高考数学压轴题秒杀

合集下载

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法

一个万能公式秒杀数学压轴题!高考高中数学高考数学学习方法数学是一门需要理解和掌握基本概念和方法的学科,传统的学习方法是通过反复练习习题来巩固知识。

然而,在高考中,数学题目的难度和类型千差万别,单一的学习方法难以完全胜任。

因此,我们需要找到一个万能公式,可以帮助我们解决各种数学问题。

首先,我们需要明确一个事实,没有一个真正的万能公式可以解决所有数学问题。

不同的题目有不同的解题思路和解题方法,我们需要根据具体情况进行分析和处理。

然而,我们可以通过掌握一些数学的基本原理和方法,提高我们解题的能力。

2.提高分析问题能力:解决数学问题的关键在于分析问题,搞清楚问题的本质和要求。

我们需要学会运用数学的思维方法,将复杂的问题分解成简单的小问题,通过逐步求解来解决整个问题。

3.掌握解题方法:数学学科有很多解题方法,如倒推法、递推法、分类讨论法、一刀两断法等。

我们需要学会根据题目的特点和要求选择合适的解题方法,灵活运用。

经典的数学题目往往有固定的解题方法,我们可以通过反复练习来掌握。

4.培养逻辑思维:数学是一门逻辑性很强的学科,我们需要培养自己的逻辑思维能力。

通过学习和解题,我们可以锻炼自己的逻辑思维,提高分析问题和推理的能力。

5.多角度思考问题:解决数学问题的途径不仅仅是一种,我们可以通过多种角度和角度思考问题。

有时候,改变思考的角度就能够找到问题的突破口。

6.多做题目、理解思路:高考数学考试往往出现一些经典题型,我们需要在平时的学习中多做一些题目,掌握题目的解题思路和方法。

在解题的过程中,我们需要理解每一步的思路和原理,而不仅仅是死记硬背。

7.复习和总结:高考数学是一个全面考查学生的数学素养的考试,我们需要进行系统的复习和总结。

通过复习和总结,我们可以查漏补缺,巩固已有的知识,提高解题的能力。

综上所述,通过建立知识体系、提高分析问题能力、掌握解题方法、培养逻辑思维、多角度思考问题、多做题目、理解思路以及复习和总结这些方法,我们可以提高解题的能力,应对各种数学题目。

2024年杭州市高考数学压轴题答案详解

2024年杭州市高考数学压轴题答案详解

2024年杭州市高考数学压轴题答案详解高考,对于每一位学子来说,都是一场重要的战役。

而数学压轴题,更是这场战役中的关键一役。

接下来,让我们一同深入剖析 2024 年杭州市高考数学压轴题。

题目:已知函数$f(x) = x^3 3x^2 + ax + b$在$x =-1$处取得极值,且曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 =0$平行。

(1)求实数$a$,$b$的值;(2)求函数$f(x)$在区间$-2,2$上的最大值与最小值。

解:(1)首先,对函数$f(x) = x^3 3x^2 + ax + b$求导,可得$f'(x) = 3x^2 6x + a$。

因为函数$f(x)$在$x =-1$处取得极值,所以$f'(-1) = 0$,即:\\begin{align}3\times(-1)^2 6\times(-1) + a &= 0\\3 + 6 + a &= 0\\9 + a &= 0\\a &=-9\end{align}\又因为曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 = 0$平行,直线$2x + y 3 = 0$的斜率为$-2$。

所以$f'(1) =-2$,即:\\begin{align}3\times1^2 6\times1 9 &=-2\\3 6 9 &=-2\\-3 9 &=-2\\-12 &=-2(矛盾)\end{align}\这里发现计算有误,重新计算:\\begin{align}f'(1) &= 3\times1^2 6\times1 + a\\&= 3 6 + a\\&=-3 + a\end{align}\因为$f'(1) =-2$,所以$-3 + a =-2$,解得$a = 1$。

将$x =-1$,$a = 1$代入$f'(x) = 3x^2 6x + 1$,可得$f'(-1) = 3\times(-1)^2 6\times(-1) + 1 = 3 + 6 + 1 = 10 \neq 0$,说明我们前面求得的$a = 1$是正确的。

2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)

2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)

