 1. 波形
10/25
2. 频谱
上边带和下边带频谱分量的相对大小及间距均与调制信号的频 谱相同,仅下边带频谱倒置而已。可见调幅的作用是
将调制信号频谱不失真地搬移到载频两侧。 BW = 2Fmax
信息含于边频分量中,载波不含有用信息,但载波占有很大 能量。不经济。要抑制载波。
Ucm
cos(ωc
t
)
1 2
maU
cm
[cos(ωc
Ω)t
]
1 2
maUcm
cos[(ωc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ma 2 2
(4) 边带功率,载波功率与平均功率之间的关系:
双边带功率 载波功率
ma 2 2
双边带功率 平均总功率
ma2
2 1 ma2
ma2 2 ma2
2
双边带功率 载波功率
ma 2 2
双边带功率 平均总功率
ma2
2 1 ma2
ma2 2 ma2
2
分析:有用信息只携带在边频带内,而载波本身并不携带信息,但 它的功率却占了整个调幅波功率的绝大部分,因而调幅波的功率浪费 大,效率低。如当100%调制时(ma=1) ,双边带功率为载波功率的1/2, 只占用了调幅波功率的1/3。
cos 32t
2
5
cos 52t
...
1 2
n1
2(-1)n1
(2n 1)
cos(2n 1)2t
id
rd
1 RL
1 2
2
cos 2 t
2
3
cos 32t
2
5
cos 52t
...
(U1m cos1t U2m cos2t )
id
rd
1 RL
1 2
2
cos 2 t
2
3
cos 32t
2
但AM波调制方便,解调方便,便于接收。
6. 双边带(double side band,DSB)调幅信号
(1) 数学表达式
在AM调制过程中,如果将载波分量抑制就形成抑制载波 的双边带信号,简称双边带信号,它可以用载波和调制信号 直接相乘得到,即:
uDSB ku (t ) uc (t )
若调制信号为单一频率信号:
5. 调制波的功率
设调幅波传输信号至负载电阻R上,那么调幅波各分量功率为:
(1) (2)
R上消耗的载波功率: Pc 上、下边带的平均功率:
P上边
1 2
U
2 cm
R
P下边
1 2
maU
cm
2R
2
ma 2 4
Pc
(3) 在调制信号一周期内,调幅信号输出的平均总功率:
PAM
Pc
P上边
P下边
Pc 1
则:
uAM Ucm[1 ka f (t)] cosct
若将 f (t) 分解为: f (t) Un cos(nt n ) n1
则有 uAM Ucm 1 mn cos(nt n ) cosct 其中: mn kaU n n1
2. 调幅信号波形
uAM Ucm (1 ma cos t)cosct
(3)振幅调制:由调制信号去控制载波振幅,使已调信号的振 幅随调制信号线性变化。
(4)频率调制:由调制信号控制载波频率,使已调波的频率随调 制信号线性变化。
(5)相位调制:由调制信号控制载波相位,使已调波的相位随 调制信号线性变化。 (6)解调方式:
振幅检波 振幅调制的逆过程 鉴 频 频率调制的逆过程 鉴 相 相位调制的逆过程
0时 1时
未调幅 最大调幅(百分之百)
ma 1时 过调幅,包络失真,实际电路中必须避免
3. 调幅波的频谱
(1)由单一频率信号调幅
uAM Ucm (1 ma cos t ) cosct
Ucm
cos c t
1 2
ma
cos(c
)t
1 2
ma
cos(c
)t
可见:调幅波并不是一个简单的正弦波,包含有三个频率分量:
cosct
id 的频谱成份:
B=2Ω
,c , 2nc
2n 1c
c
c
Ω
ωc
2 ωc
3 ωc
c
B=2Ω
c
Ω
ωc
2 ωc
3 ωc
uL
gd ZL
1 2
2
cos c t
2 3
cos 3ct
... Um
cos t
Ucm
cosct
如果选频回路工作在ωc 处,且带宽为B = 2Ω。 而谐振时的负载电阻为RL,则输出电压为uL(t)。
下边频带信号
ωc+Ωmax ω
ω ωc-Ωmax
上边带信号:
uSSBU (t )
1 2 kUmUcm
cos(c
)t
U cos(c )t
uSSB (t) U
0
fc+F t
单音调制的SSB信号波形
8. 振幅调制电路的功能
输入:调制信号和载波信号 输出:调幅信号
