物理化学 热力学第二定律
物理化学第2章 热力学第二定律
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
物理化学简明教程(第四版)第二章 热力学第二定律
-1
Q 0 T
(2)定压或定容变温过程的熵变
• (A) 定压过程
S
T2
Qr
T
T1
T2
C p dT T
T1
T2 C p ln T1
• (B) 定容过程
S
T2
Qr
T
T1
T2
T1
CV dT T CV ln 2 T T1
• 注意:使用此两式时不能有相变。
自发过程的实例
• 要使系统复原,则需要进行电解对系统 做功。 • 结论:然界中发生的一切实际宏观过
程都有一定方向和限度。不可能自 发按原过程逆向进行,即自然界中 一切实际发生的宏观过程总是不可 逆的。
§2.1自发过程的共同特征
• • • 自发过程的共同特征是: (1) 自发过程必为不可逆过程; (2) 自发过程必有功的损失。
Q1 Q2 Q2 ir 1 Q1 Q1 Q1 Q2 0 T1 T2
对于可逆循环,其热温商之和为零。可以得到:
不可逆循环 Q1 Q2 0 T1 T2 = 可逆循环
对任意循环:
不可逆循环 ( Q / T ) 0 可逆循环
γ -1 γ -1 TV = T V 1 2 2 3
TV
γ -1 1 1
=T V
γ -1 2 4
V2 / V1 V3 / V4
Q2=-W2 = -nRT2ln(V2 / V1 ) Carnot 循环过程中,系统对环境所作之功 -W=Q1+Q2
W Q1 Q2 RT1 ln(V2 / V1 )-RT2 ln(V2 / V1 ) T1 - T2 = = Q1 Q1 RT1 ln(V2 / V1 ) T1
物理化学03热力学第二定律
Q1 Q2 0 T1 T2
对无限小的循环, 有
不可逆 可逆
dQ1 dQ2 0 不可逆 可逆 T1 T2
小结: 对在两恒温热源间工作的热机 • 其热机效率小于(T1-T2)/T1是可能的, 大于则不可能, 等于时相 当于热机实际处在平衡状态; • 其热温商小于零是可能的, 大于则不可能, 等于时平衡. 上两式适合于任何物质,发生任何变化的循环过程。
•要解决过程的方向性的问题,必须依赖于热力 学第二定律。
99-11-24
3
§3-1 热力学第二定律
1. 自发过程与非自发过程
• 在一定的条件下,不需要消耗环境的作用就能 自动进行的过程,称为自发过程。 • 如水往低处流,冰熔化,墨水在清水中扩散, 常温下能自动进行的化学反应等等。 • 自发过程的逆过程是不能自动进行的,称为非 自发过程。 • 自发过程的共同特征是不可逆的。 [课堂讨论]:以气体真空膨胀为例,说明自发过 程是不可逆过程。
• 例:木炭在氧气中燃烧,热力学能转变为热,生成CO2, 其逆过程是CO2吸收相同的热量,转变为C和O2,是不违 反热力学第一定律的,但能否自动的进行呢?
99-11-24 2
同在能量守恒的前提下, 热的自发传递是单方向的; 功可全部转化为热, 而热转化为功却是有限制的.
• 热 从 高 温 传 向 低 温 • 功 转 化 为 热
1
任意不可逆过程的热温商之和一定小于其熵变.
dQ S T
>任意不可逆过程 =任意可逆过程
这就是克劳修斯不等式 , 不可逆时式中T仅为环境的温度. 当系统从始态1分别经可逆和不可逆途径到达末态2时, 系统状态函数熵的变化量是一样的, 不同的是热温商. 只有可 逆途径的热温商之和才与熵变量相等.