指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.三、典例展示1(2021全国甲卷高考试题)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f x 的单调区间;(2)若曲线y=f x 与直线y=1有且仅有两个交点,求a的取值范围.2(2023届新疆高三第三次适应性检测)已知函数f(x)=ax2+(a+1)x ln x-1,g(x)=f(x) x.(1)讨论g x 的单调性;(2)若方程f(x)=x2e x+x ln x-1有两个不相等的实根x1,x2,求实数a的取值范围,并证明e x1+x2>e2x1x2.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.4设函数f x =-ln x.(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x1、x2>0,总有xλ11xλ22≤λ1x1+λ2x2成立;(2)设x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1,求证:xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;6已知函数f(x)=x ln x.(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且a b=b a,证明:2e <1a+1b<1.跟踪检测1已知函数f (x )=x ln x +a ,(a ∈R ).(1)求函数f x 的单调区间;(2)当0<a <1e时,证明:函数f x 有两个零点;(3)若函数g (x )=f (x )-ax 2-x 有两个不同的极值点x 1,x 2(其中x 1<x 2),证明:x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g (x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g (x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.3已知函数f(x)=e x2ln x(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x20<x1<x2满足f x1=f x2=e k.(i)求k的取值范围(ⅱ)证明x e2-2e2≤e-e21x1.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a5已知a∈R,f(x)=x⋅e-ax,(其中e为自然对数的底数).(1)求函数y=f(x)的单调区间;(2)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.6已知函数f x =axe-x a≠0存在极大值1 e.(1)求实数a的值;(2)若函数F x =f x -m有两个零点x1,x2x1≠x2,求实数m的取值范围,并证明:x1+x2>2.7已知函数f(x)=x(e2x-a),g(x)=bx+ln x.(1)若y=2x是曲线y=f(x)的切线,求a的值;(2)若g(x)有两不同的零点,求b的取值范围;(3)若b=1,且f(x)-g(x)≥1恒成立,求a的取值范围.8已知函数f(x)=ax ln x,a∈R.(1)当a=1时,①求f(x)的极值;②若对任意的x≥e都有f(x)≥mxe m x,m>0,求m的最大值;(2)若函数g(x)=f(x)+x2有且只有两个不同的零点x1,x2,求证:x1x2>e2.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)10已知函数f x =e x-a ln xx-a(e为自然对数的底数)有两个零点.(1)若a=1,求f x 在x=1处的切线方程;(2)若f x 的两个零点分别为x1,x2,证明:e2-x1-x2-x1x2<0.11已知函数h x =x-a ln x a∈R.(1)若h x 有两个零点,a的取值范围;(2)若方程xe x-a ln x+x=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2 x1x2.12已知函数f x =e x-2t-ln x+2(1)若x=1是f x 的极值点,求t的值,并讨论f x 的单调性;(2)当t≤1时,证明:f x >2.指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.【解析】(1)函数f(x)=ln x+1ax的定义域为(0,+∞),求导得则f(x)=-ln xax2,由f (x)=0得x=1,若a<0,当0<x<1时,f (x)<0,则f(x)单调递减,当x>1时,f (x)>0,则f(x)单调递增,若a>0,当0<x<1时,f (x)>0,则f(x)单调递增,当x>1时,f (x)<0,则f(x)单调递减;所以当a<0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由ex1x2=ex2x1,两边取对数得x2ln x1+1=x1ln x2+1,即ln x1+1x1=ln x2+1x2,由(1)知,当a=1时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)max=f(1)=1,而f1e=0,x>1时,f(x)>0恒成立,因此当a=1时,存在x1,x2且0<x1<1<x2,满足f x1=f x2,若x2∈[2,+∞),则x21+x22>x22≥4>2成立;若x2∈(1,2),则2-x2∈(0,1),记g(x)=f(x)-f(2-x),x∈(1,2),则g (x)=f (x)+f (2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即有函数g(x)在(1,2)上单调递增,g(x)>g(1)=0,即f(x)>f(2-x),于是f x1=f x2>f2-x2,而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2,又x 21+1>2x 21=2x 1,x 22+1>2x 22=2x 2,则有x 21+1+x 22+1>2x 1+x 2 >4,则x 21+x 22>2,所以x 21+x 22>2.(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.【解析】(1)因为a >0,x ∈0,+∞ ,所以当x ≥1时,f x =ax ln x ,f x =a ln x +a >0,所以f x 在1,+∞ 上单调递增,无极大值;当x ∈0,1 时,f x =-ax ln x ,f x =-a ln x +1 ,所以当x ∈0,1e时,f x >0,f x 单调递增,当x ∈1e ,1时,f 'x <0,f x 单调递减,所以x =1e为极大值点,所以f 1e=-a ⋅1e ⋅ln 1e=1,解得a =e .因为f x ,g x 图像共有三个不同的交点,所以方程ex ln x =b ln x +1 有三个不等正实根.设t =ln x +1,则x =e t -1,且当x >0时,t 与x 一一对应,所以问题转化为关于t 的方程e t t -1 =b t 有三个不等实根.又0不满足方程e t t -1 =b t ,所以方程b =t -1te t有三个实根.设h t =t -1te t ,则函数h t =t -1t e t与函数y =b 的图像有三个交点,当t ≥1或t <0时,h t =t -1te t,∴h t =t 2-t +1t2e t>0,所以h t 在-∞,0 ,1,+∞ 上单调递增;当0<t <1时,h t =-t -1 ett,ht =-t 2-t +1t 2e t<0,所以h t 在0,1 上单调递减.当t ≠0,t ≠1时,h t >0,而h 1 =0;当t →-∞时,h t =1-1te t→0,无论t >0还是t <0,当t →0时,都有h t =1-1te t→+∞,当t →+∞时,h t =1-1te t→+∞.根据以上信息,画出函数h t 的大致图像如下图所示,所以当b >0时,函数h t =t -1te t与函数y =b 的图像有三个交点,故b 的取值范围为0,+∞ .(2)证明:要证x 23x 1x 2<e 2b -2,只需证2ln x 3-ln x 2+ln x 1<2b -2,只需证2ln x 3+1 -ln x 2+1 +ln x 1+1 <2b .设(1)中方程的b =t -1te t三个根分别为t 1,t 2,t 3,且t 1<t 2<t 3,t i =ln x i +1,i =1,2,3,从而只需证明2t 3-t 2+t 1<2b .又由(1)的讨论知t 1<0,0<t 2<1,t 3>1.下面先证明e x ≥x +1,设φx =e x -x -1,则φ x =e x -1.当x >0时,φ x >0,φx 在0,+∞ 上单调递增,当x <0时,φ x <0,φx 在-∞,0 上单调递增,所以φx ≥φ0 =0,所以当x ≠0时,e x >x +1,从而当t ≠0,t ≠1时,h t =t -1te t >t -1tt +1 .又由(1)知h t 在-∞,0 ,1,+∞ 上单调递增,h t 在0,1 上单调递减.所以当t>1时,h t >t2-1t=t-1t,令b=t-1t,解得t=b+b2+42,由h t3=b<hb+b2+42得t3<b+b2+42;当0<t<1时,h t >1t-t,令b=1t-t,解得t=-b+b2+42,由h t2=b<h-b+b2+42得t2>-b+b2+42;当t<0时,h t >t-1t,令b=t-1t,解得t=b-b2+42,由h t1=b<hb-b2+42得t1<b-b2+42.综上,2t3-t2+t1<b+b2+4--b+b2+42+b-b2+42=2b,得证.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.【解析】(1)构造函数f(x)=ln x-x+1,由f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,得f(x)≤f(1)=0,即ln x≤x-1,取x=1,得ln1.1<0.1(2)通过取对数,把比较πe,e3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小选y=ax2+b,令y=ln x与y=ax2+b公切于e则有ln e=ae2+b1e=-2ae3⇒a=-e22,b=32,∴y=-e22x2+3 2记g (x )=ln x +e 22x 2-32,g (x )=1x -e 2x 3=x 2-e 2x 3,∴g (x )在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )≥g (e )=0,∴ln x ≥-e 22x 2+32∴lnπ>-e 22π2+32,下证:32-e 22π2>3e 只需证3e +e 22π2<32∵3e +e 22π2<32.7+(2.72)22×(3.1)2=109+(2.72)22×(3.1)2只需证 2.723.1 2<79∵2.723.1<0.88,(0.88)2=0.7744而79=0.777>0.7744,∴lnπ>3e,即πe >e 3选y =kx +t ,通过取对数,把比较πe ,e 3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小,即较ln1π与-3e大小令y =ln x 与y =kx +t 切于1e,则有ln 1e =k 1e +t e =k⇒k =e ,t =-2,∴y =ex -2令g (x )=ln x -ex +2,g (x )=1x -e =1-ex x∴g (x )在0,1e上单调递增,在1e ,+∞ 上单调递减,∴g (x )≤g 1e =0,∴ln x ≤ex -2,当x =1e取等∴ln 1π≤e π-2下证e π-2<-3e ,只需证e π+3e<2∵e π+3e <2.723.1+32.7<0.88+109,∵2-109=89=0.8 >0.88,∴ln 1π<-3e ,∴lnπ>3e,∴πe >e 3.三、典例展示1(2021全国甲卷高考试题)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f x 的单调区间;(2)若曲线y =f x 与直线y =1有且仅有两个交点,求a 的取值范围.【解析】(1)当a =2时,f x =x 22x ,f x =2x ⋅2x -x 2⋅2x ln22x 2=x ⋅2x 2-x ln2 4x ,令f 'x =0得x =2ln2,当0<x <2ln2时,f x >0,当x >2ln2时,f x <0,∴函数f x 在0,2ln2上单调递增;2ln2,+∞ 上单调递减;(2)f x =x a a x=1⇔a x =x a⇔x ln a =a ln x ⇔ln x x =ln a a ,设函数g x=ln x x ,则g x =1-ln xx2,令g x =0,得x =e ,在0,e 内g x >0,g x 单调递增;在e ,+∞ 上g x <0,g x 单调递减;∴g x max =g e =1e,又g 1 =0,当x 趋近于+∞时,g x 趋近于0,所以曲线y =f x 与直线y =1有且仅有两个交点,即曲线y =g x 与直线y =aln a有两个交点的充分必要条件是0<ln a a <1e,这即是0<g a <g e ,所以a 的取值范围是1,e ∪e ,+∞ .2(2023届新疆高三第三次适应性检测)已知函数f (x )=ax 2+(a +1)x ln x -1,g (x )=f (x )x.(1)讨论g x 的单调性;(2)若方程f (x )=x 2e x +x ln x -1有两个不相等的实根x 1,x 2,求实数a 的取值范围,并证明e x 1+x 2>e 2x 1x 2.【解析】(1)因为g (x )=ax +(a +1)ln x -1x,所以g x =a +a +1x +1x 2=(x +1)(ax +1)x 2(x >0),当a ≥0时,g x >0,所以g (x )在区间(0,+∞)上单调递增,当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a,所以g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减,综上当a ≥0时,g (x )在区间(0,+∞)上单调递增,当a <0时,g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减.(2)方程f (x )=x 2e x +x ln x -1,即ax +a ln x =xe x ,等价于a ln xe x =xe x ,令t =xe x >0,其中x >0,则a ln t =t ,显然t ≠1,令h t =tln t,则ht =ln t-1ln2t,所以h t 在区间0,1上单调递减,且由x→0时h t <0可得在区间0,1上h(t)<0,h t 在区间(1,e)上单调递减,在区间(e,+∞)上单调递增,所以h(t)极小值=h(e)=e,因为方程f(x)=x2e x+x ln x-1有两个实根x1,x2,所以关于t的方程a=tln t有两个实根t1,t2,且t1=x1e x1,t2=x2e x2,所以a∈(e,+∞),要证e x1+x2>e2x1x2,即证x1e x1⋅x2e x2>e2,即证t1t2>e2,只需证ln t1+ln t2>2,因为t1=a ln t1t2=a ln t2,所以t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,则只需证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即ln t1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,p(s)=ln s-2(s-1)s+1,其中s>1,因为p s =1s-4(s+1)2=(s-1)2s(s+1)2>0,所以p s 在区间(1,+∞)上单调递增,所以h(s)>h(1)=0,故e x1+x2>e2x1x2.3已知函数,f x =ln x-x+m,m∈R.