专题:关于不等式恒成立问题与有解问题

合集下载

高中数学微专题【不等式恒成立或有解问题】

高中数学微专题【不等式恒成立或有解问题】

高中数学微专题【不等式恒成立或有解问题】突破点一分离法求参数的取值范围【例1】已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.解(1)当a=1时,f(x)=e x+x2-x,x∈R,f′(x)=e x+2x-1.因为f′(x)=e x+2x-1在(-∞,+∞)上单调递增,且f′(0)=0,故当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由f(x)≥12x3+1得,e x+ax2-x≥12x3+1,其中x≥0,①当x=0时,不等式为1≥1,显然成立,此时a∈R.②当x>0时,分离参数a,得a≥-e x-12x3-x-1x2,记g(x)=-e x-12x3-x-1x2,g′(x)=-(x-2)⎝⎛⎭⎪⎫e x-12x2-x-1x3.令h(x)=e x-12x2-x-1(x>0),则h′(x)=e x-x-1,令H(x)=e x-x-1,则H′(x)=e x-1>0,所以H(x)在(0,+∞)上是增函数,且H(0)=1-0-1=0,所以h′(x)>0,故函数h(x)在(0,+∞)上递增,∴h(x)>h(0)=0,即e x-12x2-x-1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞. 探究提高 1.分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 2.本题为了求g (x )的最大值,多次构造函数,进行二次求导. 【训练1】已知函数f (x )=a e x -x e x +x -a (a ∈R ). (1)若a =2,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若对任意x >0都有f (x )<x +1恒成立,求a 的最大整数值. 解 (1)当a =2时,f (x )=2e x -x e x +x -2, 所以f ′(x )=2e x -(e x +x e x )+1=e x -x e x +1, 因此f (0)=0,f ′(0)=2.所以曲线y =f (x )在点(0,f (0))处的切线方程为y -0=2(x -0),即y =2x . (2)对任意x >0,恒有f (x )<x +1,即a (e x -1)<x e x +1. 因为x >0,所以e x -1>0, 所以a <x e x +1e x -1=x +x +1e x -1.设g (x )=x +x +1e x -1(x >0),则只需a <g (x )min , g ′(x )=1-x e x +1(e x -1)2=e x (e x -x -2)(e x -1)2.令h (x )=e x -x -2(x >0),则h ′(x )=e x -1>0恒成立, 所以h (x )在(0,+∞)上单调递增.因为h(1)=e-3<0,h(2)=e2-4>0,所以存在唯一一个x0使得h(x0)=0,且1<x0<2.所以当x∈(0,x0)时,h(x)<0,g′(x)<0,当x∈(x0,+∞)时,h(x)>0,g′(x)>0.所以g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0+x0+1 e x0-1.由e x0-x0-2=0,得e x0=x0+2,所以g(x0)=x0+x0+1x0+2-1=x0+1∈(2,3).故a的最大整数值为2.突破点二分类等价转化法求参数范围【例2】设函数f(x)=2x ln x-2ax2(a∈R).(1)当a=12时,求函数f(x)的单调区间;(2)若f(x)≤f′(x)2-ln x-1(f′(x)为f(x)的导函数)在(1,+∞)上恒成立,求实数a的取值范围.解(1)当a=12时,f(x)=2x ln x-x2,定义域为(0,+∞).∴f′(x)=2ln x-2x+2.令g(x)=f′(x)=2ln x-2x+2(x>0),∴g′(x)=2x-2.当x∈(0,1)时,g′(x)>0,故g(x)为增函数;当x∈(1,+∞)时,g′(x)<0,故g(x)为减函数.∴g(x)≤g(1)=2ln 1-2×1+2=0,即f′(x)≤0.∴函数f(x)的单调递减区间为(0,+∞),无单调递增区间.(2)f(x)=2x ln x-2ax2,∴f′(x)=2ln x-4ax+2,且x>0.∴f(x)≤f′(x)2-ln x-1在(1,+∞)上恒成立⇔2(x ln x-ax2)≤ln x-2ax+1-lnx-1在(1,+∞)上恒成立⇔ln x-ax+a≤0在(1,+∞)上恒成立. 令h(x)=ln x-ax+a,x∈(1,+∞),则h ′(x )=1x -a ,且h (1)=ln 1-a +a =0.当a ≤0时,h ′(x )>0恒成立,故h (x )在(1,+∞)上为增函数. ∴h (x )>h (1)=0,即a ≤0时不满足题意. 当a >0时,由h ′(x )=0,得x =1a .①若a ∈(0,1),则1a ∈(1,+∞),故h (x )在⎝ ⎛⎭⎪⎫1a ,+∞上为减函数,在⎝ ⎛⎭⎪⎫1,1a 上为增函数.∴存在x 0∈⎝ ⎛⎭⎪⎫1,1a ,使得h (x 0)>h (1)=0,这与h (x )=ln x -ax +a ≤0在(1,+∞)上恒成立矛盾. 因此a ∈(0,1)时不满足题意.②若a ∈[1,+∞),则1a ∈(0,1],故h (x )在(1,+∞)上为减函数, ∴h (x )<h (1)=0,∴h (x )≤0恒成立,故符合题意. 综上所述,实数a 的取值范围是[1,+∞).探究提高 1.对于不等式恒成立问题,若不易分离参数或分离后难以求最值,解题时常用参数表示极值点,进而用参数表示出函数的最值,求解不等式得参数的范围,体现转化思想.2.解题过程中,参数的不同取值对函数的极值、最值有影响,应注意对参数的不同取值范围进行分类讨论.【训练2】已知点P ⎝ ⎛⎭⎪⎫e xx ,1,Q (x ,mx +sin x )(m ∈R ),O 为坐标原点,设函数f (x )=OP→·OQ →.(1)当m =-2时,判断函数f (x )在(-∞,0)上的单调性; (2)当x ≥0时,不等式f (x )≥1恒成立,求实数m 的取值范围.解 (1)f (x )=OP →·OQ →=⎝ ⎛⎭⎪⎫e x x ,1·(x ,mx +sin x )=e x +mx +sin x ,当m =-2时,f (x )=e x -2x +sin x ,f ′(x )=e x -2+cos x , 当x <0时,e x <1,且cos x ≤1,所以f ′(x )=e x -2+cos x <0, 所以函数f (x )在(-∞,0)上单调递减.(2)当x =0时,f (0)=1≥1,对于m ∈R ,f (x )≥1恒成立. 当x >0时,f ′(x )=e x +m +cos x , 设g (x )=e x +m +cos x ,则g ′(x )=e x -sin x ,因为e x >1,sin x ≤1,所以g ′(x )=e x -sin x >0,则g (x )在(0,+∞)上单调递增, 所以g (x )>g (0)=m +2,所以f ′(x )在(0,+∞)上单调递增,且f ′(x )>m +2.①当m ≥-2时,f ′(x )>0,则f (x )在(0,+∞)上单调递增, 所以f (x )>1恒成立.②当m <-2时,f ′(0)=m +2<0,因为f ′(x )在(0,+∞)上单调递增,且当x =ln(2-m )时, f ′(x )=e ln(2-m )+m +cos[ln(2-m )] =2+cos[ln(2-m )]>0,所以存在x 0∈(0,+∞),使得f ′(x 0)=0, 所以当x ∈(0,x 0)时,f ′(x )<0恒成立, 故f (x )在区间(0,x 0)上单调递减.所以当x ∈(0,x 0)时,f (x )<1,不符合题意. 综上,实数m 的取值范围为[-2,+∞). 突破点三 不等式有解求参数的取值范围 【例3】 已知函数f (x )=-a ln x -e xx +ax ,a ∈R . (1)当a <0时,讨论f (x )的单调性;(2)设g (x )=f (x )+xf ′(x ),若关于x 的不等式g (x )≤-e x+x 22+(a -1)x 在[1,2]上有解,求实数a 的取值范围.解 (1)依题设,f ′(x )=-a x -x e x -e xx 2+a =(ax -e x )(x -1)x 2(x >0),当a <0时,ax -e x <0恒成立,所以当x >1时,f ′(x )<0,当0<x <1时,f ′(x )>0,故函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. (2)因为g (x )=f (x )+xf ′(x ), 所以g (x )=-a ln x -e x +2ax -a ,由题意知,存在x 0∈[1,2],使得g (x 0)≤-e x 0+x 202+(a -1)x 0成立,则存在x 0∈[1,2],使得-a ln x 0+(a +1)x 0-x 202-a ≤0成立,令h (x )=-a ln x +(a +1)x -x 22-a ,x ∈[1,2],则h ′(x )=-a x +a +1-x =-(x -a )(x -1)x,x ∈[1,2].①当a ≤1时,h ′(x )≤0,所以函数h (x )在[1,2]上单调递减,所以h (x )min =h (2)=-a ln 2+a ≤0成立,解得a ≤0,所以a ≤0. ②当1<a <2时,令h ′(x )>0,解得1<x <a ; 令h ′(x )<0,解得a <x <2,所以函数h (x )在[1,a ]上单调递增,在[a ,2]上单调递减.又因为h (1)=12,所以h (2)=-a ln 2+a ≤0,解得a ≤0,与1<a <2矛盾,故舍去. ③当a ≥2时,h ′(x )≥0,所以函数h (x )在[1,2]上单调递增,所以h (x )min =h (1)=12>0,不符合题意.综上所述,实数a 的取值范围为(-∞,0].探究提高 1.本题根据函数h ′(x )的零点a 是否在定义域[1,2]内进行讨论,利用导数的工具性得到函数在给定区间内的单调性,从而可得最值,判断所求最值与已知条件是否相符,从而得到参数的取值范围.2.不等式“存在性”问题与“恒成立”问题的求解是“互补”关系.含参不等式能成立问题可转化为最值问题来解决,注意与恒成立问题的区别. 【训练3】已知函数f (x )=a +1x +a ln x ,其中参数a <0. (1)求函数f (x )的单调区间;(2)设函数g (x )=2x 2f ′(x )-xf (x )-3a (a <0),存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,求a 的取值范围.解 (1)∵f (x )=a +1x +a ln x ,∴定义域为(0,+∞),f ′(x )=-a +1x 2+a x =ax -(a +1)x 2.①当-1<a <0时,a +1a <0,恒有f ′(x )<0, ∴函数f (x )的单调递减区间是(0,+∞), 无单调递增区间.②当a =-1时,f ′(x )=-1x <0,∴f (x )的单调递减区间是(0,+∞),无单调递增区间.③当a <-1时,x ∈⎝ ⎛⎭⎪⎫0,a +1a ,f ′(x )>0,∴f (x )的单调递增区间是⎝⎛⎭⎪⎫0,a +1a ;x ∈⎝ ⎛⎭⎪⎫a +1a ,+∞,f ′(x )<0, ∴f (x )的单调递减区间是⎝ ⎛⎭⎪⎫a +1a ,+∞. (2)g (x )=2ax -ax ln x -(6a +3)(a <0),∵存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,∴2g (x )min <g (x )max . 又g ′(x )=a (1-ln x ),且a <0,∴当x ∈[1,e)时,g ′(x )<0,g (x )是减函数; 当x ∈(e ,e 2]时,g ′(x )>0,g (x )是增函数, ∴g (x )min =g (e)=a e -6a -3, g (x )max =max{g (1),g (e 2)}=-6a -3. ∴2a e -12a -6<-6a -3,则a >32e -6.又a <0,从而32e -6<a <0,即a 的取值范围是⎝ ⎛⎭⎪⎫32e -6,0.1.已知函数f (x )=ln x +ax (a ∈R ). (1)讨论f (x )的单调区间;(2)若f (x )≤e x -1+1x -1恒成立,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1-a -ln xx 2.令f ′(x )>0,得1-a -ln x >0,解得0<x <e 1-a . 令f ′(x )<0,得1-a -ln x <0,解得x >e 1-a .故f (x )的单调递增区间为(0,e 1-a ),单调递减区间为(e 1-a ,+∞). (2)因为f (x )≤e x -1+1x -1恒成立,即ln x +a x ≤e x -1+1x -1对(0,+∞)恒成立, 所以a ≤x e x -1-x -ln x +1对(0,+∞)恒成立. 令g (x )=x e x -1-x -ln x +1,则g ′(x )=e x -1+x e x -1-1-1x =(x +1)⎝ ⎛⎭⎪⎫e x -1-1x .当x ∈(0,1)时,g ′(x )<0,所以g (x )在(0,1)上单调递减. 当x ∈(1,+∞)时,g ′(x )>0,所以g (x )在(1,+∞)上单调递增. 故当x =1时,g (x )取到最小值g (1)=1,所以a ≤1. 故实数a 的取值范围是(-∞,1]. 2.已知函数f (x )=x ln x -ax +1(a ∈R ). (1)讨论f (x )在(1,+∞)上的零点个数;(2)当a >1时,若存在x ∈(1,+∞),使得f (x )<(e -1)·(a -3),求实数a 的取值范围.解 (1)由f (x )=x ln x -ax +1=0可得a =ln x +1x , 令g (x )=ln x +1x ,易知g ′(x )=1x -1x 2=x -1x 2,所以g ′(x )>0在(1,+∞)上恒成立,故g (x )在(1,+∞)上单调递增. 又g (1)=1,所以当x ∈(1,+∞)时,g (x )>1. 故当a ≤1时,f (x )在(1,+∞)上无零点; 当a >1时,f (x )在(1,+∞)上存在一个零点.(2)当a >1时,由(1)得f (x )在(1,+∞)上存在一个零点. 由f ′(x )=ln x +1-a =0得x =e a -1,所以f (x )在(1,e a -1)上单调递减,在(e a -1,+∞)上单调递增, 所以f (x )min =f (e a -1)=1-e a -1.若存在x ∈(1,+∞),使得f (x )<(e -1)(a -3)成立, 只需1-e a -1<(e -1)(a -3)成立, 即不等式e a -1+(e -1)(a -3)-1>0成立. 令h (a )=e a -1+(e -1)(a -3)-1,a >1, 则h ′(a )=e a -1+e -1,易知h ′(a )=e a -1+e -1>0在(1,+∞)上恒成立, 故h (a )=e a -1+(e -1)(a -3)-1在(1,+∞)上单调递增. 又h (2)=0,所以a >2,故实数a 的取值范围为(2,+∞).3.已知函数f (x )=x -a ln x +bx 在x =1处取得极值. (1)若a >1,求函数f (x )的单调区间;(2)若a >3,函数g (x )=a 2x 2+3,若存在m 1,m 2∈⎣⎢⎡⎦⎥⎤12,2,使得|f (m 1)-g (m 2)|<9成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞), 且f ′(x )=1-a x -bx 2. 由f ′(1)=0,得b =1-a ,则f ′(x )=1-a x -1-a x 2=x 2-ax -(1-a )x 2=(x -1)[x -(a -1)]x 2,令f ′(x )=0,得x 1=1,x 2=a -1.若1<a <2,则函数f (x )的单调递增区间为(0,a -1),(1,+∞),单调递减区间为(a -1,1);若a =2,则函数f (x )无单调递减区间,单调递增区间为(0,+∞);若a >2,则函数f (x )的单调递减区间为(1,a -1),单调递增区间为(0,1),(a -1,+∞).(2)当a >3时,f (x )在⎣⎢⎡⎭⎪⎫12,1上单调递增,在(1,2]上单调递减,所以f (x )的最大值为f (1)=2-a <0.易知函数g (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以g (x )的最小值为g ⎝ ⎛⎭⎪⎫12.又g ⎝ ⎛⎭⎪⎫12=14a 2+3>0,所以g (x )>f (x )在⎣⎢⎡⎦⎥⎤12,2上恒成立.若存在m 1,m 2∈⎣⎢⎡⎦⎥⎤12,2,使得|f (m 1)-g (m 2)|<9成立,只需要g ⎝ ⎛⎭⎪⎫12-f (1)<9,即14a 2+3-(2-a )<9,解得-8<a <4,又a >3,所以a 的取值范围是(3,4).。

