人教版六年级数学下册《正比例和反比例判断的练习题》

合集下载

新人教版六年级下册数学正反比例精选练习题

新人教版六年级下册数学正反比例精选练习题

数 学
两种相关联的量,一种量变化,另一种量 也随着变化。
比值(也就是商)一定 y =K(一定)
x
积一定
x×y=k(一定)
例7

观察下面的两个表,再回答问题。

1、表中各有哪两种相关联的量?
2、在各表的两种相关联的量中,一种量是怎样随着另一 种量的变化而变化的?它们的变化规律各有什么特征?
3、哪个表中的两种量成正比例关系?哪个表中的两种量 成反比例关系?
1

09
8
7
6

5
4

3
2

1
⑵图1是表示汽车所行路程与相应耗油量关系 的图像,说一说有什么特点。
答:汽车所行路程与相应的耗油量是两种相 关联的量,耗油量随着所行路程和变化而变 化。所行路程增加,耗油量随着增加,所行 路程减少,耗油量也随着减少。 ⑶利用图像估计一下,汽车行驶55㎞的耗油 量是多少?
速度、时间、路程

速度×时间=路程

路程
= 速度
时间
路程
= 时间
速度
当速度一定时,也就是路程和时间的比的比值一 定,路程和时间成正比例。
当路程一定时,也就是速度和时间的乘积一定, 速度和时间成反比例。
当时间一定时,也就是路程和速度的什么一定, 这时,路程和速度成什么比例?
路程(千米)
180
150

