关于软岩支护技术

合集下载

煤矿软岩巷道支护技术

煤矿软岩巷道支护技术

煤矿软岩巷道支护技术摘要:本文主要对煤矿软岩巷道支护技术进行了分析,概述了软岩的概念和分类以及软岩的工程特征,并探讨了煤矿软岩巷道支护存在的问题,最后从三个方面对煤矿软岩巷道支护技术问题进行了研究,具体包括软岩巷道支付的技术关键分析,最佳支护时间分析以及软岩巷道支护的对策。

关键词:软岩巷道联合支护巷道变形1 软岩的基本概念1.1 软岩的基本概念工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。

目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,同时应强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。

该定义的主题词是工程力、显著变形和工程岩体。

工程岩体是软岩工程研究的主要对象,是巷道、边坡、基坑开挖扰动影响范围之内的岩体,包含岩块、结构面及其空间组合特征。

工程力是指作用在工程岩体上的力的总和,它可以是重力、构造残余应力、水的作用力和工程扰动力以及膨胀应力等;显著塑性变形是指以塑性变形为主体的变形量超过了工程设计的允许变形值并影响了工程的正常使用,显著塑性变形包含显著的弹塑性变形、黏弹塑性变形,连续性变形和非连续性变形等。

此定义揭示了软岩的相对性实质,即取决于工程力与岩体强度的相互关系。

当工程力一定时,不同岩体,强度高于工程力水平的大多表现为硬岩的力学特性,强度低于工程力水平的则可能表现为软岩的力学特性;对同种岩石,在较低工程力作用下,表现为硬岩的变形特性,在较高工程力的作用下则可能表现为软岩的变形特性。

1.2 软岩的工程特性软岩有两个工程特性:软岩临界载荷和软化临界深度,它揭示了软岩的相对性实质。

(1)软化临界深度:与软化临界荷载相对应的存在着软化临界深度。

一般来讲,软化临界深度也是一个客观量。

当巷道的位置大于某一开采深度时,围岩产生明显的塑性大变形、大地压和难支护的现象;但当巷道位置较浅,小于某一深度时,大变形、大地压的现象明显消失。

基于能量平衡理论的深部软岩巷道支护技术研究

基于能量平衡理论的深部软岩巷道支护技术研究

基于能量平衡理论的深部软岩巷道支护技术研究深部软岩巷道支护技术研究摘要:深部软岩巷道的支护是一个复杂而重要的问题,直接影响着巷道的稳定性和工程的安全性。

本文在能量平衡理论的基础上,对深部软岩巷道的变形机理和支护技术进行了研究,并提出了适合于深部软岩巷道支护的几种技术方法,在实际工程中得到了较好的应用效果。

关键词:能量平衡理论,深部软岩巷道,支护技术,变形机理,应用效果一、研究背景和意义近年来,随着矿井、隧道等各种地下工程的不断发展,对深部软岩巷道的支护技术提出了更高的要求。

而深部软岩巷道的复杂变形现象和强烈地应力场,使得其的支护难度也愈发增加。

因此,研究深部软岩巷道的支护技术,对于提高其稳定性和安全性具有重要意义。

在工程实践中,发现深部软岩巷道的破坏主要是由岩体变形导致的。

而深部软岩巷道的变形机理又主要包括岩层的压缩、剪切、膨胀和破碎等过程,其过程复杂且具有随机性。

因此,研究深部软岩巷道的变形机理是提出有效支护技术的前提。

二、分析支护机理1.能量平衡理论基于能量平衡理论的分析,可以看出深部软岩巷道的变形机理是岩体内部能量的转移和转换,主要包括应力能、变形能和摩擦能等。

2.应力集中机理深部软岩巷道的支护机理主要在于应力集中的控制和瞬时变形的消耗,从而实现巷道稳定。

常见的支护方法有钢筋网片、钢筋锚杆、喷射混凝土、支撑型材、加压注浆、预应力锚杆、防冲击压力杆等方法。

三、支护技术实践1.钢筋锚杆支护法这种方法是根据深部软岩巷道的特点,采用钢筋锚杆进行加固。

其优点是运用简单,成本较低,但也具有不足,如缺乏对隧道高应力地区的支护。

2.加压注浆法采用高压注浆强化地基,以增强地质体的支撑性能,提高地质体的载荷能力。

该技术具有施工简便、经济实用、灵活方便等优点,但存在一些缺陷,如控制浆液固结时间和浆液流性,避免注浆过程中泡沫的产生等。

3.预应力锚杆预应力锚杆的优势在于它具有强耐久性和自适应性,能够有效控制岩层的变形,适用于深部软岩巷道的支护。

软岩巷道支护技术

软岩巷道支护技术

世上无难事,只要肯攀登
软岩巷道支护技术
(一)软岩巷道支护原理(1)巷道支护原理
软岩巷道支护时软岩进入塑性状态不可避免,应以达到其最大塑性承载能力
为最佳;同时其巨大的塑性能(如膨胀变形能)必须以某种形式释放出来。

软岩支护设计的关键之一是选择变形能释放时间和支护时间。

(2)最佳支护时间和时段
岩石力学理论和工程实际表明,硐室开挖之后,围岩变形逐渐增加。

以变形
速度区分,可划分三个阶段;即减速变形阶段、近似线性的恒速变形阶段和加速变形阶段。

最佳支护时间是以变形的形式转化的工程力PR 和围岩自撑力PD 最大,工程支护力最小的支护时间
图7-34 最佳支护时间TS
(二)软岩巷道常用支护形式
(1)锚喷网支护
锚喷网支护系列是目前软岩巷道有效、实用的支护形式。

喷射混凝土能及时
封闭围岩和隔离水。

网不仅可以支承锚杆之间的围岩,并将单个锚杆连结成整个锚杆群,和混凝土形成有一定柔性的薄壁钢筋混凝土支护圈。

锚喷网支护允许围岩有一定的变形,支护性能符合对软岩一次支护的要求。

根据围岩条件,也可以不喷射混凝土,仅选用锚网、桁架锚网、钢筋梯锚网、钢带锚网支护,也可以二次喷射混凝土支护。

(2)可缩性金属支架
U 型钢可缩性金属支架具有可缩量和承载能力在结构上的可调性,通过构件
间可缩和弹性变形调节围岩应力。

在支架变形和收缩过程中,保持对围岩的支护阻力,促进围岩应力趋于平衡状态。

我国在U 型钢可缩性金属支架架后充。

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨随着煤炭工业的快速发展,煤炭开采深度也在不断增加,导致矿山地质环境变得越来越复杂和危险。