物理化学 第三章 热力学第二定律
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i
Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆
则
Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4
大学课程《物理化学》第二章(热力学第二定律)知识点汇总
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
物理化学 热力学第二定律
上式为
B
A
δ
Q T
ir
A B
δ Qr T
0
B
A
δ
Q T
ir
ABS
0
BAS
B A
δ
Q T
ir
S δTQ
> ir =r
Clausius Inequality
(1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。
= r cycle (可逆循环)
意义:的极限 提高的根本途径
Carnot定理的理论意义:
§2-4 熵 (Entropy)
一、熵函数的发现 (Discovery of entropy)
1 T2
T1
即
1 Q2 1 T2
Q1
T1
< ir cycle = r cycle
Q1 Q2 0 T1 T2
1mol He(g) 200K
1m3o0l0HK2(g)
101.3kPa 101.3kPa
解:求末态 过程特点:孤立系统, U = 0
U U (He) U (H 2 )
n
3 2
RT2
200 K
n
5 2
RT2
300 K
0
T2 = 262.5K
1mol He(g) 200K
101.3kPa
1mol H2(g) 300K
对两个热源间的可逆循环:热温商
之和等于0
Q1 Q2 0 T1 T2
对任意可逆循环(许许多多个热源):
pቤተ መጻሕፍቲ ባይዱ
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
物理化学热力学第二定律总结
热力学第二定律1.热力学第二定律:通过热功转换的限制来研究过程进行的方向和限度。
2.热力学第二定律文字表述:第二类永动机是不可能造成的。
(从单一热源吸热使之完全变为功而不留下任何影响。
)3.热力学第二定律的本质: 一切自发过程,总的结果都是向混乱度增加的方向进行(a. 热与功转换的不可逆性; b.气体混合过程的不可逆性; c.热传导过程的不可逆性)4.热力学第二定律的数学表达式:Clausius 不等式5.卡诺循环→热机效率(即:热转化为功的限度有多大?)→卡诺定理(所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。
)→从卡诺循环得到结论:热效应与温度商值的加和等于零。
→任意可逆循环热温商的加和等于零→熵的引出→熵的变化值可用可逆过程的热温商值来衡量→Clausius 不等式:d QS Tδ≥→熵增加原理(熵增加原理)→把与体系密切相关的环境也包括在一起,用来判断过程的自发性(∆S iso =∆S (体系)+∆S (环境)≥0):“>” 号为自发过程;“=” 号为可逆过程) 6.等温过程的熵变:(1)理想气体等温变化:∆S =nRln(V 2/V 1)=nRln(P 1/P 2);(2)等温等压可逆相变(若是不可逆相变,应设计可逆过程): ∆S(相变)=∆H (相变)/T(相变);(3)理想气体(或理想溶液)的等温混合过程:∆S =-R ∑n B lnx B 7. 变温过程的熵变:(1)等容变温:⎰=∆21d m ,T TV TTnC S(2)等压变温:(3):8.标准压力下,求反应温度T 时的熵变值:9.用熵作为判据时,体系必须是孤立体系,也就是说必须同时考虑体系和环境的熵变,这很不方便→有必要引入新的热力学函数,利用体系自身状态函数的变化,来判断自发变化的方向和限度。
因此引入新的函数:亥姆霍兹函数A=U-TS 与吉布斯函数G=H-TS 。
10.等温、可逆过程中,体系对外所作的最大功等于体系亥姆霍兹函数的减少值;自发变化总是朝着亥姆霍兹函数减少的方向进行。
物理化学热力学第二定律重点归纳
一、内容提要:热力学第二定律是在研究热功转化的效率的过程中发展和建立起来的。
热力学第二定律的主要任务,是解决过程的方向和限度问题,为了解决这个问题,本章首先从常见的自发过程入手,发现自发变化过程都有一定的方向和限度,而自发过程能否成为可逆过程的问题又可归结到热是否能够全部转换为功而不引起其他变化(结论是不能)的问题,从而得出自发过程的共同特征—不可逆性,根据自发变化的这一规律性引出了热力学第二定律的经验叙述。
