线性系统的频率响应分析实验

合集下载

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。

1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

线性系统的频率响应分析

线性系统的频率响应分析

自动控制原理课程实验报告实验题目:线性系统的频率响应分析1.实验目的:1.熟悉并掌握TD-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响2.实验仪器:PC机一台,TD-ACC+实验系统一套。

3.基本原理、内容、结果及分析:3.1基本原理1.频率特性:当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0 变至∞) 而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性:系统的正弦稳态响应具有和正弦输入信号的幅值比|Φ(jω)|和相位差∠Φ(jω)随角频率(ω由0 变到∞) 变化的特性。

而幅值比|Φ(jω)|和相位差∠Φ(jω)恰好是函数Φ(jω)的模和幅角。

所以只要把系统的传递函数Φ(s),令s=jω,即可得到Φ(jω)。

当ω由0到∞变化时,|Φ(jω)|随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。

这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。

②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

系统的频率特性分析(第二讲)

系统的频率特性分析(第二讲)

-45°
-90° 111
20T 10T 5T
112 2T T T
5 10 20 TTT
一阶惯性环节伯德图
一阶微分环节的Bode图与惯性环节的Bode图关于 横轴对称。
二阶微分环节的频率特性
③ 二阶微分环节: G(s) 2s2 2 s 1
幅频和相频特性为:
A
(1 22 )2 (2 )2 ,() arctan 2 1 22
常数T变化时,对数幅频特性和对数相频特性的形状都不变,
仅仅是根据转折频率1/T的大小整条曲线向左或向右平移即可。
而当增益改变时,相频特性不变,幅频特性上下平移。
G(s) 5 s 1
当增益 改变时, 相频特 性不变, 幅频特 性上下 平移。
Matlab 绘制的惯性环节的Bode图
4
振荡环节(要重视)G(s)
0.7 0.8 1.0
5
10
T
T
-30°
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1.0
-180°
1
1
10T 5T
1
1
2
2T
T
T
左图是不同阻尼系数情况下 的对数幅频特性和对数相频 特性图。上图是不同阻尼系 数情况下的对数幅频特性实 5 10 际曲线与渐近线之间的误差 T T 曲线。
1
0.086 0.34 1.29 2.76 4.30 6.20 4.30 2.76 1.29 0.34 0.086
K 10,T 1, 0.3
G(
j )
s2
10 0.6s
1
o
1 T
40dB/ Dec

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念

自动控制理论_哈尔滨工业大学_5  第5章线性系统的频率分析_(5.1.1)  5.1频率特性的概念

如果线性定常系统的输入r(t)和输出c(t)存在傅里叶变换, 频率特性也是输入信号的傅氏变换和输出信号的傅氏变换之比。
G(
j
)

C( R(
j) j)
其中 R( j) r(t)e jtdt C( j) c(t)e jtdt


经过傅氏反变换
c(t)
U1m
1
1 j
sin(t


1
1
j
)
上式表明: 对于正弦输入,其输入的稳态响应仍然是一个同 频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设输入为 Xej0,输出为Yejφ,则输出输入之复数比为:
Ye j Xe j0

Y X
e j

A()e j ()
后于输入的角
度为:
φ=
B A
360o
②该角度与ω有
关系 ,为φ(ω)
③该角度与初始
角度无关 。
二、频率特性的定义
例:如图所示电气网络的传递函数为
U2 (s) 1 Cs 1 1
U1(s) R 1 Cs RCs 1 s 1
若输入为正弦信号: u1 U1m sin t
其拉氏变换为:

1
2
G( j)R( j)e jtd

系统的单位脉冲响应为:
g (t )

1
2
G( j)e jt d

本节小结
1. 控制系统频率特性的基本概念。 2. 频率特性与传递函数的关系。
频率特性有明确的物理意义,可以方便地用实验方法测定, 并用于系统的分析和建模。
频率特性主要适用于线性定常系统。