专题02 不等式有解与不等式恒成立问题(解析版)

专题02 不等式有解与不等式恒成立问题(解析版)

2021年高考数学一轮复习培优课程讲义(上海专用)专题02 不等式有解与不等式恒成立问题知识定位含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容。

因此这部分内容是十分重要的。

大致来说这类问题在高考中有两种解法,一种是二次函数法,另一种是分离变量法。

知识诊断1. (★★☆☆)不等式|4||3|x x a -+-<有解,则实数a 的取值范是 . 答案:有解问题,实际上就有{}min |4||3|a x x >-+-,而利用数形结合的办法我们很容易得到|4||3|y x x =-+-的最小值为1,即得()1,a ∈+∞2. (★★☆☆)若不等式22221463x kx kx x ++<++对任意的x ∈R 都成立,则实数k 的取值范围是 . 答案:注意到24630x x ++>,所以即为:222224632(62)30x kx k x x x k x k ++<++⇔+-+->恒成立恒成立故由0∆<即知13k <<。

知识梳理➢ 知识点一:不等式有解与不等式恒成立问题✧ 子知识点一:二次函数法。

在之前的讲义中,我们在二次函数那一节已经适当讨论了一些一元二次不等式的恒成立(有解)问题。

事实上,在高考中,很多不等式可以通解变形为一元二次不等式。

因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。

✧ 子知识点二:分离参数法。

所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利用以下命题进行求解。

m min ax ()()(())a f x a x a f x f >⇔>>恒成立(有解) ; m max in ()()(())a f x a x a f x f <⇔<<恒成立(有解)..常见题型和方法解析例1 (★★☆☆)当m 为何值时,2211223x mx x x +-<-+对任意的x ∈R 都成立? 解法1:二次函数法: 移项、通分得:22(2)40223x m x x x -++>-+ 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

专题11 不等式恒成立与有解问题考点预测江苏高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.已知函数f (x )=x ﹣2(e x ﹣e ﹣x ),则不等式f (x 2﹣2x )>0的解集为 .2.已知a ,b ∈R ,若关于x 的不等式lnx ≤a (x ﹣2)+b 对一切正实数x 恒成立,则当a +b 取最小值时,b 的值为 ﹣ .3.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣专项突破一、填空题(共12小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.2.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.3.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.4.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.5.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.7.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.8.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.9.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.10.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣11.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.12.已知函数f(x)=x2+(1﹣a)x﹣a,若关于x的不等式f(f(x))<0的解集为空集,则实数a的取值范围是﹣.。

有解与恒成立问题专题

有解与恒成立问题专题

“有解”与“恒成立”专题不等式历来是高考和竞赛的热点,不等式“有解”与“恒成立”是很容易混淆的问题.下面给出一组命题,说明两者之间的区别.(1)()a f x >恒成立⇔max ()a f x >; (2)()a f x <恒成立min ()a f x ⇔<;(3)()a f x >有解min ()a f x ⇔>; (4)()a f x <有解max ()a f x ⇔<.例1 已知(01)a ∈,,函数()lg()x f x a ka =-在[1)+∞,上有意义,求实数k 的取值范围.例2 不等式220kx k +-<有解,求k 的取值范围.例3 对于不等式21x x a -++<,存在实数x ,使此不等式成立的实数a 的集合是M ;对于任意[05]x ∈,,使此不等式恒成立的实数a 的集合为N ,求集合M N ,.恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象等。

1.一次函数型(多为变换主元法)给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于 ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1. 已知对于任意的a ∈[-1,1],函数f (x )=ax 2+(2a -4)x +3-a >0 恒成立,求x 的取值范围.点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。

专题03 不等式恒成立或有解问题(解析版)

专题03 不等式恒成立或有解问题(解析版)