煤矿深部软岩支护技术是煤炭采掘安全和高效生产的关键。

本文将从软岩的定义、分类、成因以及软岩地质特征和软岩支护类型等方面探讨煤矿深部软岩支护技术。

软岩的定义、分类和成因软岩是矿山地质中的一种地质体,指在岩石力学性质、工程特征和建筑物能耐上介于岩石和土壤之间的一类岩体。

软岩的硬度一般不超过70Mpa,其特点是热敏性、湿敏性、易塌性和强变形性等。

常见的软岩有泥质岩、砂质岩、粉砂岩、灰岩和石膏等。

软岩的成因多种多样。

最为常见的原因是地质作用。

在地球上的各种作用下,部分矿区的岩石结构逐渐退化,出现软弱岩体。

此外,煤炭开采过程中,削弱了含煤层周围的矿体,导致软弱岩石的形成,从而产生软岩。

软岩地质特征软岩的地质特征表现为强变形性、易透水性、易冒顶、易产生岩爆事故等。

在软岩矿井中,地质压力常常会引起软岩体的岩层断裂和破碎,导致轻微或严重的地质灾害。

因此,软岩地质特征是进行煤矿深部软岩支护技术方案设计的必要依据。

软岩支护类型针对软岩的地质特征和危险,煤炭生产中采用了多种软岩支护技术,以保护工人的生命财产安全。

常见的软岩支护类型有如下几种:1. 锚杆支护技术在煤炭开采过程中,锚杆可以被用作绑扎煤岩或固化受引力影响的悬顶,而且在软岩支护中具有重要的作用。

锚杆支护技术的目的是通过锚杆来增加巷道承载力和刚度,提高巷道的稳定性和抗震性能,适用于钻孔后注浆的软岩巷道支护。

2. 预制钢筋网支护技术预制钢筋网支护是基于预制钢筋网的加固材料,与锚杆支护技术相比,钢筋网能够承受大的荷载。

在此基础上,预制钢筋网支护技术被用于煤矿深部软岩支护,可以有效地改善巷道的试采能力和稳定性。

3. 疏松填充体支护技术疏松填充体支护技术将大粒径的碎石、石英砂和水泥混合后灌浆进行支护,以达到提高巷道稳定性和减少运动荷载的目的。

此外,疏松填充体支护技术还可以作为巷道封堵材料,防止有害气体或水污染工作面。

浅谈软岩巷道支护技术与应用

浅谈软岩巷道支护技术与应用
本情 况
米村矿2 扩大 区轨道石门车场为半 圆拱型断面 , 6
2 .软岩巷道多表现为巷道四周受压 ,且为非对称 性,巷道开挖后不仅顶板变形易冒落 ,巷道两帮也容易
出现外 鼓和 冒落 ,同 时也有 可 能产 生强烈 的底 膨现 象 。
净宽3 0 m 8 0 ,净高3 0 m 0 0 ,壁 厚10 m 5 m ,全长 约6 m 0 。巷 道周 围存在老巷较 多,围岩破碎 ,所穿岩层为泥岩 、
3 .软 岩巷 道 变 形 随矿 升 的开 采 深度 增 加 而 增
术 、成本等方面都具有优 势,因此,多媒体调度通信
将 是 未 来 电力 系 统 调 度 通 信 的发 展 趋 势 。l 盔 ,
参考文 献
【 郭经红.软交换 平台在 下一代 电力通信 网络 中的应 用 I. 1 ] J ]
坏 。这 时 如果 用 不适 应 软岩 大 变 形 的 刚 性支 架 ,将 很
断 的提高 ,如锚 网喷一锚索 、架棚 喷浆一 注浆等联合
支护技术 的逐 步发展 成熟,使得巷 道支护有效地得到
改善。

快被压垮 ,所 以支护时必须根据这一特点,要在控制
下 允许 软 岩 一 定 的变 形 量 出现 。
杆数量 ,实行多打锚杆 ,使顶 部围岩形成整体 。
三、软岩 巷道 的支护要 求及对 策
根据软岩 的特 点,在支护方面不 能单纯提 高支 护 刚度 的方法 来提 高支护 效果,单 纯提 高支护 刚度会使 巷道 支护体 系迅速遭 到破 坏,经常造成 前掘后翻的局
面 , 再 者 单 一 支 护 方 式 不 能 更好 的 发挥 支 护 作 用 。软 岩巷 道 支 护 是 支 护 结 构 和 围 岩 结 构 相 互 调 节 , 相 互 控

深部软岩巷道支护技术研究

深部软岩巷道支护技术研究

深部软岩巷道支护技术研究1. 引言1.1 研究背景深部软岩巷道是指岩石中深埋处于较高地应力状态下的巷道。

由于深部软岩的强度较低,岩溶作用较强,岩体结构较复杂,深部软岩巷道在工程施工中往往面临较大的支护难度和风险。

随着我国经济建设和交通基础设施建设的不断发展,深部软岩巷道工程的需求越来越大,对支护技术提出了更高的要求。

目前,国内外对深部软岩巷道支护技术的研究也逐渐增多,一些新的支护方法不断涌现,为工程实践提供了更多选择。

由于深部软岩巷道的特殊性和复杂性,现有的支护技术仍存在许多不足之处,例如支护效果不理想、施工难度大、施工周期长等问题。

对深部软岩巷道支护技术的研究仍然具有重要意义,有待进一步深入探讨和改进。

【研究背景】的明确,有助于引导研究人员深入开展相关工作,提高深部软岩巷道工程施工的技术水平和质量。

1.2 研究目的研究目的主要是通过对深部软岩巷道支护技术的研究,探讨如何有效地提高巷道的稳定性和安全性,降低工程施工风险,为工程建设提供可靠的技术支持。

具体包括以下几个方面的目的:1. 分析深部软岩巷道的岩体特征,了解其力学性质和变形规律,为选择合适的支护措施提供依据。

2. 探索深部软岩巷道支护技术的研究方法,寻找适合实际工程的有效解决方案。

3. 改进和创新现有的支护技术,提高巷道的支护效果和工程质量。

4. 基于实践案例的经验总结,提出结论,并为未来深部软岩巷道支护技术的研究方向和应用推广提供建议和借鉴。

1.3 国内外研究现状国内外在深部软岩巷道支护技术方面的研究取得了一定的进展。

国内主要集中在深部软岩巷道支护技术的应用实践和经验总结上,已形成了一套较为成熟的支护技术体系。

采用高强度锚杆支护、锚网喷锚等技术,有效控制软岩巷道的塌方和失稳问题。

而国外则更注重对深部软岩巷道岩体特征及支护技术的理论研究,以及新型材料和装备的应用。

在岩体力学、岩土工程、支护材料等方面取得了很多创新性成果。

目前国内外在深部软岩巷道支护技术研究中仍存在一些共性问题,如对于软岩巷道的合理支护结构设计以及支护材料的选择等方面的系统研究不足。

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨随着煤矿深部开采的不断加深,软岩顶板支护问题逐渐凸显出来。