自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析

自动控制原理的MATLAB仿真与实践第5章  线性系统的频域分析
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
margin(G);[Gm,Pm,Wcg,Wcp]= margin(G): 直接求出系统G的幅值裕度和相角裕度。 其中:Gm幅值裕度;Pm相位裕度;Wcg幅值裕度 处对应的频率ωc;Wcp相位裕度处对应的频率ωg。
nichols(G);nichols(G,w):绘制单位反馈系统开环传 递尼科尔斯曲线。
20
>>clear; num=[2, 3];den=[1, 2, 5, 7]; %G(s)的分子分母 多项式系数向量
p=roots(den) 求根结果:
%求系统的极点
p=
-0.1981 + 2.0797i
-0.1981 - 2.0797i
-1.6038 可见全为负根,则s右半平面极点数P=0。 绘制Nyquist曲线: >> nyquist(num,den) %绘制Nyquist曲线
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。

线性系统的频域分析法

线性系统的频域分析法

5.1 频率特性

lg
1 0
2
0.301
3
0.477
4
0.602
5
0.699
6
0.778
7
0.845
8
0.903
9
0.954
10
1
※※
( )
40
20 0dB -20 -40
2、对数频率特性曲线 [ 伯德(Bode)图 ]
L ( ) 20 lg A( ) 20 lg G ( j ) ( dB )
L ( ) 20 lg (T ) 1 20 lg T
2
当 T 即 T 1 时
L(ω)dB 40 20 0dB -20 - 40
1
T
1 T


1 T
时 时
20 lg T 0
20 lg T 20
dB
dB
10 T
频 率 特 性 : G ( j ) 1 j T 1
( ) tg T
1
A ( )
1 T 1
2 2
ω 1/10T φ (ω )(度) -5.7 L(ω )(dB)
从到值 取 代入计算,得
对数幅频特性曲线 Bode图如右
1/5T -11.3
1/2T -26.6
2.频域法的基本思想:利用系统的开环频率特 性来分析闭环响应。对系统进行定性分析和定量 计算。
3.频率特性的性质 考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)

0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。

实验二 测试系统的时域响应和频域响应

实验二  测试系统的时域响应和频域响应

实验一测试系统的时域响应【实验目的】1.了解MATLAB软件的基本特点和功能,熟悉其界面、菜单和工具条,熟悉MATLAB程序设计结构及M文件的编制;2.掌握线性系统模型的计算机表示方法;3.掌握求线性定常连续系统时域输出响应的方法,求得系统的时域响应曲线;4. 了解Simulink 的使用。

【实验指导】一、模型的建立:在线性系统理论中,一般常用的数学模型形式有:(1)传递函数模型;(2)状态空间模型;(3)零极点增益模型这些模型之间都有着内在的联系,可以相互进行转换.1、传递函数模型若已知系统的传递函数为:对线性定常系统,式中s的系数均为常数,且an不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示.num=[cm,c,m-1,…,c1,c0]den=[an,an-1,…,a1,a0]注意:它们都是按s的降幂进行排列的.则传递函数模型建立函数为:sys=tf(num,den).2、零极点增益模型(略)3、状态空间模型(略)二、模型的转换在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换.三、模型的连接1、并联:parallel[num,den]=parallel(num1,den1,num2,den2)%将并联连接的传递函数进行相加.2、串联:series[num,den]=series(num1,den1,num2,den2)%将串联连接的传递函数进行相乘.3、反馈:feedback[num,den]=feedback(num1,den1,num2,den2,sign)%可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示.当sign=1时采用正反馈;当sign= -1时采用负反馈;sign缺省时,默认为负反馈.4、闭环:cloop(单位反馈)[numc,denc]=cloop(num,den,sign)%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同.四、线性连续系统的时域响应1 求取线性连续系统的阶跃响应函数为(step) 基本格式为:step(sys) step(num,den)【实验内容】1. 典型一阶系统的传递函数为 11)(+=s s G τ;τ为时间常数,试绘出当τ=0.5、1、 2、4、6、8、时该系统的单位阶跃响应曲线。