专题03 不等式恒成立或有解问题专题概述含参数不等式的恒成立的问题,是近几年高考的热点.它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想.含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.典型例题【例1】(2019秋•崇川区校级月考)关于x 的不等式220x ax +-<在区间[1,4]上有实数解,则实数a 的取值范围是【分析】关于x 的不等式220x ax +-<在区间[1,4]上有解,等价于2()max a x x<-,其中[1x ∈,4],求出2()f x x x=-在[1x ∈,4]的最大值即可. 【解答】解:关于x 的不等式220x ax +-<在区间[1,4]上有实数解, 等价于2()max a x x<-,[1x ∈,4];设2()f x x x=-,其中[1x ∈,4], 则函数()f x 在[1x ∈,4]内单调递减,当1x =时,函数()f x 取得最大值为f (1)1=; 所以实数a 的取值范围是(,1)-∞. 故答案为:(,1)-∞.【例2】(2018秋•凌源市期末)不等式210x kx -+>对任意实数x 都成立,则实数k 的取值范围是 . 【分析】设21y x kx =-+,将不等式恒成立的问题转化为函数21y x kx =-+图象始终在x 轴上方,进而根据判别式处理即可.【解答】解:依题意,设21y x kx =-+, 因为不等式210x kx -+>对任意实数x 都成立, 所以△240k =-<,解得(2,2)k ∈-,故答案为:(2,2)-.【例3】(2018春•朔州期末)已知不等式116a x y x y++对任意正实数x ,y 恒成立,则正实数a 的最小值为 .【分析】由题设知1()()16min ax y x y++对于任意正实数x ,y 恒成立,所以116a +,由此能求出正实数a 的最小值. 【解答】解:不等式116a x yx y++对任意正实数x ,y 恒成立, ∴1()()16min ax y x y ++对于任意正实数x ,y 恒成立1()()11a y axx y a a x y x y++=+++++116a ∴+即3)0,又0a >,39min a ∴=. 故答案为:9【变式训练】1.(2019秋•琼山区校级月考)当(1,2)x ∈时,不等式220x mx ++>恒成立,则m 的取值范围是 .【分析】不等式恒成立等价于2m x x >--恒成立,设2()f x x x =--,(1,2)x ∈,求出()f x 的最大值即可.【解答】解:(1,2)x ∈时,不等式220x mx ++>恒成立,等价于2m x x>--恒成立;设2()f x x x=--,其中(1,2)x ∈;则22()()222f x x x x x=-+-=-x =“=”.()f x ∴的最大值为()max f x =-m ∴的取值范围是m >-故答案为:(-)+∞.2.(2019春•慈溪市期中)关于x 的不等式230x ax a -++在区间[2-,0]上恒成立,则实数a 的取值范围是 .【分析】先分离参数得4(1)21a x x -++-,再利用基本不等式求右边式子的最大值得解. 【解答】解:由题得234(1)211x a x x x +=-++--因为20x -, 311x ∴---所以44(1)2[1]2224211x x x x-++=--++-=--- 当1x =-时得到等号. 所以2a -. 故答案为:2a -3.(2012•沭阳县校级模拟)对一切正整数n ,不等式211x nx n ->+恒成立,则实数x 的取值范围是 【分析】确定右边对应函数的值域,将恒成立问题转化为具体不等式,即可求得x 的取值范围. 【解答】解:考查1111n y n n ==-++,一切正整数n ,函数为单调增函数,112y ∴> 对一切正整数n ,不等式211x nx n ->+恒成立, ∴211x x - ∴10x x- 0x ∴<或1x∴实数x 的取值范围是(,0)[1-∞,)+∞故答案为:(,0)[1-∞,)+∞专题强化1.(2020•一卷模拟)已知关于x 的不等式2230ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .(-∞B .4(,)7-∞C .)+∞D .4(,)7+∞【分析】由题意不等式化为32aax x+<,讨论0a =、0a >和0a <时,分别求出不等式成立时a 的取值范围即可.【解答】解:(0x ∈,2]时,不等式可化为32aax x+<;当0a =时,不等式为02<,满足题意; 当0a >时,不等式化为32x x a+<,则2323x a >=,当且仅当x =所以a <0a <<当0a <时,32x x a+>恒成立;综上知,实数a 的取值范围是(-∞. 故选:A .2.(2019秋•临渭区期末)若不等式2440x ax ++>的解集为R ,则实数a 的取值范围是( ) A .(16,0)-B .(16-,0]C .(,0)-∞D .(8,8)-【分析】根据一元二次不等式的解集为R ,△0<,列不等式求出a 的取值范围. 【解答】解:不等式2440x ax ++>的解集为R , ∴△24440a =-⨯⨯<,解得88a -<<,∴实数a 的取值范围是(8,8)-.故选:D .3.(2020•乃东区校级一模)若不等式210x ax ++对一切(0x ∈,1]2成立,则a 的最小值为( )A .52-B .0C .2-D .3-【分析】不等式210x ax ++对一切(0x ∈,1]2成立1()max a x x ⇔--,(0x ∈,1]2.令1()f x x x =--,(0x ∈,1]2.利用导数研究其单调性极值与最值即可得出.【解答】解:不等式210x ax ++对一切(0x ∈,1]2成立1()max a x x ⇔--,(0x ∈,1]2.令1()f x x x =--,(0x ∈,1]2. 22211()10x f x x x'-=-+=>,∴函数()f x 在(0x ∈,1]2上单调递增,∴当12x =时,函数()f x 取得最大值,115()2222f =--=-.a ∴的最小值为52-.故选:A .4.(2019春•黑龙江期中)若关于x 的不等式240x mx +->在区间[2,4]上有解,则实数m 的取值范围为 ( )A .(3,)-+∞B .(0,)+∞C .(,0)-∞D .(,3)-∞-【分析】关于x 的不等式240x mx +->在区间[2,4]上有解,等价于22240m +->或24440m +->, 求出m 的取值范围即可.【解答】解:关于x 的不等式240x mx +->在区间[2,4]上有解, 所以22240m +->或24440m +->, 解答0m >或3m >-,所以实数m 的取值范围是(3,)-+∞. 故选:A .5.(2019秋•徐州期中)若关于x 的不等式240x x a -->在14x <<内有解,则实数a 的取值范围( ) A .3a <-B .0a <C .4a <-D .4a -【分析】把不等式化为24a x x <-,求出2()4f x x x =-在(1,4)x ∈的取值范围,即可求得a 的取值范围. 【解答】解:不等式240x x a -->可化为24a x x <-; 设2()4f x x x =-,其中(1,4)x ∈; 则2()(2)4f x x =--, 所以()f x f <(4)0=;所以不等式在14x <<内有解,实数a 的取值范围是0a <. 故选:B .6.(2019春•舒城县期末)若不等式243x Px x P +>+-当04p 时恒成立,则x 的取值范围是( ) A .[1-,3] B .(-∞,1]-C .[3,)+∞D .(-∞,1)(3-⋃,)+∞【分析】当1x =-时,代入不等可排除A ,B ,当3x =,代入不等式可排除C ,从而得到正确选项. 【解答】解:当1x =-时,由243x Px x P +>+-,得4p <,故1x =-不符合条件,排除A ,B ;当3x =时,由243x Px x P +>+-,得0p >,故3x =不符合条件,排除C , 故选:D .7.(2019春•昆都仑区校级期中)若不等式24x m x +,[0x ∈,1]恒成立,则实数m 的取值范围是( ) A .3m -或0mB .3m -C .30m -D .3m -【分析】不等式24x m x +,[0x ∈,1]恒成立,只需2(4)min m x x -,求出2()4f x x x =-的最小值即可. 【解答】解:不等式24x m x +,[0x ∈,1]恒成立, ∴只需2(4)min m x x -,[0x ∈,1]函数22()4(2)4f x x x x =-=--,[0x ∈,1], ()min f x f ∴=(1)3=-,3m ∴-,故选:D .8.(2019春•思明区校级月考)若关于x 的不等式22840x x a ---在14x 内有解,则实数a 的取值范围是( ) A .4a -B .4a -C .12a -D .12a -【分析】原不等式化为2284a x x --,问题等价于a 小于或等于2284y x x =--在[1,4]内的最大值时即可.【解答】解:原不等式22840x x a ---化为:2284a x x --, 设函数2284y x x =--,其中14x ;则4x =时函数2284y x x =--取得最大值为是4-, 所以实数a 的取值范围是4a -. 故选:A .9.(2020春•南昌月考)若关于x 的不等式11()81xxλ有正整数解,则实数λ的最小值为( ) A .9B .10C .11D .12【分析】令()lnx f x x =,由题意,存在正整数x ,使不等式81()ln f x λ能成立.利用导数求出()f x 的最大值,可得实数λ的最小值.【解答】解:关于x 的不等式11()81xxλ有正整数解,∴81x x λ,∴43lnx ln xλ. x 为正整数,0λ>,∴4381lnxln ln xλλ=.令()lnx f x x =,则21()lnxf x x -'=. 当(0,)x e ∈,()0f x '>,()f x 单调递增;当(,)x e ∈+∞,()0f x '<,()f x 单调递减, 故当x e =时,()f x 取得最大值. 而e 不是正整数,23e <<,f (2)2826ln ln ==,f (3)3936ln ln ==,f ∴(3)f >(2). 故只要f (3)81ln λ即可,求得12λ,故选:D .10.(2019春•兴庆区校级期末)若对任意(1,)x ∈+∞,不等式(1)(1)0x ax -+恒成立,则a 的取值范围为 ( )A .11a -B .1aC .1a -D .1a -【分析】由题意可得1a x -在1x >恒成立,求得110x-<-<,即可得到所求范围. 【解答】解:对任意(1,)x ∈+∞,不等式(1)(1)0x ax -+恒成立, 可得10ax +,即1a x-在1x >恒成立, 由1x >可得110x-<-<,则1a -, 故选:D .11.(2019秋•沭阳县期中)正数a ,b 满足21a b +=,且22142a b t --恒成立,则实数t 的取值范围是( )A .(-∞B .,)+∞C .[D .1[2,)+∞【分析】由0a >,0b >,21a b +=得,22414a b ab +=-,于是问题转化为:1242t ab ab +-恒成立,令1(,)42f a b ab =-,求得(,)f a b 的最大值,只需(,)max t f a b 即可.【解答】解:0a >,0b >,21a b +=, 22414a b ab ∴+=-,22142a b t ∴--恒成立,转化为1242t ab ab +-恒成立,令(f a ,21113)44())2844b ab ab =-==-, 又由0a >,0b >,21a b +=得:1222a b ab =+, 18ab∴(当且仅当14a =,12b =时取“=” );(f a ∴,213))44max b =-=. 2t. 故选:B .12.(2019秋•开封期末)已知0m >,0n >,141m n+=,若不等式22m n x x a +-++对已知的m ,n 及任意实数x 恒成立,则实数a 的取值范围是( ) A .[8,)+∞B .[3,)+∞C .(-∞,3]D .(-∞,8]【分析】先结合基本不等式求出m n +的范围;再根据不等式恒成立结合二次函数即可求解 【解答】解:144()()5529n m n m n m n m n m n m +=++=+++, 当且仅当4n mm n=时等号成立, 229x x a ∴-++,即2229(1)8a x x x -+=-+, 8a ∴.故选:D .13.(2019秋•楚雄州期末)已知0x >,0y >,若不等式2(2)()18m x y x y++恒成立,则正数m 的最小值是( )A .2B .4C .6D .8【分析】先结合基本不等式求出前半部分的最小值,再结合恒成立即可求解. 【解答】解:因为0x >,0y >,正数m ;∴24(2)()2222m x my x y m m x y y x++=+++++, 因为不等式2(2)()18m x y x y++恒成立,所以2218m ++,即2)0,2, 所以4m . 故选:B .14.(2020•湖北模拟)若不等式11014m x x+--对1(0,)4x ∈恒成立,则实数m 的最大值为( )A .7B .8C .9D .10【分析】根据题意,由基本不等式的性质分析可得1114x x+-的最小值为9,据此分析可得答案. 【解答】解:根据题意,1(0,)4x ∈,则140x ->,则1141414(14)44(1[4(14)]()552914414414414x x x x x x x x x x x x -+=+=+-+=+++⨯----, 当且仅当142x x -=时等号成立, 则1114x x+-的最小值为9, 若不等式11014m x x+--对1(0,)4x ∈恒成立,即式1114m x x +-恒成立,必有9m 恒成立, 故实数m 的最大值为9; 故选:C .15.(2019秋•呼和浩特期末)若两个正实数x ,y 满足141x y +=,且存在这样的x ,y 使不等式234yx m m +<+有解,则实数m 的取值范围是( ) A .(1,4)-B .(4,1)-C .(-∞,4)(1-⋃,)+∞D .(-∞,3)(0-⋃,)+∞【分析】由144()()2444y y x yx x x y y x+=++=++,利用基本不等式可求其最小值,存在x ,y 使不等式234y x m m +<+有解,即2()34min yx m m +<+,解不等式可求. 【解答】解:正实数x ,y 满足141x y +=,1444()()2224444y y x y x y x x x y y x y ∴+=++=+++= 当且仅当44x y y x =且141x y+=,即2x =,8y =时取等号,存在x ,y 使不等式234yx m m +<+有解, 243m m ∴<+,解可得1m >或4m <-,故选:C .16.(2019秋•怀化期末)若两个正实数x ,y 满足211x y+=,且222x y m m +>+恒成立,则实数m 的取值范围是( )A .(,2)[4-∞-,)+∞B .(,4)[2-∞-,)+∞C .(2,4)-D .(4,2)-【分析】由题意和基本不等式可得2x y +的最小值,再由恒成立可得m 的不等式,解不等式可得m 范围. 【解答】解:正实数x ,y 满足211x y+=, 212(2)()x y x y x y∴+=++444428y x y x x y x =+++=, 当且仅当4y xx y=即4x =且2y =时2x y +取最小值8, 222x y m m +>+恒成立,282m m ∴>+,解关于m 的不等式可得42m -<< 故选:D .。

专题(4) 恒成立问题与有解问题的区别

专题(4) 恒成立问题与有解问题的区别

专题(4)恒成立问题与有解问题的区别恒成立与有解问题一直是中学数学的重要内容。

它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,在近几年的高考试题中,越来越受到高考命题者的青睐,涉及恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

本文就恒成立与有解问题做一比较。

1、恒成立问题解决不等式恒成立问题的方法。

法一:转换主元法。

适用于一次型函数。

法二:化归二次函数法。

适用于二次型函数。

法三:分离参数法。

适用于一般初等函数。

法四:数型结合法。

1.1恒成立问题与一次函数联系给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f1 转换主元法确定题目中的主元,化归成初等函数求解。