软岩层具有岩屑的强度和岩层的变形性能,易受到采煤工作面周围地应力的影响,容易发生塌方、滑坡、地压突出等地质灾害。

为了确保煤矿深部开采的安全高效进行,如何解决深部软岩支护技术问题成为了矿业工作者们亟待解决的难题。

本文将探讨煤矿深部软岩支护技术,并提出相关的对策。

一、软岩特点煤矿深部软岩通常指花岗岩、片岩、砾岩和泥岩等岩层。

这些岩层的最大特点就是岩石松软,存在着破碎和变形的特性,其强度和稳定性均较差。

软岩层还容易与水分结合,使得软岩层具有较强的胶结作用和吸湿性。

这就给软岩顶板支护带来了更大的困难。

二、软岩支护技术探讨1. 顶板支护方式选择采用合适的支护方式是保证软岩层煤矿深部开采安全的基础。

在软岩层的顶板支护中,应根据不同的地质条件、开采方式和支护材料等进行选择,以此保证支护结构的稳定性和可靠性。

通常采用的支护方式有锚杆支护、木方支护和钢支架支护等。

锚杆支护是一种简便易行、支护作用显著的方式,逐渐成为软岩层顶板支护的主要方式之一。

2. 支护材料选择在软岩层顶板的支护中,材料的选择至关重要。

传统的木方支护已经不能满足深部软岩层的支护需求,因为木方支护对于软岩层的变形和破碎性能较差,易使支护结构产生变形、松动等现象。

目前较为常用的支护材料是钢支架和钢筋混凝土支柱等,它们的强度和稳定性较好,能够较好地应对软岩层的支护需求。

3. 预防措施为了更好地保障软岩层的支护效果,可在软岩层的顶板支护中增加预防措施。

具体可采取以下措施:一是通过合理的支护结构设计和合理的支护参数设置,保证支护结构的整体稳定性和可靠性;二是通过加固岩体、改善岩体稳定性,提高软岩层的整体强度和稳定性,减少地质灾害发生的可能性;三是通过科学的通风与排水工程设计,减少地质灾害的发生概率。

1. 加强监测在软岩层的顶板支护过程中,应加强对支护结构和周围地质环境的监测,实时掌握支护结构的变形和受力情况,及时发现问题,采取相应的措施。

软岩巷道锚注联合支护技术

软岩巷道锚注联合支护技术

软岩巷道锚注联合支护技术随着我国社会主义市场经济的不断发展,矿产资源的开发和利用成为当前阶段社会关注的热点问题之一。

在本文的研究中,重点对影响支护设计效果的因素进行了简要分析,并以此为根据提出了相应的支护技术的合理性和支护效果。

大量实际施工案例证明,本文所研究的锚注联合支护技术在深部软岩巷道中的应用,具有良好的效果,保证经济效益的同时,也对巷道安全生产提供了客观意义上的支持。

标签:深部;软岩巷道;锚注支护引言在我国改革开放的过程中,社会各方面对于能源的需求不断增加,浅部资源日益减少,深度开采已经成为当前阶段矿山开采业普遍需要面对的问题。

而我国的煤矿生产过程中,同样面临深度开采的问题,尤其是在开采深度不断增加的过程中,软岩灾害的客观存在,对于矿井的整体生产能力有着直接的影响。

根据相关部门提供的数据显示,我国当前阶段煤炭井下作业的平均开发速度为6000 km/a,而在这一数据中,实际上深部软岩巷道占年巷道总量的28% ~30%[1] [7],如果不对软岩巷道的开发和加固给予足够的重视,那么安全生产也就无从谈起了。

1 工程概况淄博矿业集团唐口煤矿年产500万吨,立井开拓,井口标高为±39m[1],井底车场水平为-990m。

由于巷道埋深超千米,在巷道开拓和煤炭开采过程中必然面对地压大、岩层软的问题。

对这些问题进行相应的研究和探索,对于解决我国当前煤炭生产过程中的安全问题有着重要的现实意义。

2 辅助运输大巷修复加固支护设计辅助运输石门在实际的煤炭开采过程中具有非常重要的地位,是矿井重要运输生产线。

经过长时间的使用,巷道发生较大变形,这种情况下的巷道围岩整体状态已经非常危险,如果不经过相应的维护和加固处理,势必影响安全和生产。

通常情况下,采用高强超长组合锚杆与锚注联合支护加固拱墙模式进行处理,能够受到较好的效果。

其具体参数如下:1)高强螺纹钢锚杆:规格为¢22×2500 mm,在实际的应用过程中,基本间距为800 mm,排距为2000mm[2]。

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨煤矿深部软岩支护技术是煤矿工作面开采中的重要问题,也是煤炭资源提高采掘率和安全生产水平的关键技术之一。

软岩支护是指采用一定的工程措施来保障开采面围岩的稳定,避免岩体破裂和掉落等危险,从而保持开采面的正常进行。

本文将从软岩支护的优点、软岩支护技术的分类、软岩支护技术的适用条件、软岩支护技术的材料和工艺等方面对该技术进行探讨。

一、软岩支护技术的优点1. 支护效果显著。

软岩支护技术采用一定的支护措施,可以针对不同类型的软岩进行针对性的支护,支护效果显著,可有效避免不稳定因素对开采的影响,保障矿井的安全生产。

2. 可有效减少处置灰尘和废料的数量。

软岩支护技术可有效减少煤矿深部的灰尘和废料等处理的数量,同时也能够减少开采面水平的越界和斜向倾斜,从而避免开采面倒岩、塌方等安全事故发生。

3. 减少工期。

软岩支护技术具有执行简单、支护效果显著、可在短时间内达到预期效果等特点,从而可以减少开采面的工期,提高煤炭采掘效率。

4. 可节省支护材料费用。

相对于传统岩体支护技术,软岩支护技术的支护材料要求较低,可以采用廉价的材料进行支护,从而可以节省支护材料费用。

在软岩支护中,一般将支护技术分为主动支护、被动支护两种。

1. 主动支护技术。

主动支护技术是指采用一定的工程措施来主动控制岩体,保障开采面的稳定。

主动支护技术包括钻孔注浆技术、锚杆支护技术、桩基础、垫层预应力锚杆等技术。

2. 被动支护技术。

被动支护技术是指针对软岩的运动规律进行研究,采取被动的措施保障岩体稳定,例如安装液压支架、进行水下静力增压支护等技术。

软岩支护技术的使用需要满足一定的适用条件,主要包括以下几点。

1. 岩体稳定。

应首先根据现场实际情况进行岩体稳定性分析,确保岩体稳定,不受开采面及周围环境的影响。

2. 确定支护面积。

应合理选择支护面积大小,以保证稳定性的同时,尽量减少支护工作量。

3. 选择支护材料。

根据软岩的物理特性选择适合的支护材料,以达到支护效果的最佳化。

(完整word版)软岩支护指南

(完整word版)软岩支护指南

综述松软岩层是指粘结性差、强度低、易风化、有时遇水膨胀、自稳能力差的岩层。

它是破碎、软弱、松散、膨胀、流变、强风化蚀变和高应力岩体的统称。

泥质系列:泥岩、页岩、粘土岩、粉砂质泥岩、沙质页岩火山岩蚀变系列:沈北的蚀变玄武岩等软岩巷道的特征开掘在松散软弱岩层中的各种巷道,最明显的特征是地压显现比较剧烈,巷道维护困难,主要表现在以下几个方面:1.围岩的自稳时间短、来压快所谓自稳时间,就是指在没有支护的情况下,围岩从暴露起开始失稳到冒落的时间。