机电控制工程基础 第 4 章 线性系统的频域分析法

机电控制工程基础 第 4 章 线性系统的频域分析法
比较式( 4-5 )和式( 4-6 )可知, A ( ω )和 φ ( ω )分别是 G ( j ω )的幅值 G ( j ω ) 和相角∠ G ( j ω )。这一结论非常重 要,反映了 A ( ω )和 φ ( ω )与控制系统数学模型的本质关系, 在线性定常系统中具有普遍性。
第 4 章 线性系统的频域分析法
第 4 章 线性系统的频域分析法
4. 2 频率特性的图示法
工程中常用的频率特性的图示法有以下三种。 1. 频率特性曲线 频率特性 曲 线 包 括 幅 频 特 性 曲 线 和 相 频 特 性 曲 线。幅 频 特 性 是 频 率 特 性 幅 值︱ G (j ω )︱ 随 ω 的变 化规律;相频特性描述的是频率特性相角 ∠ G ( j ω )随 ω 的 变化规律,如图 4-4 ( a )所示。
时域分析法具有直观、准确的优点,但实际系统往往都 是高阶的,求解高阶系统的微分方程以及按时域指标进行设 计并非易事。频域分析法能比较方便地由频率特性来确定系 统性能。当系统的传递函数难以确定时,可以通过实验法确 定频率特性。
第 4 章 线性系统的频域分析法
4. 1 频 率 特 性
4. 1. 1 频率特性的基本概念与定义 1. 频率特性的基本概念 首先以图 4-1 所示的 RC 滤波网络为例,建立频率特性
(3 )有关传递函数的概念和运算法则对频率特性同样适 用。
(4 )频率特性虽然是用系统稳态响应定义的,但可以用来 分析系统全过程的响应特性,这一点可以通过傅里叶变换加 以证明。
第 4 章 线性系统的频域分析法
图 4-3 频率特性、传递函数与微分方程之间的关系
第 4 章 线性系统的频域分析法
(5 )频率特性具有明显的物理意义。 传递函数表示的是系统或环节传递任意信号的性能,而 频率特性则表示系统或环节传递正弦信号的能力,并且有 3 个要素,即同频率、变幅值、相位移。因此,对于稳定的系 统,可以通过实验的方法求出其输出量的各个物理参数。即 在系统的输入端施加不同频率的正弦信号,然后测量系统的 输出稳态响应,再根据幅值比和相位差作出系统的频率特性 曲线。对于不稳定系统,输出响应稳态分量中含有由系统传 递函数的不稳定极点产生的呈发散或振荡的分量,所以不稳 定系统的频率特性不能通过实验方法确定。

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

第五章 频率响应法1

第五章 频率响应法1
本章用到的基础知识
欧拉公式:cosθ sinθ
1 2 1
e jθ e jθ e jθ e jθ
2j
log
a
b1
b2
bn
log
a
b1
log
a
b2
log
a
bn
对数运算:log
a
b1 b2
log
a b1
log
a
b2
log abx xlog ab
复数运算:a
c
jb jd
a c
jbc jd c
1 Tl2 2
j2 lTl
1.采用对数坐标,可将幅值的乘除运算化为加减运算;
2.传函中典型环节的乘积关系变为对数坐标图上的加减运
算后能够明显反映出各典型环节对总的对数坐标图的影
响,为分析每个环节的影响提供了方便。
23
5-2 典型环节频率特性的绘制
自动控制系统通常由若干环节构成,根据它们的基本特
性,可划分成几种典型环节。本节将介绍典型环节频率特性
输入信号为 r(t) X sint
R(s)
C(s)
G(s)
图5-1 系统方框图
8
则输入信号的拉氏变换是:
X
X
R(s) s2 2 (s j)(s j)
系统的传递函数通常可以写成:
N(s)
N(s)
G(s) D(s) (s p1 )(s p2 )(s pn )
由此得到输出信号的拉氏变换:
表示,易于绘制,且具有一定的精确度。通常可用这种
近似的对数坐标图对系统进行分析。如果需要精确的对
数坐标图,可对这种近似的坐标图进行适当的修正即可。
21
3.简化计算