此方法通常化为一次函数。

例1:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。

例2、对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。

分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。

1.2恒成立问题与二次函数联系( 化归二次函数法)根据题目要求,构造二次函数。

结合二次函数实根分布等相关知识,求出参数取值范围。

(1)若二次函数y=ax 2+bx+c(a ≠0)大(小)于0(x R ∈)恒成立,则有⎩⎨⎧<∆>00a(2)若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。

高考数学一轮复习专题训练—不等式恒成立或有解问题

高考数学一轮复习专题训练—不等式恒成立或有解问题

微课2 不等式恒成立或有解问题题型一 分离法求参数的取值范围【例1】(2020·全国Ⅰ卷)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R , f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0,①当x =0时,不等式为1≥1,显然成立,此时a ∈R . ②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3.令h (x )=e x -12x 2-x -1(x >0),则h ′(x )=e x -x -1,令H (x )=e x -x -1, H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增, ∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 感悟升华 分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 【训练1】已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0, +∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a ,∴f (x )在⎝⎛⎭⎫0,1a 上递减,在⎝⎛⎭⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值, ∴a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. 题型二 等价转化法求参数范围 【例2】函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值; (2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a -3x ,令g (x )=2ln x +x -a +3x,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数; 在区间(1,e]上,g ′(x )>0,函数g (x )为增函数. 由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4, 所以实数a 的取值范围是(-∞,4].感悟升华 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,如f (x )≥a 恒成立,则f (x )min ≥a ,然后利用最值确定参数满足的不等式,解不等式即得参数范围. 【训练2】已知f (x )=e x -ax 2,若f (x )≥x +(1-x ) e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].题型三 可化为不等式恒成立求参数的取值范围(含有解问题) 【例3】已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立, 即a ≥-(x +1)2+1在[1,+∞)上恒成立, 而函数y =-(x +1)2+1在[1,+∞)单调递减, 则y max =-3,所以a ≥-3,所以a 的最小值为-3. (2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2, 使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a . 而g ′(x )=1-xe x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. 感悟升华 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min . (2)∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max . (3)∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min . (4)∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【训练3】已知函数f (x )=ax -e x (a ∈R ),g (x )=ln xx .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e .1.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A.a >2B.a <3C.a ≤1D.a ≥3答案 C解析 函数f (x )的定义域是(0,+∞),不等式ax -1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=-ln x . 由h ′(x )=0,得x =1.当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0. 故当x =1时,函数h (x )=x -x ln x 取得最大值1, 所以要使不等式a ≤x -x ln x 在(0,+∞)上有解, 只要a ≤h (x )max 即可,即a ≤1.2.已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A.[0,1] B.[0,2]C.[0,e]D.[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g (x )=xln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, ∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是[0,e].3.已知函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围. 解 依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx 能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e.由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e . 4.设f (x )=x e x ,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x ,所以F ′(x )=(x +1)(e x +1), 令F ′(x )>0,解得x >-1, 令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立, 所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞). 5.已知函数f (x )=m e x -x 2.(1)若m =1,求曲线y =f (x )在(0,f (0))处的切线方程;(2)若关于x 的不等式f (x )≥x (4-m e x )在[0,+∞)上恒成立,求实数m 的取值范围.解 (1)当m =1时,f (x )=e x -x 2,则f ′(x )=e x -2x . 所以f (0)=1,且斜率k =f ′(0)=1.故所求切线方程为y -1=x ,即x -y +1=0. (2)由m e x -x 2≥x (4-m e x )得m e x (x +1)≥x 2+4x . 故问题转化为当x ≥0时,m ≥⎝ ⎛⎭⎪⎫x 2+4x e x (x +1)max . 令g (x )=x 2+4xe x (x +1),x ≥0,则g ′(x )=-(x +2)(x 2+2x -2)(x +1)2e x .由g ′(x )=0及x ≥0,得x =3-1.当x ∈(0,3-1)时,g ′(x )>0,g (x )单调递增; 当x ∈(3-1,+∞)时,g ′(x )<0,g (x )单调递减. 所以当x =3-1时,g (x )max =g (3-1)=2e 1-3.所以m ≥2e 1-3.即实数m 的取值范围为[2e 1-3,+∞).。

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.1.不等式恒成立与有解的区别不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h m in (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h m in (x)=-45+k ,由k-45≥0,得k≥45.(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h m ax (x)≥0,由(1)知h m ax (x )=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:]3,3[,)()(min max ••x •x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-32或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[•x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件2.不等式有解问题例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;(2)设a>0,g(x)=x e a ⎪⎭⎫ ⎝⎛+4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3. 故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4.当a<-4时,x 1<x 2,故f(x)在(]3,•∞-上为减函数,在[3,-a-1]上为增函数,在[)+∞--,1•a 上为减函数.当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a •上为减函数,在[-a-1,3]上为增函数,在[)+∞,3•上为减函数.(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.于是问题转化为|f(S 1)-g(S 2)|m in <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ⎪⎭⎫ ⎝⎛+4252在[0,4]上显然为增函数,其值域⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++422425,425e a •a . 因为4252+a -(a+6)=⎪⎭⎫ ⎝⎛-21a 2≥0, 故4252+a ≥(a+6).|f(S 1)-g(S 2)|m in =4252+a -(a+6)从而解230,01)6(4252<<⎪⎩⎪⎨⎧><+-+a ••••a a a 得. 故a 的取值范围为⎪⎭⎫ ⎝⎛23,0••. 假若问题变成:“对任意的S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1都成立,求a 的取值范围.”则可将其转化为|f(S 1)-g(S 2)|m ax <1点评 函数、不等式、导数既是研究的对象,又是决问题的工具. 本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数 闭区间上的值域,再处理不等式有解问题. 这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.3.不等式恒成立问题例2 设函数f(x)=(x+1)ln(x+1),若对所有x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.解析 构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax ,原问题变为g(x)≥0对所有的 x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在[)∞+••,0为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=l n(x+1)+1-a ,由g′(x)=0,得x=e1-a -1. 当x>e 1-a -1时,g′(x)>0,g(x)为增函数.当-1<x<e 1-a -1时,g′(x)<0,g(x)为减函数.那么对所有的x≥0,都有g(x)≥g(0),其充要条件是e 1-a -1≤0,故得a 的取值范围是(]1,••∞-.假若我们没有注意到g(0)=0,那么在解g(x)≥0对所有的x≥0恒成立时,也可转化为)0(0)(min ≥≥x x g ,再以导数为工具,稍作讨论即可得解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax 对所有的x≥0恒成立可得:(1)当x=0时,a ∈R . (2)当x>0时,.)1ln()1(x x x a ++≤设g(x)=xx x )1ln()1(++,问题转化为求g(x)在开区间(0,+∞)上最小值或下界,2)1ln()(x x x x g +-=',试图通过g′(x)=0直接解得稳定点,困难重重!退一步令h(x)=x-ln(x+1),因为0,111)(>+-='•x •x x h ,故)(x h '>0,则h(x)在(0,+∞)单调递增,即h(x)>h(0)=0,从而)(x g '>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:)(lim )(0x g x g x →>,然而求此极限却又超出所学知识范围,于是大部分考生被此难关扫落下马,无果而终. 事实上采用洛比达法则可得:1]1)1[ln(lim )1ln()1(lim )(lim 000=++=++=→→→x xx x x g x x x ,故x>0时,g(x)>1,因而a≤1.综合(1)(2),得a 的取值范围是:(]1,••∞-. 点评 采用参数分离法求解本题,最大的难点在于求分离后所得函数的下界.它需要考生拥有扎实的综合素质和过硬的极限、导数知识,并能灵活地运用这些工具来研究函数的性态,包括函数的单调性,极值(最值)或上下界.突出考查了函数与方程思想、有限与无限的思想.。

不等式有解与恒成立问题

不等式有解与恒成立问题

不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。

下面从三个例子针对这两类问题的解决策略作比较说明。

例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。

(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。

例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。

总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。

3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。

作业:1.已知关于x 的不等式2350x a +-<。

(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。

2.已知关于x 的不等式20x a +>。

(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。

3. 已知关于x 的不等式2+2310x x a -+>。

(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。

(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。

4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。

恒成立与有解问题.学生版可以用

恒成立与有解问题.学生版可以用

专题7.恒成立和有解问题【例1】 若不等式220ax x ++>的解集为R ,则a 的范围是( )A .0a >B .18a >-C .18a > D .0a <【例2】 已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围.【例3】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______.【例4】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )A .0a ≤B .4a <-C .40a -<<D .40a -<≤【例5】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围.【例6】 不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( ) A .0 B .2- C .52- D .3-【例7】 对任意[11]a ∈-,,函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .【例8】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.【例9】 设()222f x x ax =-+,当[)1x ∈-+∞,时,都有()f x a ≥恒成立,求a 的取值范围.【例10】 已知不等式22412ax x x a +---≥对任意实数恒成立,求实数a 的取值范围.【例11】 已知关于x 的不等式20x x t ++>对x ∈R 恒成立,则t 的取值范围是 .【例12】 在R 上定义运算⊗:)1(y x y x -=⊗.若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a【例13】 设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的取值范围. 【例14】 如果关于x 的不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是 .【例15】 已知函数()1)f x x g x =+,若不等式(3)(392)0x x x f m f ⋅+--<对任意x ∈R 恒成立,求实数m 的取值范围.【例16】 若关于x 的方程9(4)340x x a +++=有解,求实数a 的取值范围.【例17】 若关于x 的不等式22840x x a --->在14x <<内有解,则实数a 的取值范围是( )A .4a <-B .4a >-C .12a >-D .12a <-。

不等式恒成立与有解问题

不等式恒成立与有解问题

常用的 ,但 因为 问题形 式千变万化 ,考 题亦常考常新 ,因此在 备 考的各个阶段都应 渗透恒成立 问题 的教与学 ,在平 时的训练
中不断领悟和总结 ,从而促使学生 在解 决此类 问题 的能力上得 到改善和提高.
例 2 已知函数 f ( x ) = 一 +m ( m∈ R) , g ( x ) = +2 1 n .
不 等 式 恒 成 立 与 有解 问题
李 芬 ( 贵 州省都 匀市第一 中学)
有 关 不 等 式 恒 成 立 与 有 解 的 问 题 历 来 是 高 考 的 热 点 ,有 时
分 析 : 注 意 到 本 题 是 存 在 ∈[ 1 ,2 ] ,4  ̄ f( x )≤ g ( x ) , 解 析 : 由f( x ) ≤g ( x ) 得 m≤
所以g ( x ) 在( 1 ,+ ) 上也是减 函数 ,g ( x ) <g ( 1 ) =一 1 . 当 0≥ 一 1时 , f ( x ) < 在( 1 ,+ ) 上恒成立.
【 点评 】本 题是 不等 式 的恒 成立 问题 ,也就 是说 对 于
( 1 ,+ 。 。 ) 上 的任 意 一 个 值 , 厂 ( ) < 都 要 成 立 ;将 不 等 式恒 成 立 广 ,解题方 法灵活多样 ,技 巧性强 ,难度 大等特点 ,要求有 较 问题 转 化 成 求 函数 的 最 值 问题 ,利 用 导 数 ,我 们 可 以 更 广 泛 , 强 的思 维灵 活性和创造性 、较高 的解题 能力 ,上述方法 是 比较 更深 入 地 研 究 函 数. 二 、 不等 式 有 解 问题
极 大 的挑 战.
解 析 :因 为 f ( X ) < ,所 以 I n —a < 。 .
又 >1 ,所 以 >x l n 一 .