软弱岩石巷道的自稳时间仅为几十分钟到几个小时,巷道来压快,要立即支护超前支护,方能保证巷道围岩不致冒落。

2.围岩变形量大、速度快、持续时间长软岩巷道的突出特点就是围岩变形速度快、变形量打、持续时间长。

一般软岩汉高掘后的1~2天,变形速度少的5~10mm/d,多的达50~100mm/d,变形持续时间一般25~30d,有的长达半年以上仍不能稳定。

3.围岩的四周来压、底鼓明显在较坚硬岩层中,围岩对支架的压力主要来自顶板,中硬岩层围岩对支架的压力来自于顶板和两帮,但在松软岩层巷道中则四周来压、底鼓明显。

松软岩层,由于结构疏松、强度低,很难支撑上覆岩层的重量,围岩在自重地压()的作用下,以垂直变形为主,垂直变形中又以底鼓为主。

底鼓明显是软岩巷道的重要特征,如果巷道没有底鼓或底鼓不明显,围岩就不是软岩。

如烟巷道四面来压,如果底板不支护,将出现一个支护结构的薄弱带,巷道破坏首先就是从不设防的底板开始,又因底鼓导致两帮移近和失脚,知道片帮冒顶,巷道全部破坏。

4.围岩遇水膨胀、变形加剧软岩一般都含有亲水性很强的蒙脱石、伊利石等粘土矿物的岩石,这些岩石遇水后软化,体积急剧膨胀,因而变形也更剧烈,产生很大的膨胀压力。

5.普通的刚性支护普遍破坏软岩巷道变形量大、持续时间长,普通刚性支护承受的变形压力很大,施工后很快就发生破坏,必须再次或多次翻修后巷道才能使用。

这是刚性支护不适应软岩巷道变形规律的必然结果。

软岩隧道开挖及支护施工技术

软岩隧道开挖及支护施工技术

软岩隧道开挖及支护施工技术摘要:当今,随着我国经济的加快发展,软岩隧道围岩岩质较软,岩体破碎,自稳能力极差,开挖完成后存在渗水、掉块现象,且易发生小规模坍塌。

施工期间须做好超前地质预报、监控量测工作,严格控制各工序施工质量,同时控制好安全步距。

以质量保安全,以安全促进度,保障隧道顺利贯通。

关键词:软岩隧道开挖;支护施工技术引言在隧道施工过程中,初期支护发挥了极为重要的作用,所以,下文将结合笔者实践工程经验,首先对隧道开挖支护施工中常见的支护工具进行分析,并探讨其施工技术要点及其施工质量控制措施,希望能起到抛砖引玉作用。

1开挖及支护施工应遵循的原则软岩段开挖及支护施工是整个隧道工程建设的关键内容之一,为了保证施工有序安全进行,必须以科学的原则作为指导,规范开展开挖及支护施工,以下为施工过程中应遵循的原则。

1)软岩易受干扰,所以应选择科学的开挖技术,避免因为开挖作业影响围岩的稳定性,进而影响围岩的强度。

2)尽可能在围岩自身承载力之内实施开挖作业,确保围岩变形量不超出其承载范围。

3)建立健全测量监控体系,便于在开挖时动态掌握施工情况,为施工方案的调整提供参考,使得开挖过程在控制范围内。

4)开展全面详细的地质勘察工作,如实记录,编制勘察报告,并根据实际的地质情况选择隧道支护方式,选择恰当的施工时间。

5)加强施工质量和安全管理,动态监测支护施工,注意观测重点部位的支护作业的情况,避免出现坍塌事故。

2软岩隧道开挖及支护施工2.1开挖施工工艺开挖过程中各台阶开挖与支护沿隧道方向错开,同步作业,开挖完成后即刻初喷4cm混凝土封闭工作面。

开挖施工工艺如下:测量放样→超前支护→上台阶弧形断面开挖支护→作业面检查→中台阶开挖支护(两侧错开,可同时开挖)→下台阶开挖支护(分别开挖)→分段开挖隧底→仰拱施作。

上、中、下台阶开挖过程中对稳定状态评估,若出现不稳定状态,及时停止上台阶开挖,对已完成段落进行加固,调整支护参数后再继续进行施工。

煤矿软岩巷道掘进支护技术

煤矿软岩巷道掘进支护技术

煤矿软岩巷道掘进支护技术发布时间:2022-11-07T08:06:07.986Z 来源:《城镇建设》2022年13期作者:柳振海[导读] 近几年,矿井安全生产事故频繁发生,其中以顶板灾害为主柳振海平凉新安煤业有限责任公司甘肃省平凉市 744201摘要:近几年,矿井安全生产事故频繁发生,其中以顶板灾害为主,因采矿工艺不完善,采矿计划设计不当,导致采场范围增大,煤层上部的顶板失稳,受上覆岩石压力的影响,出现了严重的变形。

如果不能及时支护或支护力度不足,工作面顶板将会出现崩塌,导致人员伤亡。

为了解决矿工的工作安全问题,本文以煤矿软岩巷道为例,对掘进技术进行研究,分析了支护技术,提出了不同支护技术的应用方案,以期为相关工作人员提供参考。

关键词:煤矿;软岩巷道;掘进支护技术引言:开采矿井这项工作具有很高的技术含量,不合理的开采会给矿区的地质构造和水文环境带来灾难性的损害,还会危及矿工的生命。

在矿井生产中,既要保证生产工艺、装备水平达标,又要保证安全生产。

为了预防煤矿生产中的事故,必须采取科学的巷道支护技术,对采空区进行有效的防护,防止因地层的破坏而造成的坍塌,保障有关工作人员的生命,提高采矿工作的效率。

一、支护难点随着矿井的深入,不同的地质结构对巷道的稳定性有很大的影响,尤其是软岩巷道的短期变形和蠕变,对整个巷道的施工质量有很大的影响。

在软岩巷道开挖、支护施工中,因其特殊的地质条件和结构特征,使其施工困难,主要表现在:第一,软岩的强度较低,岩体容易破裂,很难保证其安全。

煤田地区软岩主要为泥岩、砂质泥岩和碳质泥岩,这些软岩具有节理发育的特点,在应力作用下容易发生变形和破裂,很难进行支护。

第二,高强度的围岩应力作用,导致岩体向软岩石转化。

随着矿井开采深度的增大,巷道集中应力持续增大于围岩,导致围岩失稳。

第三,矿井采空区地层中含有各种粘土矿,具有较高的吸水性,遇水膨胀,必须采取有效的防渗措施,防止后期采掘时因雨水而发生崩塌[1]。

煤矿井下软岩巷道施工支护技术研究应用

煤矿井下软岩巷道施工支护技术研究应用

煤矿井下软岩巷道施工支护技术研究应用摘要:在我国煤矿底层中软岩分布广泛,煤炭储量在1000M以下的占比55%左右,随着我国开采深度的增加,我国大部分矿井巷道基本岩层结构多为软岩,深部巷道受高应力和高温度等影响,容易出现开采困难和巷道明显变形的问题,为解决软岩巷道下出现的巷道围岩变形大、稳定性差的问题,软岩支护成为困扰我国煤矿生产的问题之一,软岩巷道支护措施不当易造成巨大的返修量,还使得整个矿区陷入困境,因此,做好巷道软岩支护工作是煤矿矿井采掘工作的关键。