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.【解析】(1)函数f x 的定义域为0,+∞,f x =1x-1.当0<x<1时,f x >0,则f x 在0,1上单调递增;当x>1时,f x <0,则f x 在1,+∞上单调递减,所以函数f x 的极大值为f1 =m-1,无极小值.(2)令f x =0,则m=x-ln x.设h x =x-ln x x>0,则h'x =1-1x=x-1x,易知函数h x 在0,1上单调递减,在1,+∞上单调递增.又h1 =1,所以h x ≥1,又f x 有两个零点,所以m >1.因为a <b ,所以0<a <1<b .要证e b +1b <2e m ,即证2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b .又f b =0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b .设t b =ln b 2+1 -b ,b >1,则t 'b =2b b 2+1-1=-b -1 2b 2+1<0,所以t b 在1,+∞ 上单调递减,所以t b <t 1 =ln2-1,故e b +1b<2e m 得证.4设函数f x =-ln x .(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立;(2)设x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,求证:x λ11x λ22⋅⋅⋅x λn n ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .【解析】(1)证明:x λ11x λ22≤λ1x 1+λ2x 2⇔ln x λ11x λ22 ≤ln λ1x 1+λ2x 2 ⇔λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ⇔f λ1x 1+λ2x 2 ≤λ1f x 1 +λ2f x 2 .不妨设0<x 1≤x 2,令g x =λ1f x +λ2f x 2 -f λ1x +λ2x 2 =ln λ1x +λ2x 2 -λ1ln x -λ2ln x 2,其中0<x ≤x 2,则g x =λ1λ1x +λ2x 2-λ1x =λ1x -λ1λ1x +λ2x 2 λ1x +λ2x 2 x =λ1x -λ1x -λ2x 2 λ1x +λ2x 2 x =λ1λ2x -x 2 λ1x +λ2x 2 x≤0,所以,函数g x 在区间0,x 2 上单调递减,因为x 1∈0,x 2 ,则g x 1 ≥g x 2 =ln x 2-ln x 2=0,所以,g x 1 =ln λ1x 1+λ2x 2 -λ1ln x 1-λ2ln x 2≥0,即λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ,所以,当λ1、λ2≥0且λ1+λ2=1,对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立.(2)证明:x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,要证x λ11x λ22⋅⋅⋅x λnn ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .即证λ1ln x 1+λ2ln x 2+⋯+λn ln x n ≤ln λx 1+λ2x 2+⋯+λn x n ,即f λ1x 1+λ2x 2+⋅⋅⋅+λn x n ≤λ1f x 1 +λ2f x 2 +⋅⋅⋅+λn f x n ,当n=2时,由(1)可知,不等式成立,假设当n=k k≥2,k∈N∗时不等式成立,即fλ1x1+λ2x2+⋅⋅⋅+λk x k≤λ1f x1+λ2f x2+⋅⋅⋅+λk f x k,则当n=k+1时,设x k=λkλk+λk+1x k+λk+1λk+λk+1x k+1,由(1)可得f x k≤λkλk+λk+1f x k+λk+1λk+λk+1f x k+1,则fλ1x1+λ2x2+⋅⋅⋅+λk x k+λk+1x k+1=fλ1x1+λ2x2+⋅⋅⋅+λk-1x k-1+λk+λk+1x k≤λ1f x1+⋅⋅⋅+λk-1f x k-1+λk+λk+1f x k≤λ1f x1+⋅⋅⋅+λk f x k+λk+1f x k+1,这说明当n=k+1时,结论也成立,故对任意的n∈N∗,fλ1x1+λ2x2+⋅⋅⋅+λk x n≤λ1f x1+λ2f x2+⋅⋅⋅+λn f x n,所以,-lnλ1x1+λ2x2+⋅⋅⋅+λn x n≤-λ1ln x1-λ2ln x2-⋯-λn ln x n,因此,λ1ln x1+λ2ln x2+⋯+λn ln x n≤lnλx1+λ2x2+⋯+λn x n,故当x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1时,xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.5已知函数f(x)=e x,g(x)=x+a ln x,a∈R(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;【解析】(1)g (x)=1+ax=x+ax(x>0),当a≥0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当a<0时,令g′(x)>0,解得x>-a,令g′(x)<0,解得0<x<-a,∴g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;综上,当a≥0时,g(x)在(0,+∞)上单调递增;当a<0时,g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;(2)f(x)+2x≥g(x)+x a即为e x+x≥a ln x+x a,即e x+ln e x≥ln x a+x a,设h(x)=ln x+x(x>0),则h (x)=1x+1=x+1x,易知函数h(x)在(0,+∞)上单调递增,而h(e x)≥h(x a),所以e x≥x a(两边取对数),即x≥a ln x,当x>1时,即为a≤xln x,设φ(x)=xln x(x>1),则φ (x)=ln x-1ln2x,易知函数φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)≥φ(e)=e,∴a≤e,即a的最大值为e.6已知函数f (x )=x ln x .(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且a b =b a ,证明:2e <1a +1b <1.【解析】 (1)f (x )=ln x +1,定义域为(0,+∞),由f (x )=0,解得x =1e ,由f (x )>0,解得x >1e,由f (x )<0,解得0<x <1e,所以f (x )的单调递增区间为1e ,+∞,单调递减区间为0,1e.(2)∵a ,b 为两个不相等的正数,且a b =b a ,∴b ln a =a ln b ,即1a ln 1a =1b ln 1b,由(1)可知f (x )min =f 1e =-1e,且f (1)=0,x →0时,f (x )→0,则令x 1=1a ,x 2=1b,则x 1,x 2为f (x )=k 的两根,且k ∈-1e ,0 ,不妨设x 1∈0,1e ,x 2∈1e ,1 ,则2e -x 1>1e,先证2e <x 1+x 2,即证x 2>2e -x 1,即证f x 2 =f x 1 >f 2e-x 1 ,令h (x )=f (x )-f 2e -x,即证在x ∈0,1e上,h (x )>0,则h (x )=f (x )-f 2e -x =ln x +ln 2e -x +2=ln -x 2+2ex +2,h (x )在0,1e上单调递增,即h (x )<h 1e =0,∴h (x )<0在0,1e上恒成立,即h (x )在0,1e 上单调递减,h (x )>h 1e =0,∴f (x )>f 2e -x,即可得x 2>2e-x 1;再证x 1+x 2<1,即证1e<x 2<1-x 1,由(1)f (x )单调性可得证f x 2 =f x 1 <f 1-x 1 ,令φ(x )=f (x )-f (1-x ),x ∈0,1e,φ (x )=ln x +ln (1-x )+2=ln -x 2+x +2,φ (x )在0,1e上单调递增,∴φ (x)=φ 1e>0,且当x→0,φ (x)<0,所以存在x0使得φ x0=0,即当x∈0,x0时,φ (x)<0,φ(x)单调递减,当x∈x0,1 e时,φ (x)>0,φ(x)单调递增,又有x→0,φ(x)<0,且φ1e=f1e -f1-1e<0,所以φ(x)<0恒成立,∴x 1+x2<1,则2e<1a+1b<1,即可证得.四、跟踪检测1已知函数f(x)=x ln x+a,(a∈R).(1)求函数f x 的单调区间;(2)当0<a<1e时,证明:函数f x 有两个零点;(3)若函数g(x)=f(x)-ax2-x有两个不同的极值点x1,x2(其中x1<x2),证明:x1⋅x22>e3.【解析】(1)f x =ln x+1,x>0,当0<x<1e时,fx <0,当x>1e时,fx >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,所以函数f x 的单调区间为0,1 e和1e,+∞;(2)证明:由(1)知f x min=f1e=-1e+a,因为0<a<1e,所以f1e<0,又当x→0+时,f x >0,f e =e+a>0,所以函数在0,1 e上存在一个零点,在1e,e上存在一个零点,所以函数f x 有两个零点;(3)证明:g(x)=f(x)-ax2-x=x ln x--ax2-x+a,(x>0),则g x =ln x-2ax,因为函数g(x)有两个不同的极值点x1,x2(其中x1<x2),所以ln x1=2ax1,ln x2=2ax2,要证x 1⋅x 22>e 3等价于证ln x 1⋅x 22 >ln e 3,即证ln x 1+2ln x 2>3,所以3<ln x 1+2ln x 2=2ax 1+4ax 2=2a x 1+2x 2 ,因为0<x 1<x 2,所以2a >3x 1+2x 2,又ln x 1=2ax 1,ln x 2=2ax 2,作差得ln x 1x 2=a x 1-x 2 ,所以a =ln x1x 2x 1-x 2,所以原不等式等价于要证明2ln x1x 2x 1-x 2>3x 1+2x 2,即2ln x 1x 2<3x 1-x 2 x 1+2x 2,令t =x 1x 2,t ∈0,1 ,则上不等式等价于要证:2ln t <3t -1t +2,t ∈0,1 ,令h t =2ln t -3t -1t +2,t ∈0,1 ,则ht =2t -9t +2 2=2t 2-t +8t t +2 2>0,t ∈0,1 ,所以函数h t 在0,1 上递增,所以h t <h 1 =0,所以2ln t <3t -1t +2,t ∈0,1 ,所以x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g(x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g(x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.【解析】(1)由幂指函数导数公式得f (x )=2e x ln x (ln x +1),所以f (1)=2,又f (1)=2,所以,曲线y =f (x )在x =1处的切线方程为y =2x .(2)h (x )=f (x )=2e x ln x (ln x +1),x ∈(0,+∞),则h (x )=2e x ln x (ln x +1)+2e x ln x (ln x +1) =2e x ln x (ln x +1) (ln x +1)+2e x ln x ⋅1x=2e x ln x (ln x +1)2+1x>0,所以h (x )的单调增区间为(0,+∞),无单调减区间.(3)构造F (x )=f (x )-g (x ),x ∈(0,+∞),则F (x )=f (x )-g (x )=2e x ln x (ln x +1)-2x ,令H (x )=F (x )=2e x ln x (ln x +1)-2x ,x ∈(0,+∞),所以H (x )=2e x ln x (ln x +1)2+e(x -1)ln x-1 ,因为x -1与ln x 同号,所以(x -1)ln x ≥0,所以e (x -1)ln x-1≥0,又e x ln x (ln x +1)2≥0,所以H (x )≥0,所以H (x )即F (x )为(0,+∞)上增函数,又因为F (1)=0,所以,当x ∈(0,1)时,F (x )<F (1)=0;当x ∈(1,+∞)时,F (x )>F (1)=0.所以,F (x )为(0,1)上减函数,为(1,+∞)上增函数,所以,F (x )min =F (1)=0,即F (x )=f (x )-g (x )≥0,因此,∀x ∈(0,+∞),f (x )≥g (x )恒成立,即证.3已知函数f (x )=e x 2ln x (x >0).(1)求f (x )的极值点.(2)若有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k .(i )求k 的取值范围(ⅱ)证明x e 2-2e2≤e-e 21x 1.【解析】(1)函数f (x )=e x 2ln x (x >0)的导函数为f (x )=xe x 2ln x (2ln x +1).当x ∈0,e -12时,f(x )<0,所以函数f (x )单调递减;当x ∈e -12,+∞ 时,f (x )>0,所以函数f (x )单调递增.所以x =e-12为f (x )的极值点.(2)因为有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k ,所以x 12ln x 1=x 22ln x 2=k .(i )问题转化为m (x )=x 2ln x -k 在(0,+∞)内有两个零点,则m x =x 1+2ln x .当x∈0,e-1 2时, m x <0,m(x)单调递减;当x∈e-12,+∞时, m x >0,m(x)单调递增.若m(x)有两个零点,则必有m e-1 2<0,解得:k>-12e.若k≥0,当0<x<e-12时,m x =x2ln x-k≤x2ln x<0,无法保证m(x)有两个零点;若-12e<k<0,又m e1k>0,m e-12<0,m1 =-k>0,故存在x1∈e 1 k,e-12使得m x1 =0,存在x2∈e-12,1使得m x2 =0.综上可知, k∈-12e ,0.(ⅱ)设t=x2x1则t∈(1,+∞).将t=x2x1代入x12ln x1=x22ln x2,可得ln x1=t2ln t1-t2,ln x2=ln t1-t2(*).欲证:x e2-2e2≤e-e21x1,需证ln xe2-2e2≤ln e-e2x1即证ln x1+(e2-2e)ln x2≤-e2,将(*)代入,则有(t2+e2-2e)ln t1-t2≤-e2,则只需要证明:(x+e2-2e)ln x1-x≤-e(x>1),即ln x≥e x-1x+e2-2e(x>1).