B
120

90

60

A
30 ●
速度(千米/时)
180 150
120 ● A 90
60 ●

30
● ●B
0 2 4 6 8 10 12 时间(时) 0 2 4 6 8 10 12

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)一.解答题(共30小题)1.小明家的客厅长6m,宽4m,现在准备铺地砖,每块地砖的面积和所需要的地砖数量如表所示,600 1200 2400每块地砖的面积/cm2所需地砖的数量/块400 200 100所需地砖的数量与每块地砖的面积是否成反比例关系?为什么?2.根据x×y=40,填下表.y 20 40.5x 10 52.53.同学们做早操,每行站的人数与站的行数关系如表:8 12 16 24 48每行站的人数站的行数60 40 30 20 10(1)写出几组对应的行数和每行站的人数的乘积,并比较它们的大小.(2)这个乘积表示什么意义?用关系式表示它与以上两种量之间的关系.4.下列各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来.工作时间/时 1 2碾米质量/t 0.6 1.2杆高/m 5 9影长/m 2.5 4.55.一种铅笔每支售价0.5元,把下表填写完整.数量/支0 1 2 3 4 5 6 …总价/元0 0.5 …(1)把铅笔的数量与总价所对应的点在图中描出来,并连线.(2)买7支铅笔需要多少钱?(3)小丽买铅笔花的钱是小明的4倍,小丽买的铅笔支数是小明的几倍?6.工地要运一批水泥,每天运的吨数和运的天数如下表.每天运的吨数/吨60 30 20 15 10运的天数/天 1 2 3 4 6(1)表中相关联的两种量是和.(2)每天运的吨数增加,运的天数就会;每天运的吨数减少,运的天数就会.(3)表中表示的几种量的关系是一定,与成反比例.7.如图所示的图象表示斑马和长颈鹿的奔跑情况.(1)斑马的奔跑路程与奔跑时间是否成正比例关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑了多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?8.电脑兴趣小组的同学练习打同一份稿件,下表记录了每人打字所用的时间.欢欢笑笑乐乐跳跳打字所用的时间/分30 40 50 60平均每分钟打字数/80字(1)表中和是两种相关联的量,随着的变化而变化.(2)笑笑打完稿件共用了40分钟,他平均每分钟打个字;跳跳打完稿件共用了60分钟,他平均每分钟打个字,一共打了个字.(3)在本题中,一定,所以和成比例.9.捷悔希望小学操场上直立着4根不同长度的木桩,上午9时整,小霞同学测量出这些木桩的高度及其影子的长度如表木桩高度(米) 1.2 1.8 2.1 2.5影子长度(米)0.72 1.08 1.20 1.5木桩高度与影长的比(1)补充上表.(2)根据上表数据写两个比例.(3)小霞身高150厘米,这时她的影长是多少?10.(1)判断下列说法是否正确(对的画“√”,错的画“×”)①甲、乙两车是同时出发的.②甲和乙行驶的路程相同.③甲车比乙车速度快.(2)从图中可以看出,随着时间的增加,距离有什么变化?11.如图是A汽车行驶路程与耗油量的统计图:下表是B汽车行驶路程与耗油量关系表:耗油量/升3 6 9 12路程/千米20 40680如果驾驶A汽车,行驶50千米耗油多少升?12.根据题中的条件,回答下面的问题.某省打长途电话的时间与话费的对照表通话时间/分钟1 2 3 4 5 6 7 8 …话费/元0.300.60.91.21.51.82.12.4…(1).和是两种相关联的量,增加,也随着增加.(2).通话5分钟需付话费元,2.10元可通话分钟.(3).话费和通话时间这两种量中相对应的两个数的比值都是,这个比值实质表示的.(4).因为比值一定,所以表中的两种量是成的量,它们的关系叫做.13.判断下面各题中的两个量是否成正比例或反比例关系(1)全班人数一定,出勤人数与缺勤人数.(2)已知=3,y与x.(3)三角形的面积一定,它的底与高.(4)正方体的表面积与它的一个面的面积.(5)已知xy=1,y与x.(6)出油率一定,花生油的质量与花生的质量.14.购买同一种茶杯的数量和总价如表:数量/1 3 6 8 …个总价/15 45 90 120 …元用同样多的钱购买不同单价的茶杯和数量如表:单价/5 6 8 10 …元数量/24 20 15 12 …个每个表中两个量的变化各有什么规律?哪个表中的两个量成正比例关系?哪个表中的两个量成反比例关系?15.在下面成正比例关系的两个量的后面画“√”.(1)平行四边形的底一定,它的面积与高..(2)汽车行驶的速度一定,行驶的路程与时间..(3)正方形的面积和边长..(4)订阅《英语报》的份数和总钱数..(5)圆的周长和它的半径..(6)4A=12B(A、B均不为0),A和B..(7)圆的半径和它的面积..(8)李玲的体重和她的身高..16.判断下面每题中两种量是否成反比例,并说明理由.(1)比值一定,比的前项和后项.(2)被减数一定,减数和差.(3)修路的总米数一定每天修的米数和修路的天数.(4)花生的出油率一定,花生的重量和油的重量.(5)分母一定,分子和分数值.17.判断下面各题中的两种量是否成反比例关系,并说明理由(1)煤的数量一定,使用天数与每天的平均用煤量.(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数.(3)圆柱体积一定,圆柱的底面积与高.(4)在一块菜地上种的黄瓜与西红柿的面积.(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.18.如图,一个棱长为a的正方体,它的表面积与棱长是否成比例?体积与棱长是否成比例?19.x、y、z三个相关联的量,并有xy=z.(1)当z一定时,x与y成比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.20.判断下面各题中的两种量是否成正比例:(1)圆的周长和直径.(2)圆的面积和半径.(3)圆柱的底面半径一定,侧面积和高.21.根据表格填空:汽车行驶时间/时 3 5 7 9 11 13汽车行驶路程/千240 400 560 720 880 1040米(1)表中两种相关联的量是.(2)当时间扩大时,行驶的路程也随着;当时间缩小时,行驶的路程也随着.(3)在变化过程中,始终没有发生变化.(4)汽车行驶的时间和路程成关系.(5)当汽车行驶8时,路程是千米,汽车要到600千米的地方,需要时.22.下面各题中的量,哪些成正比例,哪些成反比例,哪些不成比例?(1)教室的面积一定,某班学生人数与人均占地面积比例.(2)大豆油的总质量一定,大豆的质量和出油率比例.(3)圆的半径和周长比例.(4)长方形的周长一定,长和宽比例.(5)一袋面粉用去的质量和剩下的质量比例.(6)长度一定的铁丝平均分成若干段,每段长度和截的段数.23.(2015•广东)一些长方形的长与宽的长度变化如下表.长/厘米 5 7.5 10 12.5 15 17.5 …宽/厘米 2 3 4 5 6 7 …(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)24.(2015春•利辛县校级月考)一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(1)填写下表.长度/米 1 2 3 4 5总价/元6 0(2)根据表中的数据,在如图中描出长度和总价对应的点,把这些点按顺序连起来.(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?25.(2015•龙泉驿区校级三模)右面的图象表示小军骑车的路程和时间的关系.(1)看图填表.时间/分30路程/千米24(2)小军骑车行驶的路程和时间成比例,这是因为:.(3)利用图象估计,小军20分钟大约行千米;行20千米大约需要分钟.行驶区间车次起始时刻到站时刻经历时间全程甲地到乙地K12 14:26 22:26 8时640千米26.(2015•衡水模拟)如图是某厂甲、乙两个车间各生产600个零件过程中,生产零件的个数与生产时间的关系图:(1)从图上可以看出两个车间生产零件的个数分别与它们所用的时间成比例.(2)乙车间生产天后赶上甲车间生产的个数,甲、乙两个车间完成任务时,车间所用的时间多(3)当乙完成任务时,甲还有个没做,车间工作效率高,高%.27.(2015春•台安县期中)买笔记本的数量和钱数的关系如下表:数量(本) 1 2 3 4 5 6总价(元)1.53(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?28.(2015春•海安县校级期中)根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数1 2 3 4 5 …纸的张数25 50 75 100 125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10020030004005000…剩下的张数90080070006005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900 7506045036…纸的张数10 12 15 20 25 …(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.29.(2014•佛山)小丽用自制的橡皮筋来称量物体质量.她把测量的数据制作成的统计图和统计表.(皮筋最多可称量2kg质量)物体质量与皮筋伸长长度的统计表所称质量/g 皮筋伸长长度/cm0 0100 26450……a(a<2000)(1)根据统计图补充表格.(2)填空,我们可以发现与所称物体的质量成(选填“正比”或“反比”)(3)小丽用此皮筋称一袋苹果,皮筋长43厘米,求这袋苹果的质量.30.(2014春•利川市期末)某商场全部商品打八折出售(如图).原价10元的商品,现价8元,原价50元的商品,现价元.请你在左图中描出这个点.如果用x表示商品的原价,y表示商品的现价,那么y=,现价与原价成比例.。

人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)

人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)

第1页,总12页绝密·启用前人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列各题中两种量成反比例关系的是( )。

A .购买面值1.5元的邮票,邮票枚数与总价 B .三角形面积一定,底和高C .车轮直径一定,车轮行驶的路程和转数D .如果x =3y ,x 和y2.a 和b 成反比例关系的式子是( )。

A .5a =4b B .a 5=b 4C .5a =4bD .5a =b +43.两个量成反比例的是( ). A .圆柱的体积一定,它的底面积与高 B .看一本书,已看的页数和剩下的页数 C .圆的周长和它的直径 D .单价一定,总价和数量4.下面各题中的两种量成反比例关系的是( )。

A .单价一定,总价与数量B .圆柱的体积一定,圆柱的底面积与高C .圆的面积与它的半径第2页,总12页5.运输队要运输一批货物,运走的吨数与剩下的吨数( ) A .成正比例 B .成反比例 C .不成比例6.( )中的两种量不成比例。

A .从北京到广州,列车行驶的平均速度和所需时间B .一箱苹果,吃去的个数和剩下的个数C .同一时刻同一地点物体的高度和影子的长度D .三角形的面积一定,它的底和高 7.下列各项中,两种量成比例的是( )。