关键字:煤矿井下;软岩巷道施工;支护技术;研究应用1软岩的特性1.1软岩的临界荷载临界荷载是软岩固有的一种物理属性,通过软岩的工程力学实验表明:当软岩外部压力低于临界荷载时,岩体内部结构不会发生明显改变,整个岩体呈现出相对稳定的状态,力学曲线保持平直;随后,人为增加岩体外部工程压力,使压力逐渐趋近于临界荷载,则岩体内部预应力增加;通过继续增加工程压力,当工程压力超过软岩的临界荷载时,岩体就会发生明显的变形特性。

1.2软化临界深度临界深度与临界荷载是一组相互对应的概念,从两种软岩特性的支护应用上来看,临界深度更能反映软岩的塑性变形情况:在巷道位置较浅的情况下,软化临界深度较小,软岩不会出现明显的变形,此时开展软岩巷道的支护施工较为简单;但是当巷道位置达到软化临界深度时,围岩会产生大的塑性变形,并伴随有支护难、大地压等问题。

相关技术人员应当在岩体软化临界深度之前开展支护施工,以便于降低工作难度,保证支护施工质量。

2巷道变形的原因和支护原理2.1软岩巷道变形的原因煤矿开采中面临的一大难题是在高应力作用下的软岩巷道有效支护方式,巷道顶板的不稳定情况会影响到巷道顶板的稳定性,巷道两边的移动或顶板下沉容易导致巷道断面收缩,使得两帮的变形更加严重,从地板岩层方面的受力情况看,巷道地板处于未支护状态,随着巷道的不断挖掘,原本作用于地板岩层上的应力会恢复弹性,但水平应力却增加,会出现变形的情况;若挖掘的方向处于倾斜状态,巷道顶板的岩层会受到较大水平应力影响,出现顶板破坏的现象。

软岩巷道支护技术研究

软岩巷道支护技术研究

软岩巷道支护技术研究摘要:软岩巷道围岩的突出特征是围岩由非均质层状岩体组成,围岩变形不协调而容易离层和失稳,表现为巷道变形破坏明显。

本文主要就软岩的一系列相关技术进行了探讨,提出采用刚柔复合支护方法对巷道进行支护,即在支护体内设置柔性层和刚性层,柔性层释放初期高应力,刚性层控制有害变形;在受力集中的顶底角采用叠加支护,使巷道整体变形耦合;为提高软岩的开采效率提供参考。

关键词:软岩;巷道;支护;技术软岩巷道围岩属于差异性较大的非均质层状赋存,表现为围岩难以形成承载结构、强烈的两帮移近、片帮和围岩不均匀的整体下沉。

而顶板控制技术是确保支护安全的前提,顶板控制不好会给安全造成极大的被动影响,而且会造成边掘边修的现象,造成极大的人力物力的浪费,所以必须加强软岩巷道支护技术的研究。

1软岩巷道施工存在的问题巷道在施工中发现巷道矿山压力显现快,下肩窝掉包、脱层、钢带撕裂、个别铁托板变形、锚杆拔断,巷道上帮整体内敛,部分玻璃钢锚杆拉断,底臌等问题,严重影响工作面回采期间的安全。

2 巷道破坏原因分析2.1 围岩特性影响岩层松软呈粉末状,顶底板多为泥岩、砂质泥岩及灰质泥岩,巷道围岩强度低,变形量大,变形速度快,巷道施工时极易出现底鼓,从而使两帮及顶板变形加剧,松动范围扩大,矿压显现明显。

2.2 碎胀作用影响岩层中夹矸为固化程度很低的泥岩,夹矸及岩遇水变软,发生膨胀,在上覆岩层的作用下,夹矸及岩被挤压出,从而造成棚式支护的变形。

2.3 支护结构与参数不合理锚杆受力不均,在巷道的整体支护中,托板变形、杆体断裂的始终是个体。

在锚杆安装初期,由于施工机具、操作等因素的影响,锚杆施加给围岩的力就表现为大小不一,造成巷道围岩变形、运动不均,从而引起锚杆受力不均,导致个别托板变形、杆体断裂。

3软岩巷道的支护原理一般情况下,软岩巷道围岩破坏具有以下几个特点:时间效应明显、初期变形速率大、环境感知敏感和对应力扰动,所以在软岩的最大塑性承载能力下,进行巷道支护,可以取得最好支护效果。

高地应力软岩巷道支护技术

高地应力软岩巷道支护技术

破碎圈还会 向纵深度发展 , 从而导致巷道失稳破坏。
因架棚支护属被动支护 , 前期不能很好地控制 围岩 变形 , 而锚 网喷支护属主动支护 , 能及时使围岩形成 自然锚固平衡拱 , 发挥围岩 自身承载作用 , 因此巷道 开挖后 , 先采用锚 网喷及时支护。由于该段 巷道地 应力较大 , 单靠锚网喷后期很难支护 , 为了控制破碎 圈向纵深度发展 , 锚网喷过后 , 采用 3 U钢全封 闭 6
3 2 巷 道 施工 .
脱落 , 碹墙挤 出, 鼓严重, 多次维修状况不见好 底 经
转, 9 1 5年维修 时采用 了全封 闭马蹄形 2 U钢 支 9 9 架、 全封闭圆形钢管混凝土支架 和混凝土大弧板 支 架进行支护, 不久仍被压坏, 原有的双轨被迫改为单
轨 。为 了不影 响生产 , 在原 有巷 道 的东侧 3 处平 0m
1 × 0 5m 7 0 30 0
m =1 0 05 0元
3 减 少支 架材料 运输 和摆架 费 用 : )
m ×1 =30 0元 0m 0
仅上述三项合计直接创效 4 0 .5万元 , 效益十分
明显 。
定采用树脂锚杆替代螺栓 固定 , 起到安装设备和加 固硐 室 底板 的作用 。
在煤矿生产中, 受高地应力影响 , 巷道变形破坏 是 经常遇 到 的 问题 , 其 是 软 岩 巷 道 , 是难 以 支 尤 更 护。巷道 的变形破坏不仅影响到矿井的通风、 运输、
行人 安全 , 而且 严 重时会 被迫 停产 , 投人 大量 的人 需
的破坏 , 在巷道周 围形成破碎 圈, 随着时间的推移 ,
( 上接 第 5 8页 ) C 2 3 为 K 3 5型 1卷 , 2 3 K 3 5型 2卷 , Z 3 5型 2卷 , 23 配一个 3 0mm× 0 m×1 m铁 0 30m 8m