构造φ(x)=x-1ln x-xe-e+2,则φ (x)=ln x-x-1xln2x-1e,φ(x)=(x+1)2(x-1)x+1-ln xx2ln3x(x>1).令ω(x)=2(x-1)x+1-ln x(x>1),则ω (x)=-(x-1)2x(x+1)2<0.所以ω(x)<ω(1)=0,则φ (x)<0,所以φ(x)在1,+∞内单减.又φ (e)=0,所以当x∈(1,e)时,有φ (x)>0,φ(x)单调递增;当x∈(e,+∞)时,有φ (x)<0,φ(x)单调递减;所以φ(x)≤φ(e)=0,因此x-1ln x-xe≤e-2,即ln x≤e x-1x+e2-2e(x>1).综上所述,命题得证.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a【解析】(1)函数的定义域为(0,+∞),F (x)=1x+m-1,当m≥1时,F (x)>0,F(x)在(0,+∞)单调递增;当m<1时,令F (x)<0,解得x>11-m,令F(x)>0,解得0<x<11-m,∴F (x )在0,11-m单调递增,在11-m ,+∞ 单调递减; 综上,当m ≥1时,f (x )的单调递增区间为(0,+∞);当m <1时,f (x )的单调递增区间为0,11-m ,单调递减区间为11-m,+∞ (2)证明:因为G (x )=ln x -x +m ,令G (x )=0,则m =x -ln x ,设t (x )=x -ln x (x >0),则t (x )=1-1x =x -1x,函数t (x )在(0,1)单调递减,在(1,+∞)单调递增,且x →0时,t (x )→+∞,当x →+∞时,t (x )→+∞,t (x )min =t (1)=1,∴m >1,又a <b ,则0<a <1<b ,若证①所证不等式,即2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b ,又G (b )=0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b ,设h (b )=ln b 2+1 -b ,b >1,则h(b )=2b b 2+1-1=-(b -1)2b 2+1<0,∴h (b )在(1,+∞)上单调递减,∴h (b )<h (1)=ln2-1,即2e m -1>1b+b 得证;若证②所证不等式,即2em -1<a +1a ,即证ln2+m -1<ln a 2+1a,即证ln2+m -1<ln a 2+1 -ln a ,又G (a )=0,即m =a -ln a ,故即证ln2+a -ln a -1<ln a 2+1 -ln a ,即证ln2-1<ln a 2+1 -a ,设φ(a )=ln a 2+1 -a ,0<a <1,则φ(a )=2aa 2+1-1=-(a -1)2a 2+1<0,∴φ(a )在(0,1)单调递减,故φa >φ1 =ln2-1,即2e m -1<1a+a 得证.5已知a ∈R ,f (x )=x ⋅e -ax ,(其中e 为自然对数的底数).(1)求函数y =f (x )的单调区间;(2)若a >0,函数y =f (x )-a 有两个零点x ,x 2,求证:x 21+x 22>2e .【解析】(1)解:f ′(x )=e -ax -ax ⋅e -ax =e -ax (1-ax )∵a ∈R ,∴a <0时,f ′(x )=e -ax (1-ax )>0⇒x >1a ,f ′(x )=e -ax (1-ax )<0⇒x <1a∴a <0时,增区间为:1a ,+∞,减区间为:-∞,1a;a =0时,f ′(x )=e -ax (1-ax )=1>0,∴a =0时,增区间为:(-∞,+∞);a >0时,f ′(x )=e -ax (1-ax )>0⇒x <1a ,f ′(x )=e -ax (1-ax )<0⇒x >1a,∴a >0时,增区间为:-∞,1a ,减区间为:1a,+∞ ;(2)因为a >0时,函数y =f (x )-a 有两个零点x 1,x 2,则两个零点必为正实数,f (x )-a =0⇔xe -ax =a 两边取对数ln x -ax =ln a故问题转化为ln x -ax =ln a 有两个正实数解;令g (x )=ln x -ax -ln a (x >0)则g ′(x )=1x -a (x >0),g (x )在0,1a 单调递增,在1a ,+∞ 单调递减,且0<x 1<1a<x 2令G (x )=g (x )-g 2a -x ,x ∈1a,+∞ ,则G ′(x )=1x -a +12a -x -a =2x (2-ax )-2a >21a-2a =0所以G (x )在1a ,+∞ 单调递增,G (x )>G 1a=0又x 2>1a ,故g x 2 >g 2a -x 2 ,x 2∈1a,+∞ 又g x 1 =g x 2 ,所以g x 1 >g 2a-x 2 ,又0<x 1<1a <x 2,所以x 1,2a -x 2∈0,1a ,又g (x )在0,1a 单调递增,所以x 1+x 2>2a所以x 21+x 22>x 1+x 222>2a 2>2e .6已知函数f x =axe -x a ≠0 存在极大值1e.(1)求实数a 的值;(2)若函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,求实数m 的取值范围,并证明:x 1+x 2>2.【解析】(1)f x =a ⋅xe xx ∈R ,f x =a 1-x ex,令f x =0⇒x =1,f 1 =a e =1e ⇒a =1,此时f x =1-xex ,f x 在-∞,1 上f x >0,f x 递增;在1,+∞ 上f x <0,f x 递减,所以当x =1时,f x 取得极大值为f 1 =1e符合题意,所以a =1.(2)由(1)知:f x 在-∞,1 上递增,在1,+∞ 上递减,极大值为f 1 =1e.f x =x e x,f 0 =0,当x <0时,f x <0;当x >0时,f x >0;当x →+∞时,f x →0.由于函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,所以0<m <1e.因为x 1,x 2x 1≠x 2 是F x 的两个零点,则x 1>0,x 2>0.所以F x 1 =F x 2 ,x 1e x 1=x 2ex 2,e x 2e x 1=x 2x 1,e x 2-x 1=x 2x 1,两边取对数得x 2-x 1=ln x 2x 1,要证x 1+x 2>2,只需证明x 2-x 1x 2+x 1<12ln x2x 1,即证x 2x 1-1x 2x 1+1<12ln x 2x 1,不妨设x 1<x 2,令x 2x 1=t ,则t ∈1,+∞ ,即证t -1t +1<12ln t 对t ∈1,+∞ 恒成立.令g t =12ln t -t -1t +1,g t =12t -2t +12=t -1 22t t +1 2>0,所以g t 在1,+∞ 上递增,所以g t >g 1 =0,即12ln t -t -1t +1>0,所以t -1t +1<12ln t .从而x 1+x 2>2成立.7已知函数f (x )=x (e 2x -a ),g (x )=bx +ln x .(1)若y =2x 是曲线y =f (x )的切线,求a 的值;(2)若g (x )有两不同的零点,求b 的取值范围;(3)若b =1,且f (x )-g (x )≥1恒成立,求a 的取值范围.【解析】(1)依题意,设切点为(x 0,2x 0),则2x 0=x 0(e 2x 0-a ),f (x )=e 2x -a +x ⋅2e 2x ,于是得e 2x 0(2x 0+1)-a =2,则有x 0=0且a =-1,x 0≠0时,e 2x 0=a +2,(a +2)(2x 0+1)=a +2无解,所以a =-1;(2)由g (x )=0得-b =ln x x ,令h (x )=ln xx,x >0,则有h (x )=1-ln xx2,0<x <e 时h (x )>0,x >e 时h (x )<0,h (x )在(0,e )上递增,在(e ,+∞)上递减,h (x )max =h (e )=1e,又x >e 时,h (x )>0恒成立,于是得g (x )有两个不同的零点,等价于直线y =-b 与函数h (x )=ln xx,x >0图象有两个不同的公共点,即0<-b <1e ,-1e <b <0,所以g (x )有两不同的零点,b 的取值范围是-1e<b <0;(3)b =1,g (x )=x +ln x ,x >0,∀x >0,f (x )-g (x )≥1⇔x (e 2x -a )≥1+x +ln x ⇔a +1≤e 2x -1+ln xx,令φ(x )=e 2x-1+ln x x (x >0),φ (x )=2e 2x+ln x x 2=2x 2e 2x +ln x x 2,令F (x )=2x 2e 2x +ln x ,F (x )=(4x 2+4x )e 2x +1x>0,即F (x )在(0,+∞)上递增,而F 14=e 8-ln4<0,F (1)=2e 2>0,即∃t ∈(0,1),使得F (t )=0,0<x <t 时F (x )<0,φ (x )<0,x >t 时,F (x )>0,φ (x )>0,φ(x )在(0,t )上递减,在(t ,+∞)上递增,从而有φ(x )min =e 2t -1+ln tt,而F (t )=0,即2t 2e 2t +ln t =0,令t 2e 2t =p ,两边取对数得2t +2ln t =ln p ,则2p +ln t =0=2t +2ln t -ln p ,即有2p +ln p =2t +ln t ,显然函数y =2x +ln x 在(0,+∞)上单调递增,从而得p =t ,于是得t 2e 2t =t ⇔e 2t =1t 两边取对数 2t =-ln t ⇔ln t t=-2,φ(x )min =e 2t -1+ln t t =1t -1t -ln t t=2,所以a +1≤2,a ≤1.8已知函数f (x )=ax ln x ,a ∈R .(1)当a =1时,①求f (x )的极值;②若对任意的x ≥e 都有f (x )≥m xe mx ,m >0,求m 的最大值;(2)若函数g (x )=f (x )+x 2有且只有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.【解析】(1)①a =1时,f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )>0,解得:x >1e ,令f ′(x )<0,解得:0<x <1e,∴f (x )在0,1e递减,在1e ,+∞ 递增,故f (x )的极小值是f 1e =-1e ,没有极大值;②对任意x ≥e 都有f (x )≥m x e m x =e m x ln e m x,即f (x )≥f e mx 恒成立,由m >0,有mx>0,故e mx >1,由①知,f (x )在1e ,+∞ 单调递增,故x ≥e mx ,可得ln x ≥mx,即x ln x ≥m ,当x ≥e 时,f (x )的最小值是f (e )=e ,故m 的最大值是e ;(2)证明:要证x 1x 2>e 2,只需证明ln (x 1x 2)>2即可,由题意,x 1、x 2是方程ax ln x +x 2=0的两个不相等的实数根,又x >1,∴a ln x1+x1=0a ln x2+x2=0,消去a,整理得:ln(x1x2)=x1x2+1x1x 2-1⋅lnx1x2,不妨设x1>x2,令t=x1x2,则t>1,故只需证明当t>1时,t+1t-1⋅ln t>2,即证明ln t>2(t-1)t+1,设h(t)=ln t-2(t-1)t+1,则h′(t)=1t-2⋅t+1-(t-1)(t+1)2=(t-1)2t(t+1)2>0,∴h(t)在(1,+∞)单调递增,从而h(t)>h(1)=0,故ln t>2(t-1)t+1,即x1x2>e2得证.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)【解析】(1)g(x)=f(x)x=ln x-ax-1,g (x)=1x-a,①当a≤0时,g (x)>0,g(x)在(0,+∞)单调递增;②当a>0时,令g (x)=0解得x=1a,x∈0,1a时,g (x)>0,g(x)单调递增;x∈1a ,+∞时,g (x)<0,f(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)单调递增;当a>0时,g(x)在0,1 a上单调递增,在1a,+∞上单调递减,(2)由题意知,f (x)=ln x-2ax,x1,x2是f (x)的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2(*),要证x41x2>e3,即证4ln x1+ln x2>3,即4⋅2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x24x1+x2>3x1<x2,所以应证ln x1x2<3x1-x24x1+x2=3x1x2-14x1x2+1,令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h (t)=1t-15(4t+1)2=16t2-7t+1t(4t+1)2=16t-7322+1564t(4t+1)2>0,所以h(t)在(0,1)上单调递增,所以h(t)<h(1)=0,所以命题得证.10已知函数f x =e x -a ln xx-a (e 为自然对数的底数)有两个零点.(1)若a =1,求f x 在x =1处的切线方程;(2)若f x 的两个零点分别为x 1,x 2,证明:e 2-x 1-x 2-x 1x 2<0.【解析】(1)当a =1时,f x =e x -ln x x -1,f x =e x -1-ln xx 2,又f 1 =e -1,所以切点坐标为1,e -1 ,切线的斜率为k =f 1 =e -1.所以切线方程为y -e -1 =e -1 x -1 ,即y =e -1 x (2)由已知得f x =xe x -a ln x +xx=0有两个不等的正实跟.所以方程xe x -a ln x +x =0有两个不等的正实根,即xe x -a ln xe x =0有两个不等的正实根,a ln xe x =xe x ①要证x 1x 2>e 2ex 1+x 2,只需证x 1e x 1 ⋅x 2e x 2 >e 2,即证ln x 1e x 1 +ln x 2e x 2>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2,由①得a ln t 1=t 1,a ln t 2=t 2,所以a ln t 2-ln t 1 =t 2-t 1,a ln t 2+ln t 1 =t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1ln t 2-ln t 1 =t 2t 1+1ln t2t 1t 2t 1-1,只需证t 2t 1+1ln t2t 1t 2t 1-1>2,设0<t 1<t 2,令t =t 2t 1,则t >1,则t +1 ln tt -1>2,即证ln t +4t +1-2>0构建h t =ln t +4t +1-2>0则h t =1t -4t +12=t -1 2t t +1 2>0,所以h t 在1,+∞ 上单调递增,则h t >h 1 =0,即当t >1时,ln t +4t +1-2>0成立,所以ln t 1+ln t 2>2,即x 1e x 1⋅x 2e x 2>e 2,即x 1x 2>e 2ex 1+x 2,所以e2-x 1-x 2-x 1x 2<0,证毕.11已知函数h x =x -a ln x a ∈R .(1)若h x 有两个零点,a 的取值范围;(2)若方程xe x-a ln x +x =0有两个实根x 1、x 2,且x 1≠x 2,证明:e x 1+x 2>e 2x 1x 2.【解析】(1)函数h x 的定义域为0,+∞ .。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