然后通过研究热功转化的理想循环—卡诺循环、归纳出卡诺定理,解决了热功转换的最大效率问题;得出卡诺循环的热温商之和为零,然后将卡诺循环的这个特点推广到任意的可逆循环从而得到了热力学第二定律的基本状态函数—熵,再通过可逆循环和不可逆循环过程的热温商的推导,得出熵变的计算方法以及熵变与过程的热温商之和之间的关系,从而得出了热力学第二定律的数学表达式—克劳修斯不等式和熵增原理,将熵增原理应用于孤立系统因而得出了熵判据,根据熵判据,我们可以判断所有过程的方向和限度(或者平衡条件)。
(一) 自发过程的共同特征——不可逆性,且都可以归结到热功交换的不可逆性。
(二) 热力学第二定律表述:1、Clausius 说法:不可能把热从低温物体传到高温物体而不引起其他变化。
这一说法揭示了热量传递的不可逆性2、Kelvin 说法:不可能从单一热源取热,使之完全转变为功而不发生其它变化,这一说法揭示了热功交换的不可逆性。
Kelvin 的另一说法:第二类永动机是不可能制成的。
人们在研究热功转化规律的基础上,抓住了事物的共性,提出了具有普遍意义的熵函数,根据熵函数和由此导出的另两个状态函数—亥姆霍兹自由能和吉布斯自由能,可以较简便的解决化学反应的方向和限度问题。
这就是热力学第二定律的重要作用和目的。
(三)卡诺循环结论:h l h l 0Q Q T T += (由此结论得出了得到了热力学第二定律的基本状态函数-熵)(四)卡诺定律:IR R ηη<,热力学第二定律证明,工作于同温热源与同温冷源之间的所有热机,可逆热机的效率最大。
物理化学C复习笔记-热力学第二定律
热力学第二定律熵的定义其中 Qrev是环境在可逆过程(严格的说是准静态过程)中传递给系统的热。
T指的是热源,或者环境的温度,不是系统的温度。
但是在可逆过程中,环境的温度和系统的温度总是相同的。
例如,我们考虑完美气体等温膨胀的熵变,从Vi到Vf。
其中,完美气体的内能与体积无关,故膨胀内能不变。
熵也是一个多元函数,故其微分向量的积分与路径无关。
卡诺循环卡诺循环验证了熵是个多元函数。
1.气体(Th温度)与高温热源接触(Th),等温可逆膨胀(注意辨析,例如等外压膨胀就不是可逆膨胀)到B,吸收了qh的热2.气体与高温热源脱离,绝热可逆膨胀到C,温度下降到Tc3.气体与低温热源接触(Tc),等温可逆压缩至D,放出qc的热4.与低温热源脱离,绝热可逆压缩使得温度回升至Th 总的来说,由于绝热可逆过程压根没有热量交换,因此根据熵的定义这是没有熵增的过程,属于一种完美的可逆过程,而等温可逆膨胀是一种熵增的过程,并不是一种完美的可逆过程。
如果整体的熵变为零,则验证了其为多元函数热机效率我们看到,卡诺循环其实是从高温热源吸收能量而释放到低温热源,中间的第二阶段绝热可逆膨胀是在向外做功w,那这个功有多大呢?很好算,而热机效率就是指这个功占吸收的量的多少,因此有然而,第二阶段的做功不一定是可逆的,所以一般热机的做功效率一般小于这个理想热机的效率克劳修斯不等式我们在这里用一种较为数学的方式推出该不等式。
其基础是热力学第二定律,也即一个隔离系统总会有最大功定理考虑一个初态末态确定的系统(主系统),与一个可逆热源与一个可逆功源,它们三个组成一个隔离系统。
该定理说的是,主系统变化的每一个可能的过程中,只有熵增为0的准静态过程(严格意义上的可逆过程)做功最大。
同时对于任意一个严格意义上的的可逆过程,传热相同。
在此你需要了解,绝热的可逆功源是一个熵变为0的准静态子系统。
证明留待以后。
(可以理解为依定义为0)由于主系统初末态确定,因此任意两个过程都会造成相同的不同的是变化的内能在可逆功源(RWS)与可逆热源(RHS)之间的分配那么对可逆功源做功越多,对可逆热源放热越少,或者说吸热越多。
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
物理化学 第二章 热力学第二定律
101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0
物理化学 热力学第二定律概念函数
B δQ δQ 即: ( )r( ) ( )r( ) A T A T B
B δQ B δQ 则: A ( )r( ) A ( )r( ) A dS S B S A S T T B
二、任意可逆循环过程的热温商与熵函数 热温商:Q/T
Q1 Q2 对卡诺循环有: 0 T1 T2
p A
设任意可逆循环:A
B
A
B δQi δQi 1 0 每个小卡诺循环: Ti Ti 1 V δQi δQi 整个循环过程: ( )r 0 或 ( )r 0 Ti Ti i 1
T , p ,S
S1 S 2
Ttrs
nC p ,m [ A( )]
T
T
T nC p ,m [ A( )] T