软岩巷道支护技术研究

软岩巷道支护技术研究

中 图分 类号 : F 4 0 3 . 7; T D 3 5 3 文 献标 志码 : B 文章 编 号 : 1 0 0 8— 0 1 5 5 ( 2 0 1 3 ) 0 l 一 0 0 8 4— 0 1
问题 的提 出 目前 , 进 行复 杂 困难 条 件 下 巷 道 支 护 较 成 熟 的 技 术 有两 种 : 一 是锚 注支 护技 术 ; 二 是锚 杆 和棚 式 支架 联 合支 护技术 。 李 雅庄 煤矿 井 下 巷 道 受 到 采 动 影 响 , 巷 道 变 形 严 重, 断面仅 为 8 . 9 m , 并 出现大量 喷层 开裂 , 给矿井 带来


了严重 的安全 隐患 。矿决定该段巷道进行扩刷返修 , 全断 面返修 采用锚 网梁索 及 喷浆 联 合支 护 。 因该大 巷 服务 年 限长 , 并且 修复 后将 改 为运 输 大巷 , 但 该 支护 方 案存 在 以下问题 : 1 、 该巷 道 由于 相 邻 工 作 面 开 采 动 压 的影 响 , 巷 道 围岩 破坏 范 围大 , 采 用 锚 杆/ 锚 索 支 护 其 作 用 受 到 影
方 面 的 目标 :
( 1 ) 进行试 验段 巷道 锚注支 护 工业 性试 验 , 增强 巷 道 支 护稳定 性 , 减少 巷道 顶 板 与两 帮位 移 量 , 达 到支 护 预期 目标 。
收稿 日期 : 2 0 1 2—1 1 — 0 8 作者 简介 : 张宁 ( 1 9 8 5一) , 男, 山西大 同人 , 2 0 0 4年 7月毕 业于太原理 工大学采矿工程专业 , 助理工程师 , 现在 李雅庄煤矿 生产科 工作 。
工 组织 。
( 3 ) 对锚 注 加 固合 理 参 数 进 行现 场 试 验 研 究 。根 据 围岩破 坏 情 况 , 通过现场观测研究浆液 浓度 ( 水 灰 比) 、 注浆压 力 、 扩 散 半 径 等 注浆 参 数 与 支 护效 果 之 间 的关 系 , 寻求 在应 力集 中 区锚 注加 固最佳 的注浆 参数 。 本 项 目通过对 试验 段 巷道 进行 锚 注加 固施 工及 在 锚 注前 后巷 道 变 形 破 坏 的 观测 对 比 , 拟 达 到 以下 几 个

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨

煤矿深部软岩支护技术探讨随着矿井开采技术的不断发展,煤矿深部开采难度日益增加,软岩地层作为深部开采中的一种重要地质条件,对煤矿生产安全和产量具有重要影响。

煤矿深部软岩支护技术是煤矿开采中的一个重要环节,对于提高煤矿生产的效率和安全具有重要意义。

本文将就煤矿深部软岩支护技术进行探讨,从软岩地质特点、支护材料和方法、支护效果及发展趋势等方面进行详细介绍。

一、软岩地质特点煤矿深部软岩地质条件主要包括软岩性质及其构造变形等方面。

软岩是指抗压强度低于岩石,但高于土壤的一种岩石。

软岩层通常具有较大的变形性和渗透性,易发生岩层位移、破坏和塌陷。

软岩地质条件是煤矿深部开采中的重要问题,需要采取有效的支护措施进行加固和稳定。

软岩地质条件的特点主要包括:1. 岩层变形大:软岩矿层变形较大,易发生岩层位移和破坏。

2. 渗透性强:软岩层容易受到地下水的影响,渗透性强,易发生水文地质灾害。

3. 岩层塌陷:软岩层容易发生岩层塌陷和垮落现象,对煤矿安全造成威胁。

软岩地质条件对煤矿深部开采具有重要的影响,需要采取有效的支护技术进行处理。

二、支护材料和方法煤矿深部软岩支护主要采用的是锚杆、网片喷锚等技术,对软岩进行预加固和加固处理,增加岩层的稳定性。

目前较为常见的软岩支护材料和方法包括以下几种:1. 锚杆技术:锚杆技术是指利用钢筋混凝土锚杆进行支护的一种方法。

锚杆是指通过预埋在岩石中并连接于岩石的一根或多根筋杆来进行支护的措施。

锚杆支护主要适用于软岩层的加固和稳定。

2. 网片喷锚技术:网片喷锚技术是指在软岩层进行钢丝网片喷浆加固的一种方法。

通过在软岩层进行喷浆加固,将钢丝网片固定在岩层上,增加软岩层的稳定性。

三、支护效果及发展趋势煤矿深部软岩支护技术的实施效果主要体现在保证煤矿生产安全、提高煤矿开采效率和降低成本等方面。

1. 提高煤矿生产安全:软岩层的稳定性对煤矿生产安全具有重要影响,通过软岩支护技术的实施,可以有效增加软岩层的稳定性,降低软岩层发生破坏和垮落的风险,保证煤矿生产的安全。

浅谈软岩巷道的支护形式

浅谈软岩巷道的支护形式

浅议软岩巷道的支护技术张百强软岩,目前任无统一的定义,一般来讲,软岩是软弱、破碎、膨胀、流变、强风化及高应力岩体的总称。

软岩巷道围岩强度等级低,结构松软,易吸水膨胀,因而巷道围岩变形大,易发生底鼓,软岩巷道支护是煤矿巷道支护的难点和重点。

王洼煤矿600万吨/年改扩建项目11采区轨道下山全长1283m,巷道净宽4.4m,净高4.0m。

巷道揭露地层主要是侏罗系延安组,岩性以粗砂岩为主。

岩石呈灰白色,夹黄色条带,巨厚层状,粗粒砂状结构,成分:石英85﹪左右,长石10﹪左右,其他矿物5﹪左右,分选性差,次棱角状,局部含石英颗粒。

巷道掘进后,围岩变形快,矿压显现明显,流变性显著,岩石遇水泥化。

该巷道经过长期的现场观测观察后,通过科学论证,现场实践,采用多种联合支护方法,取得了显著的成果。

下面首先对软岩巷道的压力特征、软岩巷道的支护要点做一简单总结。

1.软岩巷道的围岩变形和压力特征分析软岩的力学性质对围岩稳定性有重要的影响,根据井下观测表明,软岩巷道的围岩变形有以下特征:(1)围岩变形有明显的时间效应。

初始变形速度很快,变形趋向稳定后仍以较大速度产生流变,且持续时间较长,如不采取有效的支护措施,则由于围岩变形急剧加大,势必巷道失稳破坏。

(2)围岩变形有明显的空间效应。

首先表现为围岩与掘进工作面的相应位置对其力学状态的影响,通常在距工作面1倍巷宽远的地方就基本上不受工作面掘进的制约;其次表现为巷道所在深度不仅对围岩的变形或稳定状态有明显的影响,而且影响程度比坚硬岩石大得多。