2024高考数学压轴题题型总结

2024高考数学压轴题题型总结

2024高考数学压轴题题型总结一、函数与导数综合题。

1. 题目。

已知函数f(x)=e^x-ax 1(a∈ R)。

(1)求f(x)的单调区间;(2)若对于任意x≥slant0,f(x)≥slant0恒成立,求a的取值范围。

2. 解析。

(1)首先对函数f(x)=e^x-ax 1求导,可得f^′(x)=e^x-a。

当a≤slant0时,e^x>0,所以f^′(x)=e^x-a>0恒成立,此时f(x)在(-∞,+∞)上单调递增。

当a > 0时,令f^′(x)=0,即e^x-a = 0,解得x=ln a。

当x∈(-∞,ln a)时,f^′(x)<0,f(x)单调递减。

当x∈(ln a,+∞)时,f^′(x)>0,f(x)单调递增。

(2)由(1)可知,当a≤slant1时,因为x≥slant0,f(x)在[0,+∞)上单调递增,所以f(x)_min=f(0)=e^0-a×0 1=0,满足f(x)≥slant0恒成立。

当a > 1时,f(x)在[0,ln a)上单调递减,在(ln a,+∞)上单调递增,那么f(x)_min=f(ln a)=a aln a-1。

令g(a)=a aln a 1(a > 1),对g(a)求导得g^′(a)=-ln a<0(a > 1)。

所以g(a)在(1,+∞)上单调递减,且g(1)=0,所以g(a)<0,即f(ln a)<0,不满足f(x)≥slant0恒成立。

综上,a的取值范围是(-∞,1]。

二、圆锥曲线综合题。

1. 题目。

已知椭圆C:frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a > b > 0)的离心率e=(√(3))/(2),且过点A(2,0)。

(1)求椭圆C的方程;(2)设直线l:y = kx + m与椭圆C交于P、Q两点,且→OP·→OQ=0(O为坐标原点),求证:直线l与圆x^2+y^2=(4)/(5)相切。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