A .圆的面积和它的直径 B .被减数一定,差与减数C .工作总量一定,工作效率和工作时间8.下面各选项中的两个变化的量,成反比例的是( )。

A .自行车行驶的路程一定,车轮的周长与车轮需要转动的圈数 B .一个人跑步的速度和他的体重。

C .三角形的高一定,它的面积和底。

D .笑笑从家步行到学校,已走的路程和剩下的路程 9.汽车总辆数一定,每排停放的辆数和停放的排数( )。

A .成正比例 B .成反比例 C .不成比例 D .不成反比例 二、填空题10.A =7B ,A 和B 成_____比例,7÷A=B ,A 和B 成_____比例。

人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。

2. 判断下列各题中,两种量是否成正比例关系,请说明理由。

(1)订阅《中国少年报》的金额和份数。

________(2)人的年龄和体重。

________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。

(1)把表格填完整。

(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。

x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。

(1)订《少先队员》的份数和总价钱。

________(2)三角形的面积一定,底和高。

________(3)总人数一定,行数和每行人数。

________(4)总价一定,单价与数量。

________已知x和y是反比例关系,根据表中的条件,填写下表。

全年级总人数一定,每班人数与班数成________比例。

=y(x不为0),那么x和y成________比例。

如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。

判断题。

(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。

________(判断对错)人的体重和年龄成正比例。

________(判断对错)糖水的含糖率一定,糖和水成反比例。

________(判断对错)正方形面积与边长成反比例。

________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。

________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。

________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。

人教版六年级数学下册练习:反比例的意义及相关联两种量的关系(B)(教师版)

人教版六年级数学下册练习:反比例的意义及相关联两种量的关系(B)(教师版)

4.2.2反比例的意义及相关联两种量的关系(B)1.用字母表示的正比例关系式是________,反比例式是________.【答案】k(一定)=yxxy=k(一定)【解析】【分析】成正比例关系的两种量,相对应的比值一定,反比例关系的两种量,相对应的乘积一定。

【详解】用字母表示正比例关系式是:k(一定)=yx;反比例关系是:xy=k(一定)故答案为:k(一定)=yx;xy=k(一定)【点睛】本题考查正反比例的意义以及用字母表示数,利用定义来写式子。

2.粮库要运一批稻米,每天运的吨数和需要的天数如下表:每天运的吨数7236241812…需要的天数12346…(1)每天运的吨数和需要的天数成( )比例。

(2)为什么?请在下面横线上简要的写一写。

________________【答案】反72×1=72(吨)、36×2=72(吨)、24×3=72(吨),每天运的吨数×天数=总吨数(一定)【解析】【分析】根据xy=k(一定),x和y成反比例关系,进行分析。

【详解】(1)每天运的吨数和需要的天数成反比例。

(2)72×1=72(吨)、36×2=72(吨)、24×3=72(吨),每天运的吨数×天数=总吨数(一定),所以每天运的吨数和需要的天数成反比例。

【点睛】关键是理解反比例的意义,积一定是反比例关系。

3.路程一定,速度和时间成( )比例,圆的半径和面积( )比例,单价一定,总价和数量成( )比例。

【答案】反不成正【解析】【分析】判断两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例。

【详解】①因为:速度×时间=路程(一定),所以速度和时间成反比例;①因为S=πr2,Sr=πr,圆周率是定值,r是个变量,所以圆的半径和面积不成比例;①因为:总价÷数量=单价(一定),所以总价和数量成正比例。

人教版六年级数学下册练习:正比例的意义及相关联两种量的关系(B)(教师版)

人教版六年级数学下册练习:正比例的意义及相关联两种量的关系(B)(教师版)

4.2.1正比例的意义及相关联两种量的关系(B)1.在比例里,两个外项的积( )两个内项的积。

如果用字母y和x表示两种相关联的量,用k表示它们的比值(一定),正比例关系式( )。

【答案】等于yx=k(一定)【解析】【分析】【详解】(1)根据比例的基本性质,在比例里,两个外项的积等于两个内项的积;(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:yx=k(一定)。

2.已知:A×34=B×13,A与B成_____比例,A∶B=_____∶_____。

【答案】正49【解析】【分析】(1)要判定A与B成什么比例关系,必须根据式子,进行推导,然后根据正、反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定成什么比例关系;(2)逆用比例的基本性质,把等式A×34=B×13改写成一个外项是A,一个内项是B的比例,则和A相乘的数34就作为比例的另一个外项,和B相乘的数13就作为比例的另一个内项。

【详解】(1)因为A×34=B×13,所以A:B=13∶34=49(一定),是A和B对应的比值一定,符合正比例的意义,所以A和B成正比例;(2)如果A×34=B×13,那么A:B=13∶34=4∶9【点睛】此题考查根据正、反比例的意义辨识两种相关联的量成正比例还是反比例关系;也考查了比例性质的逆运用。

3.正方形周长C=4a,所以,正方形的和成正比例。

【答案】周长边长【解析】【分析】判断两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例。

【详解】因为:C =4a,那么C a =4,则正方形的周长和边长成正比例。

【点睛】此题关键就看哪两种量是对应的比值一定。

4.如果要使平行四边形的面积和底成正比例,必须使( )一定。

六年级数学《正比例和反比例》专题知识

六年级数学《正比例和反比例》专题知识

六年级数学《正比例和反比例》专题知识一、变化的量与应用1、变化的量:生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

2、固定的量:不会因为某一个变量而改变的量,但有些固定的量是相对的,有些是绝对的。

3、应用练习第一类:概念型例1、一辆车从甲地开往乙地,与速度相关联的量是()。

A. 单价B. 数量C. 时间【随堂练习】小乐用一根长绳做跳绳,与跳绳长度相关联的量是( )。

A跳绳的数量B跳绳的粗细C跳绳的质量例2、一个正方形,( )不是变化的量。

A.正方形边的条数B.正方形的边长C.正方形的面积【随堂练习】手工课老师给六(1)班的每位学生发了一根长60厘米的彩带,让他们制作大小不同的花朵。

则( )不是变化的量。

A花朵的数量B花朵的大小C彩带的长度第二类:图表型例3、如图是笑笑从出生到6岁的年龄与体重变化表,笑笑2岁时,体重是____千克。

例4、下图是某洗澡房水加热过程中水温度变化的情况表,在一定时间范围内,水温随着( )的变化而变化。

A加热时间B间隔长短C体积大小例5、洋洋分别称量了某种液体不同体积时的重量,并记录在了表格中,如下表。

当液体的体积是100立方厘米时,重( )g。

例6、笑笑看一本书,在看书之前,她做了一个计划,如下表。

笑笑6天能看____页。

例7、下图是妙想记录的一天气温。

( )时到( )时温度变化最大。

A 8,12B 4,8C 14,17二、正比例与应用1、定义:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