(3)围岩变形对应力扰动和环境变化非常敏感。

表现为当软岩巷道受临近开掘或修复巷道、水的侵蚀、支架折损失效,爆破震动以及采动等的影响时,都会引起巷道围岩变形的急剧增长。

(4)软岩巷道不仅顶板下沉量大和容易冒落,而且地板也强烈鼓起,并伴随两帮强烈位移,尤其是黏土层,受流水侵蚀引起的泥化导致鼓底更为明显。

(5)软岩巷道的自稳时间短。

松软岩石的自稳时间通常为几十分钟到十几小时,有的顶板一暴露就立即冒落,这主要取决于围岩暴露面的形状和面积、岩体的残余强度和原岩应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于软岩支护技术前言巷道支护是井工开采工程的核心,是一切安全生产和效益的基础,随着开采条件的日益恶化,采深的迅速增加,支护对井工开采的制约作用日趋明显,先进采矿方法能否实现,在很大程度上取决于巷道支护状况和有效断面能否得到保证。

第一节,深井巷道围岩强化支护技术体系及实践一,深部高应力巷道:常规支护不能满足要求的一类巷道。

1,采用传统的架棚支护、锚杆支护都不能有效维护巷道。

2,以德国为代表采用U型钢可缩性支架、壁后充填、预留变形量架棚支护的方式,也不能有效维护巷道。

3,常常在掘进时就需要多次卧底、返修。

为此:出路在于发展新型锚杆类支护综合治理比较乐观,目前遇到的大部分问题可以得到解决或改善。

如:德国向我国输入U型钢可缩性支架、壁后充填技术,在德国使用范围400-600米深,可是在我国达到400米深度就解决不了我国的问题。

二,深部支护问题:1,相当一部分埋深达到800-1000米的深井巷道支护难度不大,可以采用常规的支护技术解决,因此深井巷道支护并不都属于复杂困难支护巷道,我们关心的焦点是深部难支护巷道称为深部支护问题。

2,它通常是指主要由于巷道埋藏深度导致的围岩较高的水平应力,使相对软弱的岩体发生大范围破坏,并产生大变型的一类工程支护问题。

三,复杂困难条件:1,由于地层运动和成岩过程产生的强构造应力集中区,水平应力通常较大;这类构造区域内巷道变形有自身规律,其中顶板支护的安全可靠性要求较高。

2,膨胀性岩体、泥质岩体遇水泥化等条件,由于物理化学原因导致的岩体力学承载性能的衰减、岩体的变形等。

3,由于开采造成的次生应力集中区产生的巷道支护问题。

四,深井软岩成为支护重点:1,深部高应力巷道的两个显著特点:(1),原始应力水平相对围岩强度高。

(2),采动附加应力更趋强烈、围岩破碎区范围进一步加大,不易形成结构效应。

2,时间效应强烈、变形速度快,不易长期维护:(1),第一类,围岩软弱型、即软岩巷道;(2),第二类,采动影响型、即动压巷道;(3),第三类,深井高应力型、即深井巷道;五,巷道大变形、难以支护原因:1,围岩松软破碎:单轴抗压强度﹤10-20MPa;2,高应力:(1),深井(自重应力)(2),采动应力(原岩应力的3-6倍);(3),构造应力;3,松散破碎+高应力。

六,我们能开展的工作:1,巷道顶板失稳机理及安全控制强化支护与结构让压的协调支护理论,动态分步加固稳定浅部围岩的支护理论。

2,围岩应力场的控制:(1),结合采矿活动、开展大范围宏观应力场调整的规律性研究,形成巷道围岩的应力转移(特别是水平应力)机理,近距离煤层群的开采顺序、开采布局;(2),巷道浅部细观应力场的卸压机理,迎头超前钻孔卸压、帮底部位的钻孔掘巷卸压、多条煤巷(主辅)的同时掘进;3,技术手段的创新,高预应力、超长锚固、超高强度的新型抗剪锚杆,滞后注浆加固。

目的:形成围岩强化控制技术体系。

4,锚杆支护的概念:(1),巷道采用以锚杆支护为基础的支护,其他锚索、钻孔注浆等支护和锚杆组合起来,在不同时机,以不同方式实施的,其作用并不能分出主次,也不能强调各种支护手段的次要作用;(2),这类支护最本质特点:是从岩体内部、通过人为手段对岩体本身的力学特性和承载性能改善或提高的工程技术,和从外部接触,在岩体发生变形后约束岩体的框式支护有本质的区别,是更高一级的支护技术。

5,锚杆支护使用要求:(1),400米以上,传统支护基本能满足要求;(2),600米以下,传统支护不能满足要求;(3),年开采深度延深10米;(4),必须发展新型支护技术,解决深井高地应力支护问题。

七,强化支护理论:1,强化锚杆支护性能:(1),提高锚杆力学性能,改善锚杆结构;(2),改善锚杆承载性能,便于施加高预紧力并改善锚杆增荷性能,形成有效的初始支护强度,实现高阻让压约束围岩变形,防止围岩破坏;(3),初始支护强度;2,围岩强度强化:(1),围岩强度的提高;(2),破碎岩体的破裂过程控制;(3),优化围岩的应力环境,优化围岩浅部应力环境,处使围岩有2向应力状态向3向应力状态转化;如:锚杆:1.4米→3.6米;锚杆直径:∮16→∮20→∮22mm;拉力:3t→10t;巷道周边围岩破坏是不能阻断的,破裂岩体破裂2-3米之后再继续破裂。

3,强化支护围岩结构:(1),顶板的安全控制:(2),弱化区的补强,针对层状岩体不均衡产生的弱化区(含弱面或软弱夹层、帮角岩体破坏区、软弱煤体、开放的底版等)补强;(3),关键承载区的加强:促成支护围岩整体承载结构的形成或强化,以多层次的联合支护来实现:支护体和围岩间的主动和动态的相互作用。