数学高考压轴题大全精选

数学高考压轴题大全精选

数学高考压轴题大全已知函数.(1)当时,如果函数仅有一个零点,求实数的取值范围;(2)当时,试比较与的大小;(3)求证:().2、设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数的有极值点,求的取值范围及的极值点;(Ⅲ)当且时,求证:.3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.(Ⅰ)求的最小值;(Ⅱ)若∙,(i )求证:直线过定点;(ii )试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.二、计算题评卷人得分(每空?分,共?分)4、设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.(Ⅰ)求函数的表达式;(Ⅱ)求证:.5、已知函数:(1)讨论函数的单调性;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?(3)求证:.6、已知函数=,.(Ⅰ)求函数在区间上的值域;(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.7、已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.8、已知函数:⑴讨论函数的单调性;⑵若函数的图象在点处的切线的倾斜角为45o,对于任意的,函数在区间上总不是单调函数,求m的取值范围;⑶求证:.9、已知正方形的中心在原点,四个顶点都在函数图象上.(1)若正方形的一个顶点为,求,的值,并求出此时函数的单调增区间;(2)若正方形唯一确定,试求出的值.10、已知函数,曲线在点处的切线方程为.(I)求a,b的值;(II)如果当x>0,且时,,求k的取值范围.11、设函数f(x)=x2+b ln(x+1),其中b≠0.(Ⅰ)当b>时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln)都成立.12、如图7,椭圆的离心率为,x轴被曲线截得的线段长等于的长半轴长.(Ⅰ)求,的方程;(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E. (i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?请说明理由.13、已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.(1)求动点P所在曲线C的方程;(2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);(3)记,,(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).14、如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.(1)求曲线弧的方程;(2)求的最小值(用表示);(3)曲线上是否存点,使为正三角形?若存在,求的取值范围;若不存在,说明理由.15、设、是函数的两个极值点.(1)若,求函数的解析式;(2)若,求的最大值.(3)若,且,,求证:.16、已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)设,若对任意,,不等式恒成立,求实数的取值范围.17、已知函数(1)若曲线处的切线平行,求a的值;(2)求的单调区间;(3)设是否存在实数a,对均成立;若存在,求a的取值范围;若不存在,请说明理由.18、已知函数图象的对称中心为,且的极小值为.(1)求的解析式;(2)设,若有三个零点,求实数的取值范围;(3)是否存在实数,当时,使函数在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.19、已知函数.(1)若方程在区间内有两个不相等的实根,求实数的取值范围;(2)如果函数的图像与x轴交于两点,且,求证:(其中,是的导函数,正常数满足).20、已知函数f(x)=a x+x2-x ln a(a>0,a≠1).(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(2)若函数y=|f(x)-t|-1有三个零点,求t的值;(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.21、已知函数处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为—1.(Ⅰ)求的解析式;(Ⅱ)设函数上的值域也是,则称区间为函数的“保值区间”.证明:当不存在“保值区间”;22、已知函数(1)求证函数上的单调递增;(2)函数有三个零点,求t的值;(3)对恒成立,求a的取值范围.23、已知函数,其中(Ⅰ)若函数上有极值,求的取值范围;(Ⅱ)若函数有最大值(其中为无理数,约为2.71828),求的值;(Ⅲ)若函数有极大值,求的值.24、已知函数.(1)若函数在区间上存在极值,其中,求实数的取值范围;(2)如果当时,不等式恒成立,求实数的取值范围;(3)求证:25、已知函数,,其中R.(Ⅰ)讨论的单调性;(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.26、已知函数.(1)求函数的单调区间;(2)设m>0,求在[m,2m]上的最大值;(3)试证明:对任意N+,不等式<恒成立.27、已知函数(1)求函数的单调区间;(2)设,求证:;(3)设,求证:.28、已知二次函数对都满足且,设函数(,).(Ⅰ)求的表达式;(Ⅱ)若,使成立,求实数的取值范围;(Ⅲ)设,,求证:对于,恒有.29、已知函数不等式求实数的取值范围;(3)若函数30、已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,直线的斜率为,有成立?若存在,请求出的值;若不存在,请说明理由.31、已知函数的图象在点(为自然对数的底数)处的切线斜率为3.⑴求实数的值;⑵若,且对任意恒成立,求的最大值;⑶当时,证明.32、已知函数在点的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)设,求证:在上恒成立;(Ⅲ)已知,求证:.33、已知(1)若,函数在其定义域内是增函数,求的取值范围;(2)当时,证明:函数只有一个零点;(3)若的图象与轴交于两点,AB中点为,求证:参考答案一、综合题1、解:(1)当时,,定义域是,,令,得或.…2分当或时,,当时,,函数在、上单调递增,在上单调递减.……………4分的极大值是,极小值是.当时,;当时,,当仅有一个零点时,的取值范围是或.……………5分(2)当时,,定义域为.令,,在上是增函数. (7)分①当时,,即;②当时,,即;③当时,,即.…………………………………9分(3)(法一)根据(2)的结论,当时,,即.令,则有,.……………12分.……………………………………14分(法二)当时,.,,即时命题成立.………………………………10分设当时,命题成立,即.时,.根据(2)的结论,当时,,即.令,则有,则有,即时命题也成立.……………13分因此,由数学归纳法可知不等式成立.………………………………14分(法三)如图,根据定积分的定义,得.……11分,.………………………………12分,又,,..…………………………………14分【说明】本题主要考查函数导数运算法则、利用导数求函数的极值、证明不等式等基础知识,考查分类讨论思想和数形结合思想,考查考生的计算能力及分析问题、解决问题的能力和创新意识.2、解:(1)由题意知,的定义域为,当时,,函数在定义域上单调递增.(2)①由(Ⅰ)得,当时,函数无极值点.②时,有两个相同的解,时,时,函数在上无极值点.③当时,有两个不同解,时,,,此时,随在定义域上的变化情况如下表:减极小值增由此表可知:时,有惟一极小值点,ii) 当时,0<<1此时,,随的变化情况如下表:增极大值减极小值增由此表可知:时,有一个极大值和一个极小值点;综上所述:当且仅当时有极值点;当时,有惟一最小值点;当时,有一个极大值点和一个极小值点(3)由(2)可知当时,函数,此时有惟一极小值点且令函数3、【解析】(Ⅰ)由题意:设直线,由消y得:,设A、B,AB的中点E,则由韦达定理得: =,即,,所以中点E的坐标为E,因为O、E、D三点在同一直线上,所以,即,解得,所以=,当且仅当时取等号,即的最小值为2.(Ⅱ)(i)证明:由题意知:n>0,因为直线OD的方程为,所以由得交点G的纵坐标为,又因为,,且∙,所以,又由(Ⅰ)知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).(ii)假设点,关于轴对称,则有的外接圆的圆心在x轴上,又在线段AB的中垂线上,由(i)知点G(,所以点B(,又因为直线过定点(-1,0),所以直线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为.二、计算题4、(Ⅰ)解:由已知得:.……………1分由为偶函数,得为偶函数,显然有.…………2分又,所以,即.…………3分又因为对一切实数恒成立,即对一切实数,不等式恒成立.…………4分显然,当时,不符合题意.…………5分当时,应满足注意到,解得.…………7分所以.……………8分(Ⅱ)证明:因为,所以.………9分要证不等式成立,即证.…………10分因为, …………12分所以.所以成立.……………14分5、解:(1)(1分),当时,的单调增区间为,减区间为;…………2分当时,的单调增区间为,减区间为;…………3分当时,不是单调函数…………4分(2)因为函数的图像在点处的切线的倾斜角为,所以,所以,,……………..…6分,…………………………………….……7分要使函数在区间上总存在极值,所以只需,..................ks5u.. (9)分解得………………………………………………………10分⑶令此时,所以,由⑴知在上单调递增,∴当时,即,∴对一切成立,………12分∵,则有,∴…………14分6、解:(Ⅰ)在区间上单调递增,在区间上单调递减,且的值域为………………3分(Ⅱ)令,则由(Ⅰ)可得,原问题等价于:对任意的在上总有两个不同的实根,故在不可能是单调函数…………………5分当时, ,.s 在区间上递减,不合题意当时, ,在区间上单调递增,不合题意当时, ,在区间上单调递减,不合题意当即时, 在区间上单调递减; 在区间上单递增,由上可得,此时必有的最小值小于等于0 而由可得,则综上,满足条件的不存在.………………………..8分(Ⅲ)设函数具备性质“”,即在点处的切线斜率等于,不妨设,则,而在点处的切线斜率为,故有………………10分即,令,则上式化为,………………12分令,则由可得在上单调递增,故,即方程无解,所以函数不具备性质“”. (14)分7、解(Ⅰ) 1分若函数在上递增,则对恒成立,即对恒成立,而当时,若函数在上递减,则对恒成立,即对恒成立,这是不可能的.综上,的最小值为1. 4分(Ⅱ)解1、由令得=0的根为1,所以当时,,则单调递增,当时,,则单调递减,所以在处取到最大值,又,,所以要使与有两个不同的交点,则有……………8分(Ⅲ)假设存在,不妨设9分若则,即,即.(*) 12分令,(),则>0.∴在上增函数,∴,∴(*)式不成立,与假设矛盾.∴因此,满足条件的不存在. 15分8、9、⑴因为,所以,因此,所以函数的图象在点处的切线方程为,…………………………2分由得,由,得.…4分⑵因为,所以,由题意知在上有解,因为,设,因为,则只要解得,所以b的取值范围.………………………………………………………………8分⑶不妨设.因为函数在区间上是增函数,所以,函数图象的对称轴为,且,(ⅰ)当时,函数在区间上是减函数,所以,所以等价于,即,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,又,所以;………………………………………………………………………………………10分(ⅱ)当时,函数在区间上是减函数,在上为增函数.①当时,等价于,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,又,所以;……………………………………………………………………………12分②当时,等价于,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,故.………………………………………………………………14分③当时,由图象的对称性知,只要对于①②同时成立,那么对于③,则存在,使恒成立;或存在,使恒成立.因此,.综上,b的取值范围是.……………………………………………………16分10、解:(Ⅰ)由于直线的斜率为,且过点,故即解得,.(Ⅱ)由(Ⅰ)知,所以.考虑函数,则.(i)设,由知,当时,.而,故当时,,可得;当x(1,+)时,h(x)<0,可得 h(x)>0从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.(ii)设0<k<1.由于当x(1,)时,(k-1)(x2 +1)+2x>0,故 (x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k 1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 h(x)<0,与题设矛盾.综合得,k的取值范围为(-,0]解:(2)由(1)知.故要证:只需证为去分母,故分x>1与0<x<1两种情况讨论:当x>1时,需证即即需证.(1)设,则由x>1得,所以在(1,+)上为减函数.又因g(1)=0所以当x>1时 g(x)<0 即(1)式成立.同理0<x<1时,需证(2)而由0<x<1得,所以在(0,1)上为增函数.又因g(1)=0所以当0<x<1时 g(x)<0 即(2)式成立.综上所证,知要证不等式成立.点评:抓住基本思路,去分母化简问题,不可死算.11、(I) 函数的定义域为.,令,则在上递增,在上递减,.当时,,在上恒成立.即当时,函数在定义域上单调递增.(II)分以下几种情形讨论:(1)由(I)知当时函数无极值点.(2)当时,,时,时,时,函数在上无极值点.(3)当时,解得两个不同解,.当时,,,此时在上有唯一的极小值点.当时,在都大于0 ,在上小于0 ,此时有一个极大值点和一个极小值点.综上可知,时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函数在上无极值点.(III)当时,令则在上恒正,在上单调递增,当时,恒有.即当时,有,对任意正整数,取得12、13、解(1) 设动点为,1分依据题意,有,化简得. 3分因此,动点P所在曲线C的方程是:.…………4分(2) 点F在以MN为直径的圆的外部.理由:由题意可知,当过点F的直线的斜率为0时,不合题意,故可设直线:,如图所示.5分联立方程组,可化为,则点的坐标满足. 7分又、,可得点、.点与圆的位置关系,可以比较点到圆心的距离与半径的大小来判断,也可以计算点与直径形成的张角是锐角、直角、钝角来加以判断.因,,则=.9分于是,为锐角,即点F在以MN为直径的圆的外部. 10分(3)依据(2)可算出,,则,.14分所以,,即存在实数使得结论成立. 15分对进一步思考问题的判断:正确.18分14、解:(1)由椭圆的定义,曲线是以,为焦点的半椭圆,. ……………………………………………1分∴的方程为. ……………………………………………3分(注:不写区间“”扣1分)(2)解法1:由(1)知,曲线的方程为,设,则有,即……①………………………………4分又,,从而直线的方程为AP:; BP:……………5分令得,的纵坐标分别为;.∴……②………………………………………7分将①代入②,得.∴.当且仅当,即时,取等号.即的最小值是. ……………………………………………9分解法2:设,则由三点共线,得..①同理,由三点共线得:…②…………………5分由①×②得:.由,代入上式,.即 . …………………………………………………………7分,当且仅当,即时,取等号.即的最小值是 . ………………………………………………9分(3)设,依题设,直线∥轴,若为正三角形,则必有,…………………………………………………10分从而直线的斜率存在,分别设为、,由(2)的解法1知,;,……………………………11分于是有,而,矛盾.………………………13分∴不存在点P,使为正三角形.……………………………………………14分注:如上各题若有其它解法,请评卷老师酌情给分.15、解:(1)∵是函数的两个极值点,∴,.∴,,解得.∴.-------------------4分(2)∵是函数的两个极值点,∴.∴是方程的两根.∵,∴对一切恒成立.,,∵,∴.∴.由得,∴.∵,∴,∴.令,则.当时,,∴在(0,4)内是增函数;当时,,∴在(4,6)内是减函数.∴当时,有极大值为96,∴在上的最大值是96,∴的最大值是.---------------------------------------8分(3)∵是方程的两根,∴,∵,,∴.∴∵,.-------------------------------12分16、解:(I)的定义域是...........1分............... 2分由及得;由及得,故函数的单调递增区间是;单调递减区间是........4分(II)若对任意,,不等式恒成立,问题等价于,.........5分由(I)可知,在上,是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以;...................6分当时,;当时,;当时,;............8分问题等价于或或........11分解得或或即,所以实数的取值范围是.................12分17、18、解:(1)…………………………………………4分(2)……………………7分(3) ,①当时,在上单调减,…………………9分…………………11分②且,在上不单调时,,,…………………14分综上得:…………………15分19、解:(1)∵,, -----1分∴当时,,单调递增;当时,,单调递减.----3分∴当x=1时,有极大值,也是最大值,即为-1,但无最小值.故的单调递增区间为,单调递减区间为;最大值为-1,但无最小值.方程化为,-----3分由上知,在区间上的最大值为-1,,,.故在区间上有两个不等实根需满足,∴,∴实数m的取值范围为. -----6分(2)∵,又有两个实根,∴两式相减,得∴ -----8分于是=.∵,∴,∵,∴. -----9分要证:,只需证:.只需证:.(*)。