dT dT
A( ) A()
Ttrs , p , trsS
Ttrs
则:S T
Ttrs
n{C p ,m [A( )] C p,m [A( )]} T
1.A (PAVAT2 )
B (PBVBT2 )等温可逆膨胀,△U1=0
2. B (PBVBT2 ) ������
p
C (PCVCT1 )绝热可逆膨胀
D (PD VD T1)等温可逆压缩
A
Q=0, B D C
3. C (PCVCT1 ) ������
△U3=0
4. D (PD VD T1) ������
Qr S T
△ S环 =
Q环 / T环 =-Q实/T环境
物理化学第三章热力学第二定律主要公式及其适用条件
第三章 热力学第二定律主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变rd δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2) T 2112l n (/)l n (/)S n R V V n R p p ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
物理化学2 热力学第二定律
2、自发过程的共同特征 、 •气体向真空膨胀 •热量从高温物体传入低温物体 •锌片与硫酸铜的置换反应
自发过程的共同特征—不可逆性; 自然界的所有自发过程都可以归结为热功转换的 不可逆性
具有普遍意义的过程: 具有普遍意义的过程:热功转换的不等价性
无代价,全部
功
不可能无代价,全部
热
① W
Q 不等价,是长期实践的结果。
1mol 理想气体的卡诺循环在 pV 图上可以分为四步: 过程1:等温(T2)可逆膨胀由 p1,V1到 p2,V2
∆U1 = 0
V2 W = RT2 ln 1 V 1
Q =−W 2 1
过程2:绝热可逆膨胀由 p2 , V2 , T2到 p3 , V3 , T1
Q=0
W2 = ∆U = ∫ CV dT = CV (T1 − T2 )
∆H = ∆H ( He) + ∆H ( H 2 )
= 207.9J
5 7 = n ⋅ R (262.5K − 200K ) + n ⋅ R (262.5K − 300K ) 2 2
(2)
∆S = ∆S ( He ) + ∆S ( H 2 )
3 262.5 5 262.5 = n ⋅ R ln + n ⋅ R ln 2 200 2 300
S是容量性质,J.K-1
T δ Q ≠ ∑ T
2、不可逆过程的热温商
* Q1* + Q2 T2 − T1 < * Q2 T2
Q Q + <0 T1 T2
* 1
* 2
∑
δQ*
T
<0
β
设有一个循环,A→B为不可逆过程, B→A为可逆过程,整个循环为不可逆 循环。 则有
第三章热力学第二定律
自发变化
能够自动发生的变化,即无需外力帮助,任其自然, 即可发生的变化。 自发变化的共同特征 不可逆性
任何自发变化的逆过程是不能自动进行的。
1.理想气体自由膨胀:
Q=W=U=H=0, V>0
要使系统恢复原状,可经等温压缩过程
U=0, H=0, – Q = W。 2.热由高温物体传向低温物体 对冷冻机做功后,系统恢复原状。 3.化学反应: Zn(s)+CuSO4(aq)=ZnSO4(aq)+Cu(s)
Q1
I
W
Q1 W
R
W
Q1 W
Tc
(2)Carnot定理推论: 所有工作于同温热源与同温冷源之间的可逆机, 其热机效率都相等。 (3)Carnot定理的意义: (1)解决了热机效率的极限值问题;
(2)引入了一个不等号I R ,原则上解决了 化学反应的方向问题。
3.4 熵的概念
•从Carnot循环得到的结论
278.7
= -35.4JK-1
9874J Q体 Ssur= =36.8JK-1 268.2K T环
Siso= Ssys + Ssur =-35.4JK-1+36.8JK-1=1.40 JK-1>0 该过程是可以自动发生的不可逆过程。
B
A
B
B
R1
V
说明只要始、终态确定, Q 就有确定值,
B
与具体的可逆途径无关。
A
T R
Clausius据此定义了一个状态函数entropy(熵),用“S”表示
三、熵的定义
设始、终态A,B的熵分别为 SA 和 SB ,则:
Q SB SA S ( ) R A T Qi Qi S ( )R S ( )R 0 Ti Ti i i
物理化学-热力学第二定律
注意:因不可逆,DS≠Q/T
热力学第二定律
2.8.2 相变过程
1. 可逆相变
1mol: H2O(l, 25℃, 3168Pa)→H2O(g, 25℃,3168Pa)
恒温恒压可逆相变过程
Hale Waihona Puke DG = DH - TDS = DH - T(DH/T) = 0