middlebrook方法

middlebrook方法

middlebrook方法Middlebrook方法简介Middlebrook方法是一种用于分析和设计电子电路中线性和非线性系统的技术。

它由美国电气工程师改进而得名,并在电路设计领域广泛应用。

本文将详细介绍Middlebrook方法的各种技术和应用。

线性系统分析Middlebrook方法可以用于分析线性系统的频率响应和稳定性。

它通过小信号分析来评估电路的动态特性。

以下是使用Middlebrook方法进行线性系统分析的步骤:1.电路建模:通过使用电路元件和理想电源,将电路建模为线性系统。

根据电路中的无源元件和有源元件,制定电流电压关系方程。

2.参数提取:通过使用Middlebrook方法提取电路的参数,如电阻、电容和电感等。

这些参数将成为后续分析的基础。

3.频率响应计算:在不同频率下,通过在电路中施加小信号输入,计算输出电压的幅度和相位信息。

通过绘制曲线图,可以得到系统的频率响应。

4.稳定性分析:根据频率响应图,判断系统的稳定性。

通过计算系统的相移和放大倍数,可以确定系统是否具有稳定的工作点。

非线性系统分析Middlebrook方法还可以用于非线性系统的分析和设计。

与线性系统分析类似,使用Middlebrook方法进行非线性系统分析的步骤如下:1.建立非线性电路模型:根据非线性元件的特性曲线,建立电路的数学模型。

这些特性曲线可以是非线性电阻、非线性电感或非线性电容等元件的输入输出关系。

2.参数提取:使用Middlebrook方法提取非线性电路的参数。

这些参数将用于后续分析和设计。

3.非线性特性计算:在不同输入信号下,通过数值计算或模拟分析,计算非线性系统的输出特性。

可以得到非线性电路的波形图和输出功率的幅度变化。

4.非线性稳定性分析:根据非线性特性图,判断系统的稳定性。

通过计算系统的非线性扰动增益和相移,确定系统是否具有稳定的工作区域。

应用场景Middlebrook方法在电子电路设计领域有广泛的应用,特别适用于下列场景:•功率放大器设计:通过Middlebrook方法可以分析功率放大器的频率响应和线性和非线性失真特性,从而优化放大器的性能。

汽车系统动力学作业

汽车系统动力学作业
汽车系统动力学作业(第 5 题)
一.单轮车辆模型分析
1.运动方程: 应用牛顿运动定律, 根据如图 1.1 单轮模型的运动模型, 可以得出表达式如下:
1 z 2 ) mw z 1 K t ( z0 z1 ) Ks ( z1 z 2 ) Cs ( z 2 Ks ( z1 z 2 ) Cs ( z 1 z 2 ) mb z
3.输出三个指标对路面激励的频率响应函数
1) clear all mb=317.5; mw=45.4; ks=22000; kt=192000; cs=1500; syms f w=sym('2*pi*f'); i=(-1)^0.5; A1=cs*i*w+ks+kt-mw*w^2; A2=-cs*i*w-ks; A3=cs*i*w+(ks-mb*w^2); A4=-cs*i*w-ks; X1=5*10^-5*20^1.5/f^2.5; X2=kt*A3/det([A1,A2;A4,A3]); X3=kt*(-A2)/det([A1,A2;A4,A3]); Gsw=X2-X3; FS=inline(Gsw); f=0:0.01:15; plot(f,abs(FS(f)),'g') ylabel('悬架动行程增益') xlabel('频率/Hz') 2) clear all
elseif f(n)<=4 && f(n)>1 Weight=10^(-0.6+0.2*(f(n)-1)); elseif f(n)<=8 && f(n)>4 Weight=1; else Weight=10^(-0.075*(f(n)-8)); end %Z0=sqrt(G0*u.^(p-1).*0.5.*2/0.5.^p); HZ2a=(-w(n)).^(2).*HZ2; Gaw(n)=abs(HZ2a); Aaw=Weight.*abs(HZ2a)/2; Saw(n)=SIn.*(abs(HZ2a)).^2.*Weight.*0.1; aw=aw+Saw(n); end aw=sqrt(aw) aw = 2.1633