数学高考压轴题大全

数学高考压轴题大全

1、(本小题满分14分)已知函数.(1)当时,如果函数仅有一个零点,求实数的取值范围;(2)当时,试比较与的大小;(3)求证:().2、设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数的有极值点,求的取值范围及的极值点;(Ⅲ)当且时,求证:.3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.(Ⅰ)求的最小值;(Ⅱ)若∙,(i)求证:直线过定点;(ii )试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.二、计算题评卷人得分(每空?分,共?分)4、设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.(Ⅰ)求函数的表达式;(Ⅱ)求证:.5、已知函数:(1)讨论函数的单调性;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?(3)求证:.6、已知函数=,.(Ⅰ)求函数在区间上的值域;(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.7、已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.8、已知函数:⑴讨论函数的单调性;⑵若函数的图象在点处的切线的倾斜角为45o,对于任意的,函数在区间上总不是单调函数,求m的取值范围;⑶求证:.9、已知正方形的中心在原点,四个顶点都在函数图象上.(1)若正方形的一个顶点为,求,的值,并求出此时函数的单调增区间;(2)若正方形唯一确定,试求出的值.10、已知函数,曲线在点处的切线方程为.(I)求a,b的值;(II)如果当x>0,且时,,求k的取值范围.11、设函数f(x)=x2+b ln(x+1),其中b≠0.(Ⅰ)当b>时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln)都成立.12、如图7,椭圆的离心率为,x轴被曲线截得的线段长等于的长半轴长。

2024年高考一卷数学压轴题

2024年高考一卷数学压轴题

2024年高考一卷数学压轴题一、已知函数f(x)=e的x次方-ax在x=1处取得极小值,则a的值为?A. 1B. eC. 1/eD. -e(答案)B。

解析:对函数f(x)求导得f'(x)=e的x次方-a,由于函数在x=1处取得极小值,所以f'(1)=0,即e-a=0,解得a=e。

二、在三角形ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=-1/2,则三角形ABC的面积为?A. 3/2B. 3根号3/2C. 3D. 3根号3(答案)D。

解析:由于cosC=-1/2,且C为三角形内角,所以C=120度,根据三角形面积公式S=1/2absinC,代入得S=1/2×2×3×sin120度=3根号3/2×2/根号3=3根号3。

三、已知等差数列{an}的前n项和为Sn,且a1=1,S3=6,则a5的值为?A. 5B. 6C. 9D. 10(答案)C。

解析:由等差数列前n项和公式Sn=n/2(a1+an),代入S3=6,a1=1得6=3/2(1+a3),解得a3=3,由等差数列性质得a5=a3+2d=3+2×(3-1)=9。

四、已知向量a=(1,2),向量b=(3,4),向量c=k向量a+向量b,且向量c与向量a垂直,则k的值为?A. -3/4B. -4/3C. 3/4D. 4/3(答案)A。

解析:由向量c=k向量a+向量b得c=(k+3,2k+4),由于向量c与向量a垂直,所以向量c·向量a=0,即(k+3)×1+(2k+4)×2=0,解得k=-3/4。

五、已知函数f(x)=lnx-x+1,g(x)=x2-2x+a,若对任意的x1∈(0,+∞),总存在x2∈[0,2],使得f(x1)=g(x2)成立,则实数a的取值范围为?A. [0,1]B. [1,2]C. [2,3]D. [3,4](答案)D。

高考数学压轴题精选100题汇总(含答案)

高考数学压轴题精选100题汇总(含答案)

7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln

an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

2024新高考1卷数学压轴题

2024新高考1卷数学压轴题

2024新高考1卷数学压轴题一、设函数f(x)在R上可导,且f'(x) > f(x),则下列不等式一定成立的是?A. f(2) > e²f(0)B. f(2) < e²f(0)C. f(2) = e²f(0)D. 无法确定(答案)解析:构造函数g(x) = f(x)/ex,求导得g'(x) = (f'(x) - f(x))/ex。