2022年高考数学一轮复习考点专题19、不等式有解和恒成立问题(解析版)【上海专用】

2022年高考数学一轮复习考点专题19、不等式有解和恒成立问题(解析版)【上海专用】

考向19 不等式有解和恒成立问题1.(2020•上海真题)下列不等式恒成立的是()A 、222a b ab +≤B 、22-2a b ab +≥C 、2a b ab+≥-D 、2a b ab +≤【答案】B含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容。

因此这部分内容是十分重要的。

大致来说这类问题在高考中有两种解法,一种是二次函数法,另一种是分离变量法。

➢ 不等式有解与不等式恒成立问题✧ 子知识点一:二次函数法。

在高考中,很多不等式可以通解变形为一元二次不等式。

因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。

✧ 子知识点二:分离参数法。

所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利用以下命题进行求解。

m min ax ()()(())a f x a x a f x f >⇔>>恒成立(有解) ; m max in ()()(())a f x a x a f x f <⇔<<恒成立(有解)..一、单选题 1.(2022·全国高三专题练习(理))若关于x 的不等式22840x x a --->在[1,4]内有解,则实数a 的取值范围是( ) A .(4,)-+∞B .(,4)-∞-C .(12,)-+∞D .(,12)-∞-【答案】B【分析】关于x 的不等式22840x x a --->在[1,4]内有解,等价于在[1,4]内()2max284x x a -->,然后求出()2max284x x --即可【详解】解:关于x 的不等式22840x x a --->在[1,4]内有解,等价于在[1,4]内()2max284xx a -->,令2()284,[1,4]f x x x x =--∈, 因为抛物线的对称轴为824x -=-=, 所以当4x =时,()f x 取最大值(4)2168444f =⨯-⨯-=-, 所以4a ,故选:B2.(2020·安徽淮北·高三(理))已知命题P :“存在正整数N ,使得当正整数n N >时,有111112020234n+++++>成立”,命题Q :“对任意的R λ∈,关于x 的不等式10011.0010x x λ->都有解”,则下列命题中不正确...的是( ) A .P Q ∧为真命题 B .()P Q ⌝∨为真命题 C .()P Q ∨⌝为真命题 D .()()P Q ⌝∨⌝为真命题【答案】D【分析】直接利用放缩法证得命题P 是真命题;利用指数函数和幂函数的性质,分类讨论可知命题Q 为真.进而利用复合命题的真假性判定. 【详解】解:对于任意2,k k N ≥∈,11112111111212122222222k k k k k k k k k ----++⋯+>++⋯+==++项, 21111111111111112342232212222k k k kk --⎛⎫⎛⎫+++++=++++++++>+ ⎪ ⎪++⎝⎭⎝⎭, 为使111112020234n+++++>,只需要2,12020,2k kn ≥+≥只需要2048k ≥,40382n ≥,故取403821N =-时,只要n N >成立,111112020234n+++++>便成立.故命题P 是真命题;对于命题Q :∵1.0010x >,∴当0λ≤时,只要0x ≥,则10011.0010x x λ->成立; 当0λ>时,只要0x ≤,10011.0010x x λ->成立,所以对于λ∀∈R ,关于x 的不等式10011.0010x x λ->都有解,故命题Q 为真命题.从而P Q ∧为真命题,()P Q ⌝∨为真命题, ()P Q ∨⌝为真命题,()()P Q ⌝∨⌝为假命题.故选:D .3.(2019·上海市建平中学)已知()f x 为奇函数,当[]0,1x ∈时,()1122f x x =--,当(],1x ∈-∞-,()11x f x e --=-,若关于x 的不等式()()f x m f x +>有解,则实数m 的取值范围为( ) A .()()1,00,-+∞B .()()2,00,-+∞C .()1ln 2,10,2⎛⎫---+∞ ⎪⎝⎭D .()1ln 2,00,2⎛⎫--+∞ ⎪⎝⎭【答案】D【分析】利用()f x 为奇函数及已知区间解析式求出()f x 在x ∈R 上分段函数的表示形式,由()()f x m f x +>有解,即0x R ∃∈使()()00f x m f x +>即可,结合函数图象分析即可得m 的取值范围;【详解】若[]1,0x ∈-,即[]0,1x -∈,则()11121222f x x x -=---=-+; ∵()f x 是奇函数, ∴()()1122f x x f x -=-+=-,则()1212f x x =+-,[]1,0x ∈-; 同理,若[)1,x ∈+∞,即(],1x -∈-∞-,则()()11xf x ef x -+-=-=-,有()11x f x e -+=-,[)1,x ∈+∞;综上,有111,112||1,102()112||,0121,1x xe x x xf x x x ex ---+⎧-≤-⎪⎪+--≤≤⎪=⎨⎪--≤≤⎪⎪-≥⎩作出函数()f x 的图象如图:1、当0m >时,()f x m +是()f x 的图象向左平移m 个单位,即如下图此时()()f x m f x +>有解,满足条件.2、当0m <时,()f x m +是()f x 的图象向右平移m 个单位,即如下图当()f x m +的图象与()f x 在1x >相切时,()1x f x e -'=,此时对应直线斜率2k =,由12x e -=,得ln 21x =+,此时ln 21111y e +-=-=,即切点坐标为()1ln 2,1+; 设切线方程为()2y x a =-,此时()121ln 2a =+-,得1ln 22a =+; ∴当10ln 22m <-<+时,满足题设条件,解之得:1ln 202m --<<; 综上,有1ln 202m --<<或0m >,即m 的取值范围是()1ln 2,00,2⎛⎫--+∞ ⎪⎝⎭;故选:D.【点睛】本题考查了利用函数奇偶性求函数解析式,并利用函数不等式能成立,结合函数图象分析边界情况,利用导数求边界值,进而得到参数范围; 二、填空题4.(2021·广西柳州·高三(理))定义域为实数集的偶函数()f x 满足()()11,f x f x x R+=-∈恒成立,若当[]2,3x ∈时,()f x x =,给出如下四个结论: ①函数()f x 的图象关于直线4x =-对称;②对任意实数a ,关于x 的方程()0f x x a --=一定有解;③若存在实数a ,使得关于x 的方程()0f x x a --=有一个根为2,则此方程所有根之和为20-;④若关于x 的不等式()0f x x a --<在区间[)0,+∞上恒成立,则a 有最大值. 其中所有正确结论的编号是__________. 【答案】① ②【分析】由已知根据周期函数定义可得,函数()f x 为周期为2的函数,对于①:结合函数的周期性与对称性可得,函数的对称轴为:()x k k Z =∈,从而可判断; 对于②:问题可转化为函数()f x 的图象与函数||y x a =-的图象一定有交点,在同一个直角坐标系中,作出两个函数||y x =与()y f x =的图象即可判断; 对于③:将2x =代入方程,求出4a =或0,分析0a =不符合题意; 对于④:当0a <时, ||()min max x a f x ->,即||2a ->,即可判断.【详解】解:函数()f x 满足(1)(1)f x f x +=-,对任意x ∈R 恒成立,∴用1x +替换上式中的x 可得,(2)()f x f x +=, ∴函数()f x 为周期为2的函数,又函数为偶函数,∴()f x 图象关于y 轴对称,对于①:结合函数的周期性与对称性可得,函数的对称轴为:()x k k Z =∈, 由此可得,函数关于直线4x =-对称,故①正确;对于②:方程()||0f x x a --=一定有解,即方程()||f x x a =-一定有解,即函数()f x 的图象与函数||y x a =-的图象一定有交点.因为函数||y x a =-的图象是将函数||y x =的图象沿x 轴平移||a 个单位长度得到的, 所以在同一个直角坐标系中作出两个函数||y x =与()y f x =的图象如下:由图象可得,将||y x =左右平移后一定会与函数()y f x =相交,故②正确;对于③:如图,若2x =为()y f x =与||y x a =-的一个交点,则当0a =时,||y x =与()y f x = 的图象都关于y 轴对称,所有交点的横坐标之和为0,故③错误;对于④:若关于x 的不等式()||0f x x a --<在区间[)0,+∞上恒成立,即||()x a f x ->恒成立,当0a <时,函数||y x a =-的对称轴在y 轴左侧,且有||()min max x a f x ->, 即||2a ->,解得2a >,或2a <-,2∴<-a ,即实数a 没有最大值,故④错误.故答案为:①②.【点睛】关键点点睛:根据函数()f x 的周期性与对称性,在同一个直角坐标系中,作出两个函数||y x =与()y f x =的图象,借助图象分析求解.三、解答题 5.(2021·全国高三专题练习)已知[3,4]x ∈-.(1)不等式222a x x ≤-+恒成立,求实数a 的取值范围; (2)若不等式222a x x ≤-+有解,求实数a 的取值范围. 【答案】(1)1a ≤;(2)17a ≤.【分析】(1)令2()22f x x x =-+,求出()f x 在[3,4]-上的最小值即可; (2)令2()22f x x x =-+,求出()f x 在[3,4]-上的最大值即可.【详解】令22()22(1)1f x x x x =-+=-+,当[3,4]x ∈-时,()f x 在[3,1]-上单调递减,在[1,4]上单调递增,min ()(1)1f x f ==,max ()(3)17f x f =-=,(1)因222a x x ≤-+在[3,4]x ∈-恒成立,于是得1a ≤, 所以实数a 的取值范围是1a ≤;(2)因不等式222a x x ≤-+在[3,4]x ∈-有解,于是得17a ≤, 所以实数a 的取值范围是17a ≤.6.(2021·正阳县高级中学高三(理))已知函数()2f x x x a =+-+. (1)当1a =时,画出()y f x =的图象;(2)若关于x 的不等式()3f x a ≥有解,求a 的取值范围. 【答案】(1)图象答案见解析;(2)1,2⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对函数化简,然后画出分段函数图像即可;(2)由题意可得()max 3f x a ≥,由绝对值三角不等式可得()2f x a ≤-,从而有23a a -≥,进而可求出a 的取值范围【详解】解:(1)1a =时,()1,22123,211,1x f x x x x x x -≤-⎧⎪=+-+=+-<≤-⎨⎪>-⎩,其图像为:(2)若关于x 的不等式()3f x a ≥有解,即()max 3f x a ≥, ∵()222f x x x a x x a a =+-+≤+--=-, ∴23a a -≥,∴23a a -≥或23a a -≤-, 故12a ≤或1a ≤-,故12a ≤, 故a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.7.(2021·江西萍乡·高三(理))已知()3544f x x x =-++.(1)关于x 的不等式()2f x a a ≤-有解,求实数a 的取值范围;(2)设,m n R +∈,且22m n +=()1212m n f x ++【答案】(1)(][),12,-∞-⋃+∞;(2)证明见解析.【分析】(1)利用绝对值三角不等式求出()min f x ,不等式转化为22a a ≤-,解一元二次不等式即可.(2)由(1)可得()222f x (((2221212121m n m n ⎡⎤++≤+++⎢⎥⎣⎦,即证.【详解】(1)由()()()353524444f x x x x x =-++≥--+=所以原不等式等价于22a a ≤-,得1a ≤-,或2a ≥(][),12,a ∴∈-∞-+∞(2)由(1)知()min 2f x =,即()222f x ((()222121212121218m n m n m n ⎡⎤++≤+++=+++=⎢⎥⎣⎦()121222m n f x ∴++8.(2020·全国高三专题练习)已知p :1x 和2x 是方程220x mx --=的两个实根,不等式21253a a x x --≥-对任意实数[]1,1m ∈-恒成立;q :不等式2210ax x +->有解,若p 为真,q 为假,求a 的取值范围.