线性系统的频域分析1频率响应及其描述

线性系统的频域分析1频率响应及其描述

当 线点S 内S以, 而 顺时S 不针通方过向
点 沿的S 运次动数, S 在[F (S )]平面上的映射F 按顺时针方向包围原
Im
0 V( ) 0 Re
6.振荡环节
G(S) n2 S 2 2 nS n2
0 1
G(j ) n2
2
2 n
j
2
n
1
1
(
n
)2
j
2
n
n
12 j 2
(12 )2 (2 )2
n 1 n 2 n 3
U( ) 12 (12 )2 (2 )2
V( ) 2 (12 )2 (2 )2
-1- jT 1 2T2
| G(j) | 1
1T2 2
G(j) -180 arctgT
(-1,j0)
0
0 Re
u() -1 v() -jT
0 | G(j) | 1 G(j) -180
1 T
| G(j) | 1 2 G(j ) -135
| G(j) | 0 G(j) -90
G(j ) 0
2.积分环节
G(s)
1 s
G(j )
1 j
|
G(j
)
|
1
G(j ) -90
0 | G(j ) | G(j ) -90
| G(j ) | 0 G(j ) 90
3.微分环节
G(s) s G(j ) j
| G(j ) | G(j ) 90
Im
K Re Im
0 Re
在开环频率响应G( j)Nyquist图中
G( j1 ) (1 )
QA 1 G( j1 ) [1 G( j1 )] (1 )