即有 Gg = Gl (或熔化 Gs = Gl ) 又 G = A + pV DA = DG-D(pV) = -D(pV) = -p(Vg - Vl) ≈-pVg = -nRT = (-1×8.315×298.15)J
热力学第二定律
2. 麦克斯韦关系式
热力学基本方程 dU = TdS-pdV dH = TdS+Vdp dA =-SdT-pdV dG =-SdT+Vdp 麦克斯韦关系式 (∂T/∂V) S = -(∂p/∂S) V (∂T/∂p) S = (∂V/∂S) p (∂S/∂V) T = (∂p/∂T) V (∂S/∂p) T = -(∂V/∂T) p
[∂(DG/T) /∂T]p = -DH / T 2 应用标准态 [∂(DG$/T) /∂T]p = -DH$/ T 2
推导:
热力学第二定律
[∂(A/T) /∂T]V = T-1(∂A/∂T)V- A T-2 (∂A/∂T)V =-S [∂(A/T) /∂T]V = -(TS+A) / T 2 TS+A=U
热力学第二定律
2.7.2 吉布斯 - 亥姆霍兹方程 (Gibbs - Helmholtz equation )
DG 与T 关系:
ΔH (ΔG / T ) T T2 p
物理化学热力学第二定律精要
1. 热力学第二定律的表述 (1)Clausius:热量由低温物体传给高温物体而不 引起其他变化是不可能的。 (2)Kelvin:从单一热源取热,使之完全变为功而 不发生其他变化是不可能的。 第二类永动机是不可能造成的。 2. 卡诺循环 工作物质从高温热源( T2 )吸取热量 Q2 ,一部分 。由两等温过程和两绝热过 放热 Q1 给低温热源( T1 ) 程组成的可逆循环。 卡诺热机(理想热机、可逆热机) 。 (1)等温可逆膨胀 DU 1 = 0 Q2 = W1 (1)在同一高温热源和同一低温热源间工作的 热机,卡诺热机的效率最大。 (2)卡诺热机的效率只与两热源的温度有关,与 工作物质无关。 4 G 的减少等于可 逆过程系统所做的非体积功。 16. 最小吉布斯自由能原理 等温等容非体积功为零的条件下 (对单一气体)
dGT ,V ,W ¢=0 ≤0
10. 理想气体混合过程的 DS
DmixS = -R å n B ln x B
B
封闭系统在等温等容非体积功为零的条件下, 只有系统 G 减小的过程才会自动发生,该条件下 G 达到最小值时系统达到平衡态。 该条件下不能自动发生 dG>0 的过程。 该条件下自发过程的判据。 17. 理想气体等温过程的 DA 和 DG
dS =
dQr
(3)等温可逆压缩
DU 3 = 0
Q1 = W3 V3 V4
W3 = RT1 ln
dQ ≥0 T dQ :实际过程中交换的热。
dS -
(4)绝热可逆压缩
Q=0 W4 = DU 4 = ò CV ,m dT
T1 T2
T :环境的温度。
不可逆过程的热温商之和小于该过程系统始终 态之间的熵变。 7. 熵增原理 (1)绝热系统 >
物理化学热力学第二定律完整ppt课件
克劳修斯(Clausius)的说法:“不可能把热从低 温物体传到高温物体,而不引起其它变化。”
开尔文(Kelvin)的说法:“不可能从单一热源取出 热使之完全变为功,而不发生其它的变化。” 后来 被奥斯特瓦德(Ostward)表述为:“第二类永动机是 不可能造成的”。
可逆过程) S(相变)TH(相 (相变变))
(3)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
xB
VB V总
m ixSR nBlnxB B
精选ppt课件2021
16
等温过程的熵变
例1:1mol理想气体在等温下通过:(1)可逆膨胀, (2)真空膨胀,体积增加到10倍,分别求其熵变。
解:(1)可逆膨胀
Q R inV ,C m T i T 1 niR lV n V 1 2 T nV ,C m T 1 T i
QRi nRTi lnVV12
结论:
始终态相同,途径不同,过程的热 QRi 亦不同。但是
QRi nRlnV2 对所有的可逆途径均相等。
Ti
V1
精选ppt课件2021
6
2.2.2 熵函数
(1) 焦耳热功当量中功自动转变成热;
(2) 气体向真空膨胀;
(3) 热量从高温物体传入低温物体;
(4) 浓度不等的溶液混合均匀;
(5) 锌片与硫酸铜的置换反应等,
它们的逆过程都不能自动进行。当借助外力,体系恢复
原状后,会给环境留下不可磨灭的影响。
精选ppt课件2021
2
2.2 热力学第二定律(The Second Law
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。