【答案】1a ≤-试题分析:由韦达定理可得12x x -[]1,1m ∈-时,12max ||3x x -=,不等式21253a a x x --≥-对任意实数[]1,1m ∈-恒成立即2533a a --≥,可得6a ≥或1a ≤-;不等式2210ax x +->有解的充要条件为1a >-,则由p 为真,q 为假可得a 的取值范围. 试题解析:∵1x ,2x 是方程220x mx --=的两个实根, ∴12x x m +=,122x x =-,∴12124x x x x -== ∴当[]1,1m ∈-时,12max ||3x x -=,由不等式21253a a x x --≥-对任意实数[]1,1m ∈-恒成立,可得2533a a --≥,∴6a ≥或1a ≤-,① 若不等式2210ax x +->有解,则 当0a >时,显然有解,当0a =时,2210ax x +->有解, 当0a <时,∵2210ax x +->有解, ∴440a ∆=+>,∴10a -<<, ∴不等式2210ax x +->有解时1a >-, ∴q 假时a 的范围为1a ≤-,② 由①②可得a 的取值范围为1a ≤-. 考点:命题真假性的应用9.(2021·全国高三(理))已知函数f (x )=|x ﹣m |+|x +2m |. (1)当m =﹣1时,求不等式f (x )≤7的解集; (2)若不等式f (x )≤9有解,求实数m 的取值范围. 【答案】(1)[﹣3,4];(2)[﹣3,3].【分析】(1)代入m 的值,用零点分段讨论法求解即可; (2)用三角不等式求得()f x 的最小值,进而可得结果. 【详解】(1)m =﹣1时,f (x )=|x +1|+|x ﹣2|=21,23,1212,1x x x x x -⎧⎪-<⎨⎪-<-⎩,∴ x ≥2时,2x ﹣1≤7,解得:2≤x ≤4,x <﹣1时,1﹣2x ≤7,解得:﹣3≤x <﹣1,﹣1≤x <2时,3<7成立,解得:﹣1≤x <2, 故不等式的解集是[﹣3,4];(2)因为()2()(2)33f x x m x m x m x m m m =-++≥--+=-=, 所以min ()3f x m =,依题意可得39m ≤,解得33m -≤≤, 即实数m 的取值范围是[3,3]-.【点睛】结论点睛:对于不等式有解问题,常用到以下两个结论: (1)()a f x ≥有解min ()a f x ⇔≥; (2)()a f x ≤有解max ()a f x ⇔≤.10.(2022·全国高三专题练习(理))已知函数2()21x x af x -=+为定义在R 上的奇函数,(1)求()f x 的解析式;(2)判断函数()f x 的单调性,并用单调性定义证明;(3)若关于x 的不等式(())()0f f x f t +<有解,求t 的取值范围. 【答案】(1)1a =;(2)()f x 在R 上单调递增,证明见解析;(3)1-∞(,]【分析】(1)根据奇函数的定义得到()()f x f x -=-,化简可求得a 的值;(2)先取12x x <,然后根据()()12f x f x -与0的大小关系可证明出()f x 在R 上的单调性;(3)利用()f x 的奇偶性和单调性将问题转化为min2121x x t ⎛⎫-<- ⎪+⎝⎭,根据指数函数的值域求解出2121x x -+的取值范围,从而可求t 的取值范围. 【详解】(1)因为()f x 为奇函数,所以()()f x f x -=-,所以222121x x x x a a-----=++, 所以2122121x x x x a a --⋅=++且120x +>,所以212x x a a -=-⋅,所以()()1212x xa +=+, 所以1a =;(2)()f x 在R 上单调递增; 由条件知()2121x x f x -=+,任取12x x <,所以()()()()()()()()12211212121221212121212121212121x x x x x x x x x x f x f x -+--+---=-=++++, 所以()()()()()1212122222121x x x x f x f x --=++,又因为12x x <,2x y =在R 上单调递增,所以12220x x -<且()()1221210x x++>,所以()()120f x f x -<,所以()()12f x f x <, 所以()f x 在R 上单调递增;(3)因为(())()0f f x f t +<有解,所以(())()f f x f t <-有解, 由()f x 的奇偶性可知:(())()f f x f t <-有解, 由()f x 的单调性可知:()f x t <-有解,所以2121x x t -<-+有解,所以min2121x x t ⎛⎫-<- ⎪+⎝⎭,因为2121221212121x x x x x-+-==-+++,()211,x+∈+∞, 所以()20,221x ∈+,()211,121x-∈-+, 所以1t -->,所以1t <,即t 的取值范围是1-∞(,).【点睛】思路点睛:利用函数单调性和奇偶性解形如()()()()0f g x f h x +>的不等式的思路: (1)利用奇偶性将不等式变形为()()()()f g x f h x >-;、 (2)根据单调性得到()g x 与()h x -的大小关系;(3)结合函数定义域以及()g x 与()h x -的大小关系,求解出x 的取值范围即为不等式解集. 11.(2021·全国高三(理))已知函数()f x x a x b =-+-,,a b ∈R .(1)当1b =时,对任意的m R ∈,关于x 的不等式()222f x m m -+<总有解,求实数a 的取值范围.(2)当0,0a b =>时,求不等式()2f x <的解集.【答案】(1)()0,2;(2)当2a ≥时,()2f x <的解集为∅;当02a <<时,()2f x <的解集为22,22a a -+⎛⎫⎪⎝⎭. 【分析】(1)当1b =时,()1f x x a x =-+-,原问题转化为()()2min min 2+2f x m m -<成立,根据二次函数的性质和绝对值三角不等式可求得实数a 的取值范围;(2)当0a >,0b =时.分类讨论可求得函数()f x 的解析式,作出()f x 的大致图象如图所示,分2a ≥和02a <<两种情况,求得不等式的解集. 【详解】(1)当1b =时,()1f x x a x =-+-,因为对任意得m R ∈,关于x 的不等式()22+2f x m m -<总有解,所以()()2min min2+2f x m m -<,又()222+2=111y m m m =--+≥,当且仅当1m =时取最小值1,()()()11f x x a x a ≥---=-,当且仅当()()10x a x --≤时取等号,故只需11a -<,解得,02a <<, 即实数a 的取值范围为()0,2;(2)当0a >,0b =时.()2,,0,2,0x a x af x x a x a x a x a x -≥⎧⎪=-+=≤≤⎨⎪-+≤⎩作出()f x 的大致图象如图所示; 令22x a -=,得()122x a =+, 令22x a -+=,得()122x a =-, 结合图象可得,当2a ≥时,()2f x <得解集为∅,当02a <<时,()2f x <得解集为22,22a a -+⎛⎫⎪⎝⎭.【点睛】方法点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 12.(2021·全国(理))已知关于x 的不等式|1||2||1|x x t t +--≥-+有解. (1)求实数t 的取值范围;(2)若,,a b c 均为正数,m 为t 的最大值,且a b c m ++=.求证:22243a b c ++≥. 【答案】(1)(,2]-∞;(2)证明见解析.【分析】(1)依题意得()f x 取得最大值为3,原不等式等价于max ()3|1|f x t t =≥-+,讨论t 即可求解范围;(2)根据(1)可得,,a b c 均为正实数,且满足2a b c ++=,由()2223a b c ++≥2222222(2)4a b c ab bc ac a b +++++=++=,即可证明.【详解】解:(1)3,2()1221,123,1x f x x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩,∴当2x ≥时,()f x 取得最大值为3,关于x 的不等式|1||2||1|x x t t +--≥-+有解等价于max ()3|1|f x t t =≥-+, 当1t ≥时,上述不等式转化为31t t ≥-+,解得12t ≤≤, 当1t <时,上述不等式转化为31t t ≥-++,解得1t <, 综上所述t 的取值范围为2t ≤, 故实数t 的取值范围(,2]-∞;证明:(2)根据(1)可得,,a b c 均为正实数,且满足2a b c ++=, ()()()()2222222222223a b c a b c a b b c a c ++=++++++++≥2222222(2)4a b c ab bc ac a b +++++=++=,当且仅当23a b c ===时,取等号, 所以22243a b c ++≥. 【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 13.(2021·上海)已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||2ϕπ<)的图象与x 轴的交于A ,B 两点,A ,B 两点的最小距离为2π,且该函数的图象上的一个最高点的坐标为,212π⎛⎫ ⎪⎝⎭. (1)求函数()f x 的解析式; (2)求证:存在大于3π的正实数0x,使得不等式|()|ln f x x>(0x 有解.(其中e 为自然对数的底数)【答案】(1)2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭;(2)证明见解析.【分析】(1)由题可得2A =,周期为π,则可求出2ω=,由212f π⎛⎫= ⎪⎝⎭可解得3πϕ=;(2)问题可化为1|()|2f x >在区间(0x 有解,再求解不等式sin 23x π⎛⎫+ ⎪⎝⎭.【详解】解:(1)由题意可知,2A =,122T π=,故函数()f x 的周期为π,故2ω=,故()2sin(2)f x x ϕ=+,2sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭, 则2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈,||2πϕ<,∴3πϕ=,∴2n 2)3(si f x x π⎛⎫=+⎪⎝⎭;(2)证明:因为03x π⎛∈ ⎝,故当(0x x ∈时,10ln 2x <<,原不等式可化为|()|f x x >,又因为10ln 2x <<,则12x >,要使得|()|f x x >在(0x 有解,只需1|()|2f x >在区间(0x 有解,代入得:sin 23x π⎛⎫+ ⎪⎝⎭当sin 23x π⎛⎫+ ⎪⎝⎭,6x k k πππ⎛⎫∈+ ⎪⎝⎭,k Z ∈时,此时与区间,6k k π⎛⎫ππ+ ⎪⎝⎭与区间(0x 的交集为空集,当sin 23x π⎛⎫+< ⎪⎝⎭,23x k k ππππ⎛⎫∈-- ⎪⎝⎭,k Z ∈时,令1k =得2,23x ππ⎛⎫∈ ⎪⎝⎭时,满足sin 23x π⎛⎫+ ⎪⎝⎭2π>,故只需0,32x ππ⎛⎫∈ ⎪⎝⎭,原不等式在区间(0x 有解. 【点睛】关键点睛:本题考查三角函数不等式有解问题,解题的关键是将问题转化为1|()|2f x >在区间(0x 有解,从而求解sin 23x π⎛⎫+ ⎪⎝⎭1.(★★★☆)已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )【答案】[-2,0] 【解析】由题意作出的图象(如图)当a>0时直线y=ax 过一、三象限(如图),必与y=ln(x+1)相交,所以a ≤0 当a ≤0时,直线y=ax 过三、四象限对x>0,|f(x)|=ln(x+1)> ax 成立; 对x<0,由|f(x)|=x 2-2x ≥ax a ≥x -2,而当x<0时x -2<-2,所以a ≥-2综合知-2≤a ≤02.(★★☆☆)设x ∈R ,如果lg(|3||7|)a x x <-++ 恒成立,那么 ( ) A .1a ≥ B .1a > C .01a <≤ D .1a < 【答案】D【解析】本题考查对数运算和性质,绝对值不等式的性质,不等式恒成立的含义. 不等式恒成立,等价于的最小值;因为所以;所以故选D3.(★★☆☆)存在实数a 使不等式12x a -+≤ 在[1,2]- 成立,则a 的范围为【答案】【解析】有解问题,()1(1)1max224x a -+--+≤==4.(★★★☆)当102x ≤≤ 时,不等式sin x kx π≤恒成立.则实数k 的取值范围是 【答案】【解析】画出sin y x π=与y kx = 的图像,由图像易知当y kx =过1,12⎛⎫⎪⎝⎭时,k 取最大值。