2、判断依据(1)比值一定,两个数成正比,如BA=2 或者 A ÷B=2 或者 A :B=2 或者A=2B(2)两个数的变化,同时扩大或者同时缩小(简称“同大同小”) 3、正比例的应用第一类:判断是否成正比例例1、下列选项中,表示x 和y 成正比例关系的是( )。

最新人教版六年级下册比例的各章节知识点以及练习题

最新人教版六年级下册比例的各章节知识点以及练习题

最新六年级下册比例的各章节知识点以及练习题表示两个比相等的式子叫做比例。

1、思考一下,下面哪一组中的两个比可以组成比例,并写出相应的比例。

7∶14和6∶12 13∶14和16∶183.5∶7和1∶14 0.4∶1.6和3∶122、把下面左、右两边相等的比用线连起来。

0.8∶3.2 10∶4 2.5∶4 4.5∶18 1∶25 2.7∶1.50.9∶0.5 2∶3.23、写出比值是58的两个比,再组成一个比例: 。

4、( )叫做比例。

5、火车4小时行240千米,火车行驶的路程和时间的比是( )∶( ),化成最简整数比是( )∶( ),比值是( )。

6、把159106:改写成比的形式是( ):( )=( ):( ) 7、写出比值是43的两个比:( ):( )、( ):( ),再把他们组成比例是: 。

8、能与41:51:组成比例的是( )。

A. 51:41B. 4:5C. 5:4D. 4151:9、下列每组中的四个数,可以组成比例的是( )。

A. 0.3、4.5、0.5和217B. 0.3、4.5、6143和C. 1.2、1.6、6143和10、在线段AF 中,AB=BC=CD=DE=EF ,下面的四个式子中,哪一个是比例,填可以或者不可以?(1)AB :BC=AC :DE ( )(2)AE :CD=BF :BE ( ) (3)AC :BC=EF :DF ( ) (4)AD :BC=CF :EF . ( ) 组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

比例的基本性质:在比例里,两个外项的积等于两个内向的积。

这叫做比例的基本性质。

1、在比例324.243.0 中,( )和( )是外项,( )和( )是内项。

2、组成比例的四个数叫做比例的( ),中间的两个数叫做比例的( ),两端的两个数叫做比例的( )。

3、在比例里两个( )积等于两个( )积这叫做比例的基本性质。

4、合唱组人数比绘画组人数多20%,合唱组人数与绘画组人数的比是( )。

人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)一、判断下面每组中的量是否成正比例,对的打“√”错的打“×”.1. 订阅《小学生天地》的份数和钱数成________比例。

2. 一个人的年龄和体重________比例。

3. 除数一定,被除数和商________比例。

4. 平行四边形的底一定,面积和高成________比例。

5. 三角形的面积一定,底和高不成比例。

________.(判断对错)=k,所以y和x成正比例。

________.(判断对错)6. 因为yx7. 圆的面积与半径成正比例关系。

________.(判断对错)8. 3x=5y,那么x和y成正比例关系。

________.(判断对错)9. 成正比例的两个量,一个量扩大,另一个也在扩大。

________.(判断对错)10. 一袋面粉,吃掉的和剩下的成反比例关系。

________.(判断对错)二、解答题(共10小题,满分0分)下表中的x和y成正比例,请把表格填写完整。

=20.请完成下表。

如果x和y成正比例,并且yx已知x和y成正比例关系,请完成下列表格。

已知x和y成反比例关系,请完成下表。

购买面粉的重量和钱数如下表,根据表填空。

(1)________和________是两种相关联的量,________随着________的变化而变化。

(2)与总价7.6元相对应的重量是________千克;与6千克相对应的总价是________元。

(3)总价与重量中相对应的两个数的比值所表示的意义是________.(4)因为比值一定,所以表中总价和重量叫做成________的量。

小英和妈妈的年龄变化情况如下,把表填写完整。

母女的年龄成正比例吗?为什么?甲、乙两辆车速度比是8:9,那么行驶相同的一段路,两辆车的时间比是多少?对应训练:甲、乙两车的速度比是8:9,那么在相同的时间里,两车所行使的路程比是多少?一列火车从甲地开往乙地,2小时行了280千米,从乙地开往丙地,5小时行了700千米。

六年级数学正比例和反比例的意义性质+练习+总结

六年级数学正比例和反比例的意义性质+练习+总结

正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。

行数就少了。

生活中还有哪些成正比例的量如: A.长方形的宽一定,面积和长成正比例。

B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。

C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

D.地砖的面积一定,教室地板面积和地砖块数成正比例。

2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表一列火车行驶的时间和路程时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。

根据计算,你发现了什么相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

即:路程/时间=速度(一定)2、例2:(1)花布的米数和总价表(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来 x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

六年级下册数学试题- 比例的意义性质(无答案)人教版

六年级下册数学试题-   比例的意义性质(无答案)人教版

【本节知识框架】知识点一:比例的意义和基本性质 知识点二:比例尺、正比例、反比例【知识点讲解】知识点一:比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。

2、比例的认识:组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

如: 80:2= 200:5探索发现:在比例里,两个外项的积等于两个内项的积。

如果把比例改写成分数形式,等号两边的分子分母交叉相乘,所得的积依然相等。

2.4 : 1.6 = 15 : 10 1.6×15=2.4×10 内项积=外项积1.6 :2.4 = 310 :5 2.4×310=1.6×5内项积=外项积60 : 15 = 40 : 10 15×40=60×10内项积=外项积6.14.240602.4×40=1.6×60总结:比例的基本性质:在比例里,两个外项的积等于两个内项的积。