线性系统的频率响应实验报告

线性系统的频率响应实验报告

线性系统的频率响应实验报告1. 实验目的本实验旨在通过测量线性系统的频率响应来分析系统的特性,并进一步理解系统的频率响应对输入信号的影响。

2. 实验原理线性系统的频率响应描述了系统对不同频率输入信号的响应情况。

在频域中,系统的频率响应可以用复数形式表示,包括幅频特性和相频特性。

实验中我们采用了输入信号为正弦信号,通过测量输入信号和输出信号的幅值和相位差,可以得到线性系统的频率响应。

具体的测量方法如下: 1. 选择一定范围内的频率,设置正弦信号发生器的频率输出。

2. 将正弦信号输入线性系统,同时测量输入信号和输出信号的幅值。

3. 通过测量输入信号和输出信号的相位差,计算得出系统的相位频率特性。

3. 实验步骤3.1 实验准备1.连接正弦信号发生器的输出端和线性系统的输入端。

2.连接线性系统的输出端和示波器的输入端。

3.打开正弦信号发生器、线性系统和示波器,确保它们正常工作。

3.2 测量幅频特性1.设置正弦信号发生器的频率范围,并选择一定的频率间隔。

2.将正弦信号发生器的输出幅值调至合适的范围。

3.逐渐调整正弦信号的频率,同时测量输入信号和输出信号的幅值。

4.记录下每个频率点上的输入信号和输出信号的幅值。

3.3 计算幅频特性1.将测得的输入信号和输出信号的幅值数据进行归一化处理。

2.绘制幅频特性曲线,横轴为频率,纵轴为幅值。

3.4 测量相频特性1.设置正弦信号发生器的频率为一个特定值。

2.测量输入信号和输出信号的相位差。

3.记录下每个频率点上的输入信号和输出信号的相位差。

3.5 计算相频特性1.将测得的输入信号和输出信号的相位差转换为弧度制。

2.绘制相频特性曲线,横轴为频率,纵轴为相位差。

4. 实验结果与分析由测得的数据绘制的幅频特性曲线如下图所示:幅频特性曲线幅频特性曲线从图中可以看出,系统在低频时幅值较大,随着频率的增加逐渐减小,最终趋于0。

这说明系统对低频输入信号具有较好的增益放大作用,而对高频输入信号则产生一定的衰减。

4.1系统的频率特性分析

4.1系统的频率特性分析

U m s2 2
因而输出为: X ( s ) G ( s ) X ( s ) o i
1 U m Ts 1 s 2 2
一. 频率响应与频率特性
1 U m X o ( s) G ( s) X i ( s) Ts 1 s 2 2
输入 xi (t ) U m sin t 引起的响应为:
1

1
90
(3)惯性环节
传递函数: G ( s )
1 Ts 1
频率特性: G ( j )
1 jT 1
G ( j ) U ( ) V ( )
| G ( j ) | 1 T 2 2 1
1 T 1
2 2
j
T T 2 2 1
G ( j ) arctan(T )

幅频特性=组成系统的各典型环节的幅频特性之乘积。 相频特性=组成系统的各典型环节的相频特性之代数和。
示例2:
K 已知系统的传递函数为: G ( s ) 2 s (T1s 1)(T2 s 1)
试绘制其Nyquist图。
xos (t ) Um 1 T 2 2 sin(t arctan T )
• 幅频特性:稳态输出与输入谐波的幅值比。 Um 1 A( ) / Um 1 T 2 2 1 T 2 2 • 相频特性:稳态输出与输入谐波的相位差。
( ) arctan T
典型环节的Nyquist图
(1)比例环节 (2)积分环节 (3)微分环节 (4)惯性环节 (5)一阶微分环节 (6)振荡环节 (7)延时环节
(1)比例环节
G ( s) K 传递函数: G ( j ) K 频率特性:

《频率响应分析法》课件

《频率响应分析法》课件
性。
相位特性
描述系统在不同频率下 的输出信号与输入信号 之间的相位差变化特性

带宽
系统能够处理的最高和 最低频率范围,通常以
Hz为单位。
稳定性分析
通过分析系统的极点和 零点分布,判断系统在 不同频率下的稳定性。
03
频率响应分析法的实现方 法
实验法
实验法定义
通过实际搭建系统并输入激励信 号,测量系统的输出响应,从而
随着技术的进步和应用需求的增长, 频率响应分析法的应用前景将更加广 阔。
在复杂系统和多物理场耦合问题的研 究中,频率响应分析法将发挥重要作 用。
THANKS
感谢观看
分析系统的频率响应特性。
实验法的优点
直接获取实际系统的频率响应数据 ,结果真实可靠,不受模型精度限 制。
实验法的缺点
实验成本高,周期长,且受实验条 件和环境因素影响较大。
数值模拟法
数值模拟法定义
利用计算机数值计算方法模拟系 统的动态行为,通过分析模拟结
果得到系统的频率响应特性。
数值模拟法的优点
成本低,周期短,可以模拟复杂 系统和非线性系统。
析和计算,研究结构的固有频率、振型和阻尼等特性。
03
振动控制
频率响应分析法可以用于振动控制,通过对振动系统进行频率响应分析
和设计,实现振动系统的主动控制和被动控制,提高系统的稳定性和可
靠性。
05
频率响应分析法的优缺点
优点
准确性
频率响应分析法能够准确地评估系统的频率响应特性,从而更准确地 预测系统的行为和性能。
信号去噪
频率响应分析法可以用于信号去噪,通过对信号进行频域变换和处理 ,降低噪声信号的干扰,提高信号的信噪比。