不等式恒成立有解问题

不等式恒成立有解问题

不等式恒成立、有解问题1.已知()22f x x x a =++对任意x R ∈()0f x >恒成立,试求实数a 的取值范围;★提炼:最高次项系数含有参数时要注意讨论其为0的时候2.已知()223f x ax x =-+(2()2f x x ax =-+)(1)1,3,2x ⎡⎤∃∈⎢⎥⎣⎦()0f x ≥,试求实数a 的取值范围; (2)1,3,2x ⎡⎤∃∈⎢⎥⎣⎦()0f x <,试求实数a 的取值范围;★提炼:(1)不管当0>a 还是0<a 时,],[0)(βα∈>x x f 在有解⇔()0f α>或()0f β>(2)也可以用该命题的否定转化为恒成立的问题求解(如上一题)(3)也可以分离参数用数形结合求解(4)若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.3.设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是变型题1:对于R x ∈,不等式031222>++-x a x 恒成立,则实数a 的取值范围是变型题2:已知函数xa x f 21)(+-=。

(1)解关于x 的不等式0)(>x f 。

(2)若02)(≥+x x f 在(0,+∞)上恒成立,求a 的取值范围。

★提炼:(1)解决恒成立问题通常可以利用分离变量转化,其中分离的可能是关于参数的代数式。

分离过的变量的代数式通常有对号函数式、二次函数式、反比例函数式、分子分母分别为一次和二次代数式等。

(2) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式;(3) 求()f x 在x D ∈上的最大(或最小)值;(4) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。

不等式恒成立有解问题

不等式恒成立有解问题

不等式恒成立有解问题不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容.它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具.在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目,比如2021年高考江西卷以及湖北卷.其中,特别就是一些不含自然对数和指数函数的不等式恒设立与欠阻尼问题,将追加内容与传统科学知识有机融合,用初等方法难以处置,而利用导数能解,思路明晰,过程简便简洁,淡化郧荆道的技巧,它不仅考查函数、不等式等有关的传统科学知识和方法,而且还考查音速、导数等追加内容的掌控和灵活运用.它常与思想方法紧密结合,彰显能力立意的原则,具有时代特征,注重了低考试题与时俱进的改革方向.因此,越来越受中考命题者的亲睐.下面通过一些典型实例并作一剖析.1.不等式恒成立与有解的区别不等式恒设立和欠阻尼就是存有显著区别的,以下充要条件应当细心思索,筛选差异,恰当采用,等价转变,切勿搭为一团.(1)不等式f(x)(2)不等式f(x)(3)不等式f(x)>k在x i时恒成立fmin(x)k•x i.或f(x)的下界大于或等于k;,•(4)不等式f(x)>k在x i时存有求解fmax(x)k•x i.或f(x)的上界大于k;,•解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.基准1未知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x[-3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存有x[-3,3],并使f(x)≤g(x)设立,谋k的值域范围;(3)对任意x1x2[-3,3],都有f(x1)≤g(x2),求k的取值范围.解析(1)设h(x)=g(x)-f(x)=2x2-3x2-12x+k,问题转变为x[-3,3]时,h(x)≥0恒设立,故hmin(x)≥0.令h′(x)=6x2-6x-12=0,得x=-1或2.由h(-1)=7+k,h(2)=-20+k,h(-3)=k-45,h(3)=k-9,故hmin(x)=-45+k,由k-45≥0,得k≥45.(2)据题意:存有x[-3,3],并使f(x)≤g(x)设立,即为为:h(x)=g(x)-f(x)≥0在x[-3,3]存有求解,故hmax(x)≥0,由(1)言hmax(x)=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x1x2[-3,3],都有f(x1)≤g(x2)成立,不等式的左右两端函数的自变量不同,x1,x2的取值在[-3,3]上具备任意性,因而要使原不等式恒设立的充要条件就是:fmax(x)gmin(x)•,•x[3•,3],由g′(x)=6x2+10x+4=0,得x=-2或-1,易得3,3].故fmax(x)f(3)120k.令gmin(x)g(3)21,又f(x)=8(x+1)2-8-k,x[3•120-k≤-21,得k≥141.评测本题的三个大题,表面形式非常相近,究其本质却大相径庭,应当深入细致审题,深入细致思索,多提训练,精确采用其设立的充要条件.2.不等式恒成立问题基准2(06年全国)设立函数f(x)=(x+1)ln(x+1),若对所有x≥0,都存有f(x)≥ax设立,谋实数a的值域范围.解析构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax,原问题变为g(x)≥0对所有的x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在0•,•为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=ln(x+1)+1-a,由g′(x)=0,得x=e当x>ea1a1-1.-1时,g′(x)>0,g(x)为增函数.a1那么对所有的x≥0,都存有g(x)≥g(0),其充要条件就是e-1≤0,故得a的值域范围就是•,1.假若我们没注意到g(0)=0,那么在求解g(x)≥0对所有的x≥0恒设立时,也可以转变为gmin(x)0(x0),再以导数为工具,稍加探讨即可暂解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax对所有的x≥0恒成立可得:(1)当x=0时,a r.(2)当x>0时,a设g(x)=(x1)ln(x1).x(x1)ln(x1),问题转变以求g(x)在开区间(0,+∞)上最小值或下界,xx ln(x1)g(x),试图通过g′(x)=0直接解得稳定点,困难重重!退一步令x21•,•x0,故h(x)>0,则h(x)在(0,+∞)单调递减,h(x)=x-ln(x+1),因为h(x)1x1即h(x)>h(0)=0,从而g(x)>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:g(x)limg(x),然x0而谋此音速却又远远超过所学科学知识范围,于是大部分学生被此困境洗落马,无果而终.事实上采用洛比达法则可得:limg(x)limx0(x1)ln(x1)lim[ln(x1)1]1,故x>0x0x0x时,g(x)>1,因而a≤1.综合(1)(2),得a的取值范围是:•,1•.评测使用参数分离法解本题,最小的难点是谋拆分后税金函数的下界.它须要学生具有坚实的综合素质和优良的音速、导数科学知识,并能够有效率地运用这些工具去研究函数的性态,包含函数的单调性,极值(最值)或上时下界.注重考查了函数与方程思想、非常有限与无穷的思想.3.不等式有解问题基准3(06年湖北)设x=3就是函数f(x)=(x2+ax+b)e3x,x r的一个极值点.(1)求a与b的关系(用a表示b),并求f(x)的的单调区间;(2)设a>0,g(x)=aa的取值范围.解析(1)f(x)[x2(a2)x b a]e3x,由f(3)=0得b=-2a-3.故f(x)=(x2+ax-2a-3)e3x225x e,若存在s1,s2[0,4],使得|f(s1)-g(s2)|当a>-4时,x1>x2,故f(x)在•,a1上以减至函数,在[-a-1,3]上以增函数,在3•,上以减至函数.(2)由题意,存在s1,s2[0,4],使得|f(s1)-g(s2)|于是问题转变为|f(s1)-g(s2)|min因为a>0,则-a-1225x e在[0,4]上似乎为减4函数,其值域a2252254•,a e.442因为a2251-(a+6)=a42≥0,故a225≥(a+6).4225(a6)125a2|f(s1)-g(s2)|min=a-(a+6)从而求解,•44a0值范围为0•,.得0a 3.故a的取2假若问题变为:“对任一的s1,s2[0,4],使|f(s1)-g(s2)|点评函数、不等式、导数既是研究的对象,又是决问题的工具.本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数闭区间上的值域,再处理不等式有解问题.这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.。

不等式有解和恒成立问题

不等式有解和恒成立问题

不等式有解和恒成立问题知识点的罗列,文字不宜太多,简洁明了最好)知识点一:不等式恒成立问题知识点二:不等式有解问题分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填难度)题目)【试题来源】(上海2016杨浦二模卷)【题目】设函数x x g 3)(=,x x h 9)(=,若bx g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.【答案】:因为bx g a x g x f +++=)()1()(是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=x x f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h即23132-⋅>-x x k 对任意的R x ∈都成立, 即x k 13<例题(k f 【答案】sin k x -22k k k k ⎧-≥⎪≤⎨⎪≤⎩解决不等式有解和恒成立问题的方法✧ 二次函数法。

在之前的讲义中,我们在二次函数那一节已经适当讨论了一些一元二次不等式的恒成立(有解)问题。

事实上,在高考中,很多不等式可以通解变形为一元二次不等式。

因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。

✧ 分离参数法。

所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利用以下命题进行求解。

m min ax ()()(())a f x a x a f x f >⇔>>恒成立(有解);m max in ()()(())a f x a x a f x f <⇔<<恒成立(有解).1、若不等式1log (10)0x a a --<有解,则实数a 的范围是____?????????????.2、函数()f x )对一切实数,x y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =.(1)求f (2)求(f 3对一切4、已知(1)若(2)若5、已知。

不等式恒成立与有解问题

不等式恒成立与有解问题

差异 , 当使 用 等 价 转化 , 不 可混 恰 切 淆. 于含 有 等号 的 恒成 立 问题 可 以 对 同上 进 行 相应 的 转化 .
2 .不 等 式 恒 成 立 与 有 解 的 基 本 策 略 ( ) 别 式 法 : 于 定 义 在 R上 1判 对
考 中 的 主 观 题 和 客 观 题 都 会 出现 . 要 注意 对 问题 进 行 等 价 转 换 ,以便
找 到简 捷 的解 题 途径 . 难 点 : 一 , 造 恰 当 的 函数 : 其 构 其 二 ,选 择 恰 当 的 方 法 研 究 函 数值 的 取值 范 围.
的二 次 函 数 的恒 成 立 问题 仅 用 一 元 二 次 方程 根 的判 别式 即可解 决 .
立 , 实数 求 的取 值 范 围.若 用 变 量
含 变 量 又 含 参 数 ,往 往 与 函数 、 数 列 、 程 、 何 有 机 结 合 起 来 , 有 方 几 具
形 式 灵 活 、 维 性 强 、 同知 识 交 汇 思 不 等 特 点 .在 高 考 试 题 中 涉及 的 题 型 主 要 是 : 明 某 个 不 等式 恒 成 立 : 证 已
重 点 :理 解 不 等 式 恒 成 立 与 有
() 4 不等式厂 ) E, ( > 在 时有解
仁 ) 一 , ∈I , ) 上界 大于k 的 .
解 的 数学 意义 .熟 悉 所 学 初 等 函 数 的 图象 和性 质 ;掌 握 求 导 公 式 和 导
不等 式 恒 成 立 与 有 解 是 有 明显 区别 的 ,以 上 充要 条 件 应 细 心 甄 别
数 的应 用 .能够 用 导 数 ቤተ መጻሕፍቲ ባይዱ 究 函数 的 性 质 ,特 别 是 判 断 函数 的单 调 性 和 求 函数 的 最 值 :掌 握 解 决 不 等 式 与

不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)

不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)

不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。

例2、已知(),22x ax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln)(44>-+=xcbxxaxxf在1=x处取得极值3c--,其中a、b为常数.(1)试确定a、b的值;(2)讨论函数)(xf的单调区间;(3)若对任意0>x,不等式22)(cxf-≥恒成立,求c的取值范围。