520028080×5=2×200(交叉相乘,积相等)【知识归纳】判断两个比能不能组成比例,有两种方法:(1)看它们的比值是否相等。

若比值相等,则能组成比例;若比值不相等,则不能组成比例。

(2)先假设两个比能组成比例,然后根据比例的基本性质,两个外项的积就应该等于两个内项的积,若不相等,就不能组成比例。

例题11、请写出-一个比,使之与4:8能够组成比例。

4:8=( ):( )。

内外2、比例6:11=12:22写成分数形式是( ),根据比例的基本性质写成乘法的形式是( )。

3、写出两个比值都是1. 2的比,组成比例是( )。

4、如果7a=5b .那么a :b=( ):( ),a :5=( ):( )。

5、甲数的32等于乙数的43,求甲数与乙数的比。

【变式练习】1、在一个比例里,两个内项的积是3.6,一个外项是43,另一个外项是( )。

2、在比例3.02.08.42.3=中,两个内项是( )和( ),两个外项是( )和( )。

正比例应用题练习题及答案

正比例应用题练习题及答案

正比例应用题练习题及答案正比例应用题练习题及答案一、判断。

1、工作总量一定,工作效率和工作时间成反比例。

2、图上距离和实际距离成正比例。

3、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y 不成比例。

4、分数的大小一定,它的分子和分母成正比例。

5、在一定的距离内,车轮周长和它转动的圈数成反比例。

6、两种相关联的量,不成正比例,就成反比例。

二、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例,写在括号里。

1、装配一批电视机,每天装配台数和所需的天数。

2、正方形的边长和周长。

3、水池的容积一定,水管每小时注水量和所用时间。

4、房间面积一定,每块砖的面积和铺砖的块数。

5、在一定时间里,加工每个零件所用的时间和加工零件的个数。

6、在一定时间里,每小时加工零件的个数和加工零件的个数。

三、把下面的数量关系式补充完整:单价×=总价单产量×面积=×时间=路程总价÷=单价总产量÷=单产量路程÷=时间总价÷=数量总产量÷=面积路程÷=速度工作效率×=工作总量图上距离÷=比例尺工作总量÷工作时间=实际距离×=图上距离工作总量÷工作效率=÷比例尺=实际距离三、用正比例的知识解答下列各题。

1、小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?2、小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?3、运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?4、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?5、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?6、一种水管,40米重60千克。

现称得一捆水管重270千克,这捆水管共长多少米?7、一榨油厂用400千克芝麻可以榨油144千克。

六年级下册数学试题-正比例和反比例的意义知识点总结加典型例题(不含答案)人教版

六年级下册数学试题-正比例和反比例的意义知识点总结加典型例题(不含答案)人教版

正比例和反比例的意义知识点一:正比例和反比例的意义 (1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:()一定k xy= 例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。

工总工时 =工效(一定) 工总和工时是成正比例的量 路程时间=速度(一定) 所以路程与时间成正比例。

(2)反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x ×y =k (一定)例如,长×宽=面积(一定) 长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定) 每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。

(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。

知识点三:正比例和反比例的图像是一条什么线? (1)正比例关系的图象是一条过原点的直线。

(2)反比例关系的量是一条不过原点的曲线。

知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。

(2)若符合()一定k xy=,则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反比例;否则,这两种量就不成比例关系。

【典型例题】题型一:根据图标填写信息例1 :购买面粉的重量和钱数如下表,根据表填空。

六年级数学下册试题-比例的应用人教版含解析

六年级数学下册试题-比例的应用人教版含解析

六年级数学下册试题-比例的应用人教版含解析比例的应用【运用比例解决问题】(2019﹒天河区模拟)晴晴全家“五一”到中山公园游玩,拍了许多照片,她买了一本相册,如果每页放6张照片,刚好放16页,现在晴晴打算每页只放4张,25页够放下这些照片吗?(用比例解)【考点】比例的应用.用比例解决问题【分析】根据照片的数量是一定的,每页放相片的张数×放照片的页数=照片的数量(一定),由此判断每页放相片的张数与放照片的页数成反比例,设出未知数,列出比例解答即可.【解答】解:设每页只放4张,可以放x 页,4x =6×16,x =6×164, x =24,因为25>24,所以25页够放下这些照片,答:25页够放下这些照片.【点评】解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.例2 (2019春﹒法库县期末)淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】【考点】比例的应用.比例的应用【专题】比和比例应用题.【分析】已知淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,设笑笑收集了x 张邮票,据此列比例解答.【解答】解:设笑笑收集了x 张邮票,3:5=36:x3x =5×36x =5×363x =60.答:笑笑收集了60张邮票.【点评】此题考查的目的是理解掌握比例的意义、比例的基本性质及应用.例3 一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。

如果要4小时到达,每小时要行多少千米?(1)这道题里的路程是一定的,________和________成_______比例。

所以两次行驶的________和________的________________是相等的。

(2)如果设每小时需要行驶X千米答:每小时需要行驶千米。

(3)如果把例2中的第三个已知条件和问题互换一下:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。

最新2021年人教版六年级数学下册第四单元 比例 正比例和反比例(3课时)