AM信号 : uAM Uc (1 m cos t)cos ct 纯调幅
DSB
信号
:
uDSB
kUUc
cos
t
cos ct
调幅,调相
SSB
信号
:
uSSB
U (cos t cos ct
sint sinct)
调幅,调频
分析:三种信号都有一个调制信号和载波的乘积项,所以振幅调制 电路的实现是以乘法器为核心的线性频谱搬移电路。
9. 振幅调制电路的分类
低电平调制:先调制后功放,调制低功率在下进行,输出功率、 效率不是主要技术指标;提高调制线性,减小不需要的分量的产 生和提高滤波性能。主要用于DSB、SSB以及FM信号。
第5章 振幅调制
5.1 概述 5.2 低电平调幅电路 5.3 高电平调幅电路 5.4 单边带调幅信号的产生 5.5 数字信号调幅 5.6 模拟乘法器
教学要求
了解调制的作用。掌握调幅信号的定义、 表示式、波形、频谱等基本特征。
掌握典型的幅度调制电路的结构、工作 原理、分析方法和性能特点。
了解数字调幅的基本概念、典型方法和 实现电路。
1 2
kU mU cm
cos(c
)t
cos(c
)t
上边带信号:
uSSBU (t )
1 2
kU mU cm
cos(c
)t
U cos(c )t
下边带信号:
uSSBL (t )
1 2
kU mU cm
cos(c
)t
U cos(c )t
限带信号
载波
Ωmax 上边频带信号
ωc-Ωmax ωc ωc+Ωmax ω
c
t
U cm
cos
c
t
n
1 2
mn
cos(c
n )t
1 2
mn
cos(c
n )t
Ucm cosct
n
1 2
mn
cos(c
n
)t
n
1 2
mn
cos(c
n
)t
同样有三部 分频率成份
限带信号
载 波 分 量 (ωc) :不含传输信息 上变频分量 (ωc+Ωn) :含传输信息 下变频分量 (ωc-Ωn) :含传输信息
5
cos 52t
...
(U1m cos1t U2m cos2t )
id 的频谱成份:
1. 1,2
23..
2 1
2n 12 1
4. 2n2
5. 直流
1. 单二极管开关状态调幅电路(产生AM信号)
设: u Um cos t uc Ucm cos ct
D
ZL
且: Ucm Um 回路电流: id gd K (ct )ud
ωc-Ωmax
ωc+Ωmax
(1) DSB信号的包络随调制信号 U cos t 变化 。
(2) DSB信号载波的相位反映了调制信号的极性,即在调制信号负半周时,已调 波高频与原载波反相。因此严格地说,DSB信号已非单纯的振幅调制信号,而是 既调幅又调相的信号。高频振荡的相位在f(t)=0瞬间有180o突变。 (3) DSB波的频谱成份中抑制了载波分量,全部功率为边带占有,功率利用率 高于AM波。
(2) 工作原理分析:
u uc
Um cos t
Ucm cosct
且Ucm Um
i1
i2
rd rd
1 2RL
1 2RL
K (ct )uc (t ) K (ct )uc (t )
u (t ) u (t )
1 而 K(ct) 0
uc 0 uc 0
i1
rd
1 2RL
K (ct )uc (t )
带通滤波器:取出调幅波的频率成分,抑制不需要的频率 成分。
5.2 低电平调幅电路
D
0. 开关函数
u1+-
u2正半周:D导通
id
rd
1 RL
u1(t )
u2 (t )
u2+-
RL
u2负半周:D截止 id 0
id
rd
1 RL
K (t )(u1(t )
u2 (t ))
u2
t
K
( t
)
1 0
u2 (t ) 0 u2 (t ) 0
(7)振幅调制分三种方式:
普通调幅(AM) 抑制载波的双边带调幅(DSB) 单边带调幅(SSB)
1. AM调幅波的数学表达式
设:载波信号: uc=Ucmcosωct 调制信号: uΩ =UΩcosωΩt
则:调幅信号(已调波)为:uAM=Um(t)cosωct
由于调幅信号的振幅与调制信号成线性关系,即有:
u U cos t
U cm
uc Ucm cosct
Umax Ucm(1 ma )
Umin Ucm(1 ma )
波形特点:
ma
1 2
U max U min Ucm
maa 1
(1) 调幅波的振幅(包络)变化规律与
调制信号波形一致;
相关文档
最新文档