频率分析法

频率分析法
Im[ 由于 Re[G( j)] 是偶函数, G( j )]是奇函数 ,所以当 从 0 和 0 变化时,奈魁斯特曲线对称于实轴。
因此,幅频特性A()是的偶函数,相频特性 () 是的奇函数。
Q ( )
A( ) ( )


P ( )
0
s 1 G( s) 2 s s 1
K (1 2 s ) 1 1 例 : G( s ) K (1 2 s ) s(1 0.1s ) s 1 0.1s
5.2.2 典型环节的频率特性 1.比例环节 比例环节的频率特性是G(jω)=K,幅相曲线如下左图。
(dB) j
20lgK
波特图
1 10
极坐标图或 奈奎斯特图
0 k
0
(o) 0
ω
·
1
10
ω
图5.3 比例环节K的幅相曲线
图5.4 比例环节的 对数 频率特性曲线
比例环节的对数幅频特性和对数相频特性分别是: L(ω)=20lg| G(jω)|=20lgK 和φ(ω)=0 相应曲线如上右图。
2积分环节
G( s ) 1 1 1 , G( j ) s j 2
A(ω) 称幅频特性,φ(ω)称相频特性。二者统称为频率特性。
说明: 1.在稳态求出的输出信号 与输入信号的幅值比是 的非 线性函数, 称为幅频特性 Y/X | G(j ) | 2.输出信号与输入信号的 相位差是的非线性函数 称 , 为相频特性它描述在稳态情况下 . ,当系统输入不同频率 的谐波信号时 其相位产生超前 0 )或滞后( 0 )的 , ( 特性. 3.幅频特性和相频特性总 称为频率特性 记为 , G(j ) G(j ) e jG(j ) 4.频率特性的求取 G(j ) G(s) s j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 线性系统的频率响应分析
一、实验目的:掌握实验方法测量系统的波特图和极坐标图。

二、实验设备:PC 机一台,TD-ACC 系列教学实验系统一套。

三.实验对象的结构框图及模拟电路图。

图1
开环传函为: 1()0.1(0.11)
G S S S =+ 闭环传函: 221100()0.010.1110100
S S S S S Φ==++++ 得转折频率ω=10(rad/s) 阻尼比ξ=0.5。

四、实验步骤:
此次实验,采用直接测量方法测量对象的闭环波特图及奈奎斯特图。

将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至控制计算机单元的“DOUT0”插针处,锁零端受“DOUT0”来控制。

将数模转换单元的“/CS”接至控制计算机的“/IOY1”,数模转换单元的“OUT1”,接至图1中的信号输入端.
1.实验接线:按模拟电路图图1接线,检查无误后方可开启设备电源。

2.直接测量方法 (测对象的闭环波特图)
(1)“CH1”路表笔插至图1中的4#运放的输出端。

(2) 打开集成软件中的频率特性测量界面,弹出时域窗口,点击按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每
组参数应选择合适的波形比例系数,具体如下图所示
(3) 确认设置的各项参数后,点击按钮,发送一组参数,待测试完毕,显示时域波形,此时需要自行移动游标,将两路游标同时放置在两路信号的相邻的波峰(波谷)处,或零点处,来确定两路信号的相位移。

两路信号的幅值系统将自动读出。

重复操作(3),直到所有参数测量完毕。

(4) 待所有参数测量完毕后,点击按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。

将波特图绘制或保存下来。

点击极坐标图按钮,可以得到对象的闭环极坐标。

将极坐标图绘制或保存下来。

(5) 根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。

五、注意:
(1) 测量过程中要去除运放本身的反相的作用,即保持两路测量点的相位关系与运放无关,所以在测量过程中可能要适当加入反相器,滤除由运放所导致的相位问题。

(2) 测量过程中,可能会由于所测信号幅值衰减太大,信号很难读出,须放大,若放大的比例系数不合适,会导致测量误差较大。

所以要适当地调整误差或反馈比例系数。

相关文档
最新文档