最新2021年人教版六年级数学下册第四单元 比例 正比例和反比例(3课时)
图象的特点:从 (0,0)出发的一 条射线。
状元成才路
(3)利用图象估计一下,汽车行驶 55km的耗油量是多少?
汽车行驶55km 的耗油量大约 是7.3L。
状元成才路
2.同一时间、同一地点测得3棵树的树高及其 影长如下表。
树高/m 2 3 6 影长/m 1.6 2.4 4.8
(1)在下左图中描出表示树高与对应影长的 点,然后把它们连起来,观察图象的特点。
状元成才路
新课导入 已知路程和时间,怎样求速度? 速度 = 路程÷时间 已知总价和数量,怎样求单价? 单价 = 总价÷数量
已知工作总量和工作时间,怎样求工作效率? 工作效率 = 工作总量÷工作时间
状元成才路
2.正比例和反比例
正比例
R·六年级下册
状元成才路
探索新知
文具店有一种彩 带,销售的数量与总 价的关系如下表。
数量/m 1 2 3 4 5 6 7 8 ... 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
状元成才路
数量/m 1 2 3 4 5 6 7 8 ... 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
观察上表,回答下面的问题。 (1)表中有哪两种量? (2)总价是怎样随着数量的变化而变化的? (3)相应的总价与数量的比分别是多少?
总价 数量
=单价
状元成才路
总结归纳
两种相关联的量,一种量变化,另一种 量也随着变化,如果这两种量中相对应的两 个数的比值一定,这两种量就叫做成正比例 的量,它们的关系叫做正比例关系。
状元成才路
一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时) 1
2
3

六年级下册数学第二学期练习题第4单元 比例 正比例和反比例

六年级下册数学第二学期练习题第4单元 比例 正比例和反比例

t和组装的手机总数之第1页/共4页(3)如果这批组装任务需要8天完成。

每天组装多少部手机?13.京沪高铁的火车平均行驶速度与行驶完全程所需时间如下表。

(2)如果用v表示火车的平均速度,t表示驶完全程所需时间。

t与v个关系式吗?(3)如果火车的平均速度为325千米/时,驶完全程需要多长时间?14.下面的图象表示斑马和长颈鹿的奔跑情况。

(1关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?,强化了记忆,又发展了思维,为说打下了基础。

这个工作可让学生分组负责收集整理,登在小黑板上,目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,有x、y、z三个相关联的量,并有xy=z。

对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

(1)当z一定时,x与y成______比例关系。

(2)当x一定时,z与y成______比例关系。

(3)当y一定时,z与x成______比例关系。

一个长方形的面积是36cm2,用x和y表示它的长和宽。

y与x成什么比例关系?如果把它们的关人教版(新课标)第4单元比例正比例反比例练习题第3页/共4页(5)总页数=已读页数+未读页数,所以未读页数与已读的页数不成正比例关系。

3.下面是某几种汽车所行路程和耗油量的对应数值表。

(2)下图是表示汽车所行路程与相应耗油量关系的图象,说一说它有什么特点。

(3)利用图象估计一下,汽车行驶55km 的耗油量是多少?解:(1)成正比例关系,因为耗油量:所行路程=行驶1km 的耗油量,而行驶1km 的耗油量一定。

(2)图像是一条经过原点的直线。

(3)汽车行驶55km 的耗油量大约是7.3L 。

六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)

六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题  人教版(含解析)

人教版六年级数学下册《第4章比例第2课时正比例和反比例》同步测试题一.选择题(共6小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数3.圆的周长和直径()A.成正比例B.成反比例C.不成比例4.a和b成反比例关系的式子是()A.5a=4b B.=C.5a=D.5a=b+45.如果ab=3,那么a与b()A.不成比例B.成反比例C.成正比例6.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共6小题)7.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.8.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x9.少先队员每人做好事的件数一定,做好事的总件数与做好事的少先队员人数成正比例..10.表中如果x和y成正比例,那么空格里应填;如果x和y成反比例,那么空格里应填.x26y2411.一种练习本销售的数量与总价的关系如表.数量/本12345总价/元 5.51116.52227.5(1)表中有和两种相关联的量,总价随着的变化而变化,且总价与相应数量的比值都是,实际就是练习本的.(2)像这样,两种的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫做的量,它们的关系叫做关系.上表中,总价和数量是成的量,总价与数量成关系.12.在比例中,两个外项的积一定,两个两内项成比例.三.判断题(共5小题)13.工作总量一定,工作效率和工作时间成正比例.(判断对错)14.在一定的距离内,车轮周长和它转动的圈数成反比例..(判断对错)15.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例.(判断对错)16.式子=k(一定)表示的是正比例关系..(判断对错)17.如果a和b成正比例,b和c成反比例,那么a和c一定成反比例..(判断对错)四.应用题(共3小题)18.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)19.下面的图象表示小强从甲地到乙地不同的速度和所对应的时间.(1)在这个过程中,哪种量没有变?(2)速度和所对应的时间成什么比例关系?(3)不计算,观察图象,如果每小时行40km,那么从甲地到乙地大约需要多少小时?20.食堂有一批大米.如表记录的是每天的用量和所用的天数.每天的用量/kg40255所用的天数8102080(1)把上表填写完整.(2)每天的用量和所用的天数成反比例吗?为什么?(3)如果每天用8kg,那么可以用多少天?(4)如果计划用100天,那么每天应该用多少千克?五.操作题(共2小题)21.甲、乙两台机器的工作时间和耗电量如表.时间/时123456甲机器耗电量/千瓦时306090120150180乙机器耗电量/千瓦时3065100130160200根据表中的数据,在下图中描出每一组工作时间与耗电量所对应的点,再把它们按顺序连接起来.(1)根据画出的图象,机器的工作时间和耗电量成正比例.(2)根据画出的图象,工作2.5小时,甲机器的耗电量大约是千瓦时,乙机器的耗电量大约是千瓦时.22.文具店有一种电动橡皮擦,销售的数量与总价的关系如下表:数量/个246总价/元163248(1)把橡皮擦的数量与总价所对应的点在图中描出来,并连线;(2)利用图象估计7个这样的橡皮擦总价是元.六.解答题(共2小题)23.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?24.一种岩石的体积与质量的关系如下表.体积/cm326101213质量/g618303639(1)在如图中描出各点,并顺次连起来.(2)这种岩石的体积与质量成比例吗?成什么比例?(3)如果一块岩石的体积是8cm2,那么这块岩石的质量是多少克?参考答案与试题解析一.选择题(共6小题)1.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.【解答】解:A,因为2a=5b,所以=(一定),所以a、b成正比例;B,因为a×7=,所以=14(一定),所以a、b成正比例;C,因为a×=1,所以ab=3(一定),所以a、b成反比例;故选:C.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.2.【分析】判断两种相关联的量之间是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:A.圆的面积=π×圆的半径2,不符合正比例的意义,所以圆的半径和圆的面积不成正比例关系;B.因为写字总时间=写字总数×写一个字所用时间,所以写字总时间÷写一个字所用时间=写字总数(一定)符合正比例的意义,写字总数一定,写一个字所用时间和写字总时间成正比例关系;C.因为每分钟写字个数×写字总时间=写字总数(一定),符合反比例的意义,不符合正比例的意义,所以写字总数一定,每分钟写字个数和写字总时间不成正比例关系;D.两个互相咬合的齿轮,齿轮的齿数是一定的与转数没关系,不符合正比例的意义,所以两个互相咬合的齿轮,齿轮的齿数和转数不成正比例关系,故选:B。