2、主参换位法例5、若不等式a10x-<对[]1,2x∈恒成立,求实数a的取值范围例6、若对于任意1a≤,不等式2(4)420x a x a+-+->恒成立,求实数x的取值范围例7、已知函数323()(1)132af x x x a x=-+++,其中a为实数.若不等式2()1f x x x a'--+>对任意(0)a∈+∞,都成立,求实数x的取值范围.3、分离参数法(1)将参数与变量分离,即化为()()g f xλ≥(或()()g f xλ≤)恒成立的形式;(2)求()f x在x D∈上的最大(或最小)值;(3)解不等式()max()g f xλ≥(或()()ming f xλ≤),得λ的取值范围。

不等式专题:一元二次不等式恒成立和有解问题-【题型分类归纳】(解析版)

不等式专题:一元二次不等式恒成立和有解问题-【题型分类归纳】(解析版)

一元二次不等式恒成立和有解问题一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c >++对任意实数x 恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a2、不等式20ax bx c <++对任意实数x 恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方; 恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a .三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。

四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下: 1、对任意的[,]∈x m n ,()>a f x 恒成立⇒max ()>a f x ; 若存在[,]∈x m n ,()>a f x 有解⇒min ()>a f x ;若对任意[,]∈x m n ,()>a f x 无解⇒min ()≤a f x .2、对任意的[,]∈x m n ,()<a f x 恒成立⇒min ()<a f x ; 若存在[,]∈x m n ,()<a f x 有解⇒max ()<a f x ; 若对任意[,]∈x m n ,()<a f x 无解⇒max ()≥a f x .题型一 一元二次不等式在实数集上的恒成立问题【例1】若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞ 【答案】B【解析】当0=a 时,不等式成立;当0≠a 时,不等式2220--<ax ax 恒成立,等价于()()20,2420,<⎧⎪⎨∆=--⨯-<⎪⎩a a a 20∴-<<a . 综上,实数a 的取值范围为(]2,0-.故选:B .【变式1-1】“不等式20-+>x x m 在R 上恒成立”的充要条件是( ) A .14>m B .14<m C .1<mD .1>m 【答案】A【解析】∵不等式20-+>x x m 在R 上恒成立,∴2(1)40∆--<=m ,解得14>m , 又∵14>m ,∴140∆=-<m ,则不等式20-+>x x m 在R 上恒成立, ∴“14>m ”是“不等式20-+>x x m 在R 上恒成立”的充要条件,故选:A.【变式1-2】已知关于x 的不等式2680-++>kx kx k 对任意∈x R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k ≤< C .0k <或1k > D .0k ≤或1k > 【答案】B【解析】当0=k 时,80>恒成立,符合题意;当0≠k 时,由题意有()()2Δ6480>⎧⎪⎨=--+<⎪⎩k k k k ,解得01<<k , 综上,01≤<k .故选:B.【变式1-3】已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( )A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2⎛⎫-∞ ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110ax a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B【变式1-4】关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞ 【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x ≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤; 综上所述:实数a 的取值范围为(],3-∞.故选:B.题型二 一元二次不等式在某区间上的恒成立问题【例2】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.【答案】(,4]-∞.【解析】对于任意的14x <≤,不等式()22241(1)25x a x a x a x x -++≥--⇔-≤-+,即2254(1)11x x a x x x -+≤=-+--, 因此,对于任意的14x <≤,2254(1)11x x a x x x -+≤=-+--恒成立, 当14x <≤时,013x <-≤,44(1)(1)411x x x x -+≥-⋅=--, 当且仅当411x x -=-,即3x =时取“=”,即当3x =时,4(1)1x x -+-取得最小值4,则4a ≤, 所以实数a 的取值范围是(,4]-∞.【变式2-1】已知2(2)420+-+-x a x a对[)2,∀∈+∞x 恒成立,则实数a 的取值范围________. 【答案】(],3-∞【解析】因为2(2)420x a x a +-+-对[)2,x ∀∈+∞恒成立,即4222x a x ++-≥+在[)2,x ∀∈+∞时恒成立,令2,4x t t +=≥, 则4222x x ++-+代换为42t t +-,令4()2g t t t=+-, 由对勾函数可知,()g t 在[)4,t ∈+∞上单增,所以min ()(4)3g t g ==, 所以(],3a ∈-∞.故答案为:(],3-∞【变式2-2】已知二次函数222y x ax =++.若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围. 【答案】22<a .【解析】不等式()3f x ax >即为:220x ax -+>,当[]1,5x ∈时,可变形为:222x a x x x+<=+,即min 2()a x x <+. 又2222x x x x+≥+= 当且仅当2x x=,即[]21,5x =时,等号成立,min 2()22x x∴+=22a <故实数a 的取值范围是:22a <【变式2-3】若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a 的最小值为( )A .0B .2-C .222-D .5- 【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩ 解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D【变式2-4】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或7x >172≤<x 7x =综上,实数x 的取值范围是4x ≤-,或12x ≥,故选:A.题型三 给定参数范围的一元二次不等式恒成立问题【例3】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-1】若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( )A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】已知[]1,1∈-a ,不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .()()3,,2∞-∞+ B .()()2,,1∞-∞+ C .()()3,,1∞-∞+D .()1,3 【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.∴x 的取值范围为()(),13,-∞⋃+∞.故选:C .【变式3-3】已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是( )A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞ 【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立, 令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠, 当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或7x >172≤<x 7x = 综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型四 一元二次不等式在实数集上的有解问题【例4】已知不等式20kx x k -+<有解,则实数k 的取值范围为__________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】当0k =时,0x -<,符合题意当0k >时,令2y kx x k =-+,由不等式20kx x k -+<有解,即2140k ∆=->,得102k <<当0k <时, 2y kx x k =-+开口向下,满足20kx x k -+<有解,符合题意综上,实数k 的取值范围为1,2k ⎛⎫∈-∞ ⎪⎝⎭【变式4-1】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,符合题意; 当0a >时,要使不等式2210ax x ++<有实数解, 则需满足440∆=->a ,可得1a <,所以01a <<, 综上所述:a 的取值范围是(),1-∞.【变式4-2】x R ∃∈,使得不等式231x x m -+<成立,则m 的取值范围是___________.【答案】11,12⎛⎫+∞ ⎪⎝⎭【解析】令()22111313612f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,则()min 1112f x =,因为x R ∃∈,使得不等式231x x m -+<成立, 所以1112m >, 则m 的取值范围是11,12⎛⎫+∞ ⎪⎝⎭,【变式4-3】若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____________. 【答案】(,1)(4,)-∞+∞【解析】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解, 则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当0a <时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以0a <,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞.题型五 一元二次不等式在某区间上的恒成立问题【例5】已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是( )A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭, C .()3+∞, D .127⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+ , 故问题转化为263xm x <+在(]02,上有解, 设26()3x g x x =+,则266()33x g x x x x==++,(]02x ∈,, 对于323x x+≥,当且仅当3(0,2]x =时取等号, 则max ()323g x ==3m <,故选:A【变式5-1】已知命题p :“15∃≤≤x ,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A 【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集 若15x ∀≤≤,250x ax --≤恒成立为真命题, 需满足25550a --≤且150a --≤,解得4a ≥. 因此p 命题成立时a 的范围时4a <,故选:A .【变式5-2】若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为( )A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞ C .[0,1] D .(0,1) 【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥, 关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解, 当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【变式5-3】已知当12x ≤≤时,存在x 使不等式()()14m x m x -++<成立,则实数m 的取值范围为( )A .{}22m m -<<B .{}12m m -<<C .{}32m m -<<D .{}12m m <<【答案】C【解析】由()()14m x m x -++<可得224m m x x +<-+,由题意可得()22max 4m m x x +<-+,且12x ≤≤,令()24f x x x =-+对称轴为12x =,开口向上,所以()24f x x x =-+在[]1,2上单调递增, 所以2x =时,()()2max 22246f x f ==-+=,所以26m m +<,解得:32m -<<, 所以实数m 的取值范围为{}32m m -<<,故选:C.【变式5-4】关于x 的不等式2244x x a a -+≥在[]1,6内有解,则a 的取值范围为________.【答案】[]2,6-【解析】2244x x a a -+≥在[]1,6内有解,()22max 44a a x x ∴-≤-,其中[]1,6x ∈;设()2416y x x x =-≤≤, 则当6x =时,max 362412y =-=, 2412a a ∴-≤,解得:26a -≤≤,a ∴的取值范围为[]2,6-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于不等式恒成立问题与有解问题
班级:姓名:
1. 关于恒成立问题:
1.1 任意x∈D,不等式f(x)>a恒成立⇔
1.2 任意x∈D,不等式f(x)<a恒成立⇔
1.3 任意x∈D,不等式f(x)>g(x)恒成立⇔
1.4 任意x∈D,不等式f(x)<g(x)恒成立⇔
1.5 对于任意x1∈D,x2∈D,f(x1)>g(x2)恒成立⇔
例1、已知函数f(x)=8x2+16x-k, g(x)=2x3+5x2+4x,其中k∈R ,
(1)对任意的x∈[-3,3],都有f(x)≤g(x)成立,求k的取值范围;
(2)对任意的x1∈[-3,3],x2∈[-3,3],都有f(x1)≤g(x2)成立,求k的取值范围。

2. 关于不等式有解问题
2.1 不等式a>f(x)在x∈D上有解⇔存在x∈D,a>f(x)成立⇔
2.2 不等式a<f(x)在x∈D上有解⇔存在x∈D,a<f(x)成立⇔
2.3 不等式f(x)>g(x)在x∈D上有解⇔存在x∈D,f(x)>g(x)成立⇔
2.4 不等式f(x)<g(x)在x∈D上有解⇔存在x∈D,f(x)<g(x)成立⇔
例2、已知函数f(x)=8x 2+16x-k, g(x)=2x 3+5x 2+4x ,其中k ∈R ,若存在x ∈[-3,3],使得f(x)≤g(x)成立,求k 的取值范围。

3. 其他
3.1 任意x 1∈D ,存在x 2∈D ,使f(x 1)<g(x 2)成立⇔
3.2 任意x 1∈D ,存在x 2∈D ,使f(x 1)=g(x 2)成立⇔
例3. 已知函数32
()f x x bx cx d =+++(0)b ≠在0x =处取到极值2.
(Ⅰ)求,c d 的值;
(Ⅱ)试研究曲线()y f x =的所有切线与直线10x by -+=垂直的条数;
(Ⅲ)若对任意[1,2]x ∈,均存在(0,1]t ∈,使得ln 1()et t f x --≤,试求b 的取值范围.
作业:
1、已知两个函数2()226f x x x c =--,32()411g x x x x =--.
(Ⅰ)若对任意∈x [-3,3],都有)(x f ≤)(x g 成立,求实数c 的取值范围; (Ⅱ)若对任意∈1x [-3,3],∈2x [-3,3],都有)(1x f ≤)(2x g 成立,求实数c 的取值范围。

(Ⅲ)若对任意∈1x [-3,3],存在∈2x [-3,3],都有)(1x f ≤)(2x g 成立,求实数c 的取值范围。

2、已知函数()ln ()f x x ax a R =-∈.
(Ⅰ)求()f x 的单调递增区间;
(Ⅱ)若1a =且0b ≠,函数31()3
g x bx bx =-,若对任意1(1,2)x ∈,总存在2(1,2)x ∈,使得12()()f x g x =,求实数b 的取值范围。

相关文档
最新文档