第二节,深部开采诱发的工程灾害一,巷道围岩变形量增大,深部巷道围岩变形表现为如下特征:1,巷道变形速度快、变形量大、巷道围岩变形范围大;2,岩性对巷道变形的影响更加明显,采深对软岩巷道、煤层巷道的影响尤为显著;3,巷道维护难度增大,废弃巷道数量增加;4,巷道持续变形、流变成为深部巷道变形的主要特征;5,采深增加、开采对巷道变形的影响越大、影响程度也越激烈;6,多数留设的巷道保护煤柱达不到保护巷道的目的,对巷道维护十分不利;7,巷道对支架的工作性能要求更高、必须提高支架初撑力、工作阻力和可缩量;8,巷道布置、开采顺序和开采边界对巷道维护影响增大。

如:德国鲁耳矿区在1100米以下开采,巷道宽6米、煤层厚 19 米,底版在24小时内鼓起0.8米、煤层移出0.5米。

二,采场矿压显现剧烈:我国煤矿生产实践表明、采深对采场支护方面的影响不十分明显,而煤壁片帮,端面冒落带高度却随采深的增加而明显增大。

三,采场和巷道中岩爆危险性增加:由原始沉积作用和后期构造作用的含煤岩系的非连续性和非均质性,随着煤炭采深的增加引起的覆岩自重压力的增大和构造应力的增强,表现为围岩发生剧烈变形,巷道和采场失稳,并易发生破坏性的冲击地压,给巷道支护和顶板管理带来许多困难。

如:深部开采与浅部区别“三高”和时间效应:1,地应力(自重应力﹥约18MPa);2,地温高(一般30-40℃、个别达到52℃)3,渗透压高(﹥约7MPa);4,较强的时间效应;四,瓦斯涌出量增大;五,地温升高、作业环境恶化;六,突水事故趋于严重;七,井筒破裂加剧;八,煤自然发火、矿井火灾加剧;如:水平应力: h≥1000米时、水平应力/垂直应力=0.5-2.0;h≤1000米时、水平应力/垂直应力=1.5-5.0;在深部开采条件下,水平应力与垂直应力之比趋于集中,并逐渐减小3-5t/㎡岩石强度变化:随深度增加有所提高。

岩石变形性质:(1),岩石的脆性→延性转化性质:岩石在浅部表现脆性、在深部则很可能转化为延性(DUCTILE),在实验中岩石的这种性质是随着围压的升高而发生的,往往存在一个“脆性-韧性转化临界围压”,对应到工程中实际上是临界深度;脆性力学响应→韧性行为力学响应。

(2),岩石的剪胀或扩容现象不明显;实验研究表明:在低压下(相当于浅部开采)、岩石往往全在低于峰值强度时,由于内部微裂纹张开,而产生的扩容现象;但在高围压下,岩石的这种扩容现象不明显,甚至完全消失。

如:岩石破坏特征:序号浅部开采条件下→深部开采条件下1,脆性能或断裂韧度控制的破坏→侧向应力控制的断裂生长破坏;2,动态破坏→准静态破坏加载破坏,侧向(卸载)破坏—岩爆体现在:巷道失稳、顶板破坏,岩层移动机理等问题。

第三节,深部软岩巷道支护理论与技术问题一.变形特征:1,围岩软、强度低、具有膨胀性;2,深度大、应力水平高;3,动载荷作用;4,大变形、大地压、难支护;二,变形机理:1,挤压流动变形机理;2,饶曲褶皱变形机理;3,剪切错动变形机理;4,遇水膨胀变形机理。

每10年延伸100-250米的速度发展。

第五节,煤矿巷道层状顶班的安全控制理论一,与其它岩土工程相比、煤矿顶班控制及巷道支护更困难:1,围岩赋存不均质;2,围岩条件变化平繁;3,围岩强度低,围岩松散、单轴抗压强度低;4,原岩应力大:埋藏深、原岩应力大、地质构造产生的附加水平应力强烈。

动压影响强烈、受强烈的采动影响、应力提高3-5倍;5,动压影响强烈、受强烈的采动影响、应力提高3-5倍;6,存在大量特殊的安全技术问题,瓦斯、煤尘、媒体自然发火、地下水、构造等灾害严重。

二,煤矿顶扳类别及划分:煤矿ⅳ、ⅴ类顶板煤巷控制技术属于国际性的难题;1,国内外ⅰ、ⅱ、ⅲ类顶板控制已经成熟;2,ⅳ、ⅴ类顶板(及易离层破碎型)控制难度极大;三,首先研究煤层顶板赋存特征及与技术难点:1,顶板4-6米范围内,通常没有坚硬岩层,这一依赖坚硬岩层的顶板控制思想受到限制;2,通常巷道只能采用棚式支护形式,但高密度重型金属支架的强度根本不能满足ⅳ、ⅴ类巷道强烈的矿压显现;3,国内外一致认为,随采深增加,煤矿地下开采只有发展锚杆支护。

四,顶板失稳规律:复杂条件煤巷使用锚杆支护存在问题:1,锚杆使用密度大:(1),变形量大:1000-2000mm以上;(2),采动状态下变形失效;2,不能有效的控制顶板离层,恶性冒顶事故时有发生:(1),冒顶率:万分之3-5;(2),事故率:五万-十万分之一;(3),金属支架类被使用抬头。

五,冒顶原因:1,松散变型持续发展;2,锚杆支护承载状态不好、工作载荷低;(1),实际载荷分三种情况;A,安装时、没有初锚力;B,C,3,大变形后锚固力衰减,锚固失效,端锚时在围岩变形量达到100mm时即开始失效,全长锚固时锚杆的可靠性随大大提高、但围岩变形达到200-300mm时,锚固力也开始降低了;达到500mm时、既完全丧失;4,四周的不协调变形,结构性失稳。

五,冒顶类别划分:1,通过….(1),松散型垮落、垮落范围一般在0.5-1.5米内,负荷15-25kg/㎡,承载能力、安装质量更重要/载荷提高!2,挤压型垮落、在水平应力和自重应力…(1),锚固区内离层..(2),锚固区外离层..A,锚固层厚度.B,六,顶板离层控制理论:1,首先对顶板赋存结构开展精密探测:(1),岩层钻孔探测仪:如:0.5米处顶板裂缝,1.18米处顶板离层。

(2),光导纤维钻孔窥视仪;(设计、监察、施工应分开)。

2,对顶板..七,顶板安全控制基本原理:1,控制围岩弱化区发展,消除松散变形,提供的高涨拉力不仅完全克服了松动,并将该部岩体和更上部挤压在一起,阻止围岩进一步松动,消除岩体松散变形;2,改善锚杆受力状况,提高锚杆支护效能:3,消除水平应力对顶板破坏,,,,稳定顶板的契型锚固结构。

第六节,巷道围岩应力优化与转移技术主要内容:控制巷道围岩稳定三要素:1,岩性;2,围岩应力;3,支护;一,区域应力场调整:深部巷道布置、开采部署和最终形成的开采边界条件对巷道稳定性影响大,由此产生的巷道变形差异很大。

相关文档
最新文档