六年级下正比例或反比例练习题(可编辑修改word版)

六年级下正比例或反比例练习题(可编辑修改word版)

一、判断下面两个量是否成正比例或反比例,说明理由。

1、每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数。

2、看一本书,每天看的页数和所看的天数。

3、房间的面积一定,铺地砖的块数与每块地砖的面积。

4、每块地砖的面积一定,铺地面积与所需地砖的块数。

5、A、B 、C 三种量的关系是:A×B =C(1)如果 A 一定,那么 B 和 C 成()比例;(2)如果 B 一定,那么 A 和C 成()比例;(3)如果 C 一定,那么 A 和 B 成()比例.6、4X=Y,X 和Y 成()比例。

4÷X=Y ,X 和Y 成()比例。

7、7.35:()=20÷16==()%=()(填小数)二、用比例尺知识解决问题。

1、一条跑道全长200 米,在图纸上的长度是10 厘米。

这幅图的比例尺是多少?2、一个零件的实际长度是8 毫米,在设计图上用4 厘米表示,这幅图的比例尺是多少?3、在一幅比例尺是1:4500000 的地图上,量得甲乙两地之间的距离是20 厘米,甲乙两地的实际距离是多少千米?4、在一张图纸上,量得学校操场的长是12 厘米,宽是8 厘米。

这张图纸的比例尺是1:200,这个操场的实际面积是多少平方米?5、甲乙两地的实际距离是300 千米,在一幅地图上量得两地之间的距离是6 厘米。

在这一幅地图上,又量得甲丙之间的距离是4 厘米,甲丙的实际距离是多少千米?三、用正反比例解决问题。

1、光辉服装厂4 天加工服装160 套,照这样计算,生产360 套服装,需要多少天?2、化肥厂有一批煤,每天用12 吨,可用40 天。

如果这批煤要用60 天,每天只能用多少吨?3、修路队3 天修路150 米,照这样的速度,再修10 天,又修多少米?4、一辆汽车从甲城开往乙城,每小时行45 千米,5 小时到达。

返回时,每小时行驶50 千米,几小时回到甲城?5、一间房子,用面积是16 平方分米的方砖铺地,需要54 块。

六年级数学下册典型例题系列之第四单元正比例和反比例部分(原卷版)人教版

六年级数学下册典型例题系列之第四单元正比例和反比例部分(原卷版)人教版

六年级数学下册典型例题系列之第四单元正比例和反比例部分(原卷版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第四单元正比例和反比例部分。

本部分内容主要以正比例和反比例的认识、判断及图表应用为主,而利用正比例和反比例解决生活实际问题则编辑在《比例的应用部分》中。

本部分内容偏理解,建议根据学生情况选择性进行讲解,一共划分为九个考点,欢迎使用。

【考点一】认识正比例。

【方法点拨】一、正比例的意义两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,用字母表示为k xy(一定) 二、判断两种量是否成正比例关系的方法先找变量(找两种相关联的量),再看定量(看两种相关联的量中相对应的两个数的比值是否一定),最后作出判断。

三、正比例关系图象的特点正比例关系图象是一条从(0,0)出发的无限延伸的射线,从图象中可以直观地看到两种量的变化规律,不用计算就可以根据一种量的值直接找到对应的另一种量的值。

【典型例题】科学小组在同一时间、同一地点进行观察实验,测得竹竿的高与竿影的长如下表。

(1)说一说竿影的长与竹竿的高的变化关系。

(2)写出竿影的长与竹竿的高的比,你有什么发现?((3)竹竿的高与竿影的长是不是成正比例?说明理由。

【对应练习1】乘船的人数与所付船费如下表。

(1)表格中的()和()是两种相关联的量,船费随着()的变化而变化;(2)船费与人数数量中相对应的两个数的比值是(),这个比值实际上表示();(3)因为每人的()一定,所以()和()成()比例关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例和反比例判断的练习题
设计者:民大附小周胜琼
1.根据条件填写下表,并回答问题。

(1)每箱苹果的个数一定,运来苹果的箱数和苹果的总个数如下表。

①请把表格填写完整。

②箱数和总个数是怎样变化的?
③这里哪一个量不变?
④箱数和总个数成什么比例?
(2)苹果的总个数一定,每箱的个数与所装的箱数情况如下表。

①请把表格填写完整。

②每箱的个数和箱数是怎样变化的?
③这里哪一个量不变?
④每箱的个数和箱数成什么比例?
(3)看一本书,每天看的页数和所看的天数情况如下表。

①请把表格补充完整。

②每天看的页数和所看的天数成什么比例?说明理由。

(4)征订同一种《新年感恩贺卡》,征订的份数与应付的钱数如下表。

①请把表格补充完整。

②征订的份数与应付的钱数成什么比例?说明理由。

2.判断下面各题中的两种量是否成正比例或反比例或不成比例。

(1)每袋面粉的质量一定,面粉的总质量和袋数。

()
(2)购买苹果的数量一定,苹果的单价和总价。

()
(3)一捆电线,每次用的长度和所用的次数。

()(4)一捆电线,用去的长度和剩下的长度。

()(5)三角形的底一定,它的面积与它的高。

()(6)圆的周长和它的半径。

()(7)圆的面积和它的半径。

()(8)在一间房里铺地砖,铺砖的块数和每块砖的面积。

()(9)用同样的砖铺地,铺地的面积和所需要的块数。

(10)汽油的升数一定,汽车行驶的千米数和行1千米的耗油量。

()3..选择。

(将正确答案的序号填在括号里)
(1)分子一定,分数的分母和分数值。

()
A.成正比例B.成反比例C.不成比例
(2)和一定,一个加数和另一个加数。

()
A.成正比例B.成反比例C.不成比例
(3)比的后项一定,比的前项和比值。

()
A.成正比例B.成反比例C.不成比例
(4)合格产品数一定,产品总数和合格率。

()
A.成正比例B.成反比例C.不成比例
(5)如果Y=8X,那么X和Y。

()
A.成正比例B.成反比例C.不成比例
(6)如果Y= X
7, 那么X和Y。

()
A.成正比例B.成反比例C.不成比例
(7)如果Y= 7
X, 那么X和Y。

()
A.成正比例B.成反比例C.不成比例
(8)在汽车每小时行驶的路程、所用的时间和行驶的总路程这三个量中,成正比例关系是(),成反比例关系是()。

A.汽车每小时行驶的路程一定,所用的时间和行驶的总路程。

B.汽车行驶的总路程一定,每小时行驶的路程和所用的时间。

C.汽车行驶的时间一定,每小时行驶的路程和行驶的总路程。

4.将下面的表格填写完整。

5.
正比例和反比例(练习)
教学目标
1.进一步理解正、反比例的意义,2.能正确判断正、反比例.
教学重点
正、反比例的联系和区别.
教学难点
能正确判断正、反比例.
教学过程
一、基本练习
(一)、判断.
1.一个因数不变,积与另一个因数成正比例.()
2.长方形的长一定,宽和面积成正比例.()
3.大米的总量一定,吃掉的和剩下的成反比例.()
4.圆的半径和周长成正比例.()
5.分数的分子一定,分数值和分母成反比例.()
6.铺地面积一定,方砖的边长和所需块数成反比例.()
7.铺地面积一定,方砖面积和所需块数成反比例.()
8.除数一定,被除数和商成正比例.()
(二)、选择.
1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()
A.成正比例B.成反比例C.不成比例
2.和一定,加数和另一个加数.()
A.成正比例B.成反比例C.不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().
A.汽车每次运货吨数一定,运货次数和运货总吨数.
B.汽车运货次数一定,每次运货的吨数和运货总吨数.
C.汽车运货总吨数一定,每次运货的吨数和运货的次数.
(三)、思考.
如果,和成()比例,则∶=()∶()
二、指导练习
例1.平行四边形的高一定,它的底和面积成什么比例?
分析:根据题意,首先找出不变量:平行四边形的高.然后求出不变量,根据平行四边形的面积=底×高,得出:,最后作出判断.
解:因为,高一定,就是平行四边形的面积与底的比值一定.所以平行四边形的高一定,它的面积和底成正比例.
例2.被除数一定,商和除数成什么比例?
分析:首先,确定不变的量是被除数.然后求出不变量:商×除数=被除数.最后作出判断.
解:因为被除数一定,也就是商与除数的乘积一定,所以,被除数一定,商和除数成反比例.
例3.小明的年龄和他的体重是否成比例?
分析:一个人的年龄与他的体重虽然也是一对相关联的量,但是这两个量的变化并没有什么规律,找不出哪个是不变量,因此,小明的年龄和他的体重不成比例.
解:小明的年龄和他的体重不成比例.
例4.路程一定,已走的路程和未走的路程是否成比例?成什么比例?
分析:因为路程一定,已走的路程和未走的路程可以列出如下关系式:已走的路程+未走的路程=全路程,从关系式看出虽然已走的路程和未走的路程两种量相关联,但是多少的变化既不是商一定,也不是积一定,因此不成比例.
解:路程一定,已走的路程和未走的路程不成比例.
例5.正方形的边长和面积是否成比例?为什么?
分析:因为正方形的面积=边长×边长,虽然可以写成乘法算式.并且边长变化,面积也在发生变化,但其变化的规律不一样,如,边长若扩大2倍,面积就要扩大2×2=4倍.另外,如果把
这个关系式写成除式,便可发现这个关系式中没有一定量,因此不符合正比例意义,正方形的边长和面积不成比例.
解:正方形的边长和面积不成比例.
三、巩固练习
练习七第9、10、11、题
正反比例单元练习题
姓名:
一、判断题:
1、圆的面积和圆的半径成正比例。

()
2、圆的面积和圆的半径的平方成正比例。

()
3、圆的面积和圆的周长的平方成正比例。

()
4、正方形的面积和边长成正比例。

()
5、正方形的周长和边长成正比例。

()
6、长方形的面积一定时,长和宽成反比例。

()
7、长方形的周长一定时,长和宽成反比例。

()
8、三角形的面积一定时,底和高成反比例。

()
9、梯形的面积一定时,上底和下底的和与高成反比例。

()
10、圆的周长和圆的半径成正比例。

()
二、判断下面每题中的三个量成什么比例?
(1)速度、路程和时间(2)工作总量、工作效率和工作时间(3)单价、总价和数量(4)平行四边形的面积、底和高(5)总千克数、每天吃的千克数和天数
三、下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价
(2)每捆练习本的本数相同,练习本的总本数与捆数
(3)总路程一定,已行的路程与未行的路程
(4)分数值一定,分数的分子与分母
(5)长方形的长一定,它的面积和宽
(6)长方体的体积一定,底面积和高
(7)圆的周长和直径
(8)一本书的总页数一定,看的天数与平均每天看的页数(9)订阅《扬子晚报》,订的份数与总价
(10)图上距离一定,实际距离与比例尺
(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数。

相关文档
最新文档