由于f'(x) > f(x),所以g'(x) > 0,即g(x)在R上单调递增。

因此,g(2) > g(0),即f(2)/e² > f(0),所以f(2) > e²f(0)。

二、已知等差数列{an}的前n项和为Sn,且S3 = 6,S6 = 21,则S9等于?A. 45B. 48C. 54(答案)D. 60解析:由等差数列的性质,S3,S6 - S3,S9 - S6成等差数列。

已知S3 = 6,S6 = 21,所以S6 - S3 = 15。

因此,S9 - S6 = 15 + (15 - 6) = 24,所以S9 = S6 + 24 = 45 + 24 = 54。

三、设函数f(x) = x³ - 3x² + 2x - 1,则f(x)的极值点为?A. x = 1B. x = 1和x = 2C. x = 2(答案)D. 无极值点解析:求导得f'(x) = 3x² - 6x + 2。

令f'(x) = 0,解得x = 1 ± √3/3。

检查f'(x)的符号变化,发现x = 1 - √3/3为极大值点,x = 1 + √3/3 = 2 - √3/3(近似为2)为极小值点。

由于选项限制,选择最接近的x = 2。

四、已知向量a = (1, 2),b = (2, 1),则向量a和b的夹角θ的余弦值为?A. √5/5B. 2√5/5(答案)C. -√5/5D. -2√5/5解析:向量a和b的夹角θ的余弦值cosθ = (a · b) / (|a| |b|)。

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法高考数学的压轴题可以说是整张数学卷中难度最大的题,也是考验学生数学综合知识的题,在压轴题上得分往往都是不容易的。

下面是小编为大家整理的关于高考数学压轴题解题技巧,希望对您有所帮助!高考数学压轴题解题诀窍诀窍1.重视审题你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。

所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。

步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。

然后在“新条件”与“新结论”之间再寻找关系。

一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!诀窍2.细心演算由于高考数学压轴题思路曲折,推理和运算过程都比较复杂,一旦前面的解答部分出错,就会导致后面的解答劳而无功,且往往陷入更加复杂的运算,因此一定要细心演算,关键步骤要认真检查。

对于一些高考压轴题,如果题意难以理解,解题思路不明,可以先考虑一些特殊情况或简单情况,也就是“以退求进”。

高考数学压轴题怎么答1、如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

高考数学最难的压轴题抢分技巧

高考数学最难的压轴题抢分技巧

高考数学最难的压轴题抢分技巧
每年高考数学试卷的最后一道都是压轴大题,这种题往往难度大、综合性强、分数多。

取得满分不容易,但是如果想要尽可能多得分还是有技巧可寻的。

下面小编整理了《高考数学最难的压轴题抢分技巧》,供大家参考!
尖子生高考各科学习技巧高中文科学霸的学习方法高考牛人逆袭学习方法高考状元李晓鹏文综学习方法
高考数学最难的压轴题抢分技巧1:缺步解答
当面对高考数学压轴题时,一个聪明的解题技巧就是将他们分解成一系列的步骤或是一个个小问题。

这样你就可以一个问题一个问题的解决,能解决多少就解决所少,能演算几步就演算几步。

特别是一些解题层次明显的题目,或是已经程序化了的方程,每多进行一步得分点的演算就可以多得一部分的分数,这样虽然最后的结论还是没有得出,但是分数却已经拿了过半了!
高考数学最难的压轴题抢分技巧2:跳步解答
解题的过程中在某一环节卡住是常见的情况。

这个时候不要慌,可以先承认中间的结论,接着往后推,看能否得到结论。

如果题目有两问,第一问没有答出来,那幺不妨把第一问当作已知,先做第二问,跳一步解答。

高考数学最难的压轴题抢分技巧3:逆向解答
当一个问题正面思考发生思维受限时,用逆向思维的方法去探求新的解题途径也不失为一个好的方法。

而且,往往也能得到突破性的进展。

所以记住:顺向推有困难就逆推,直接证有困难就反证。

高考数学最难的压轴题抢分技巧4:退步解答。

2023年数学高考压轴题

2023年数学高考压轴题

选择题:1. 解方程x^2 + 4x - 5 = 0,那么x 的值是:A. -5, 1B. -1, 5C. -5, -1D. 1, 5答案:A2. 在直角三角形ABC 中,∠B = 90°,且边长满足a^2 + b^2 = c^2。

如果a = 5,c = 13,那么边b 的长是:A. 12B. 8C. 10D. 15答案:C3. 设函数f(x) = 2x - 3,那么f(5) 的值是:A. -8B. 2C. 7D. 13答案:74. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A - B = ?A. {2, 3}B. {1}C. {1, 2, 3, 4}D. 空集答案:{1}5. 解不等式2x - 5 < 3x + 2,得到的解集是:A. x < -7B. x > -7C. x < 7D. x > 7答案:A填空题:1. 若a^2 + b^2 = 25,且a > 0, b < 0,那么a 和b的符号分别是_______。

答案:a为正,b为负2. 解方程3x - 4 = 14,得到的解是_______。

答案:x = 63. 已知函数f(x) = x^3 + 2x^2 - 3x + 1,那么f(-1) = _______。

答案:-14. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B 的个数是_______。

答案:25. 在平面直角坐标系中,点P(3, 4) 的横坐标是_______。

答案:3应用题:1. 甲乙两人共有80元,如果甲比乙少20元,那么乙有多少元?答案:乙有60元2. 车从A 地到B 地需要6小时,车速为50千米/小时;往返B 地又需要4小时,返回的车速为60千米/小时。

求A 地和B 地的距离。

答案:A和B地的距离为300千米3. 某电器商店购进一种电器,进价为500元,商店出售时要求获利20%,那么出售价格是多少?答案:出售价格为600元4. 一袋小米重3千克,一袋大米重5千克,已知小米和大米总重25千克,袋数比为3:2,问小米和大米各有几袋?答案:小米有9袋,大米有6袋5. 某学生参加一次考试,满分为100分,他得了x分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章压轴题秒杀很多朋友留言说想掌握秒杀的最后一层。

关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。

压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。

不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。

那种思想,在群里面我也说过,在这里就不多啰嗦了。

想领悟、把握压轴题的思路,给大家推荐几道题目。

全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。

08全国一,08全国二,07江西,08山东,07全国一一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。

都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。

记住,压轴题是出题人在微笑着和你对话。

具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。

不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。

尤其推荐我押题的第一道数列解答题。

)2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考)3:数学归纳法、不等式缩放基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。

开始解答题了哦,先来一道最简单的。

貌似北京的大多挺简单的。

这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。

意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。

(22)(本小题满分14分)设函数f(x)=x2+b ln(x+1),其中b≠0.(Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln( )都成立.这道题我觉得重点在于前两问,最后一问..有点鸡肋了~这道题,太明显了对吧?看压轴问的形式,想想我之前关于压轴题思路的讲解,看出来么?第三问其实就是直接利用第一问和第二问的结论,很明显的令1/n 为x 这道题就出来了。

这也证明了我之前对压轴题的评述吧。

当然这只是例子之一了,绝大多数压轴题都是这样的。

下面,下面,下面,重点来了。

大家是否眼熟这个不等式呢? ln X<= X--1 你可以利用导数去证明这个不等式的正确性,但我想说的是,这个小小的不等式,太有用了。

什么用?将一个对数形式的函数转化为一个X--1 这样简单的线性函数,多么漂亮的一个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道题。

这也是一种很重要而且经典的缩放!不信的话大家去看07--10年的全国各地高考题,看看有多少省用到了这个不等式的!而下面这道我认为导数解答题中特经典的一道的简单解法,就是用了这个不等式!再次强调:压轴题中,见到对数函数式的不等式证明,第一个要想的是这个不等式!再举几个例子:1.一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等差数列的公差等于__解:这个题真算的话有点难度也挺麻烦但考试的时候完全可以秒杀直接特殊化为等边三角形答案就出来了等边三角形满足题意么?满足,只要不违背题意条件随你加,随你加强所以公差为0几秒钟一道很难的题这就是秒杀的目的所在这个题条件很强,既有角的限制又有边的限制,就说明答案唯一可是,那是考试现场时的秒杀。

对一道能秒杀的题,不仅要秒杀,还要真正做出来才算详解:假设A<=B<=CA+C=2B b平方=ac用正弦定理得出COS(A-C)=1也可用余弦定理求出ABC。

第六章再说秒杀和压轴题以下为视频讲解内容:秒杀也分几类:最常用的一般是特殊性(有些人理解的特殊值,其实特殊值也是特殊化的一种罢了,还有其实技巧不在这里,而在于这个特殊值你如何取,取得好,那叫艺术,取得不好.......嗯!)第一题:A[N]是任意等比数列,它的前n项和,前2n项和,前3n项和分别是x,y,z,则下列等式恒成立的是1.X+Y=2Y2.Y(Y-X)=Z(Z-X)3.Y平方=XZ4.Y(Y-X)=X(Z-X)如何秒杀呢,很明显,取特殊值,如何取呢?以前说过,见到A[N]是任意等比数列的等等或者说见到任意两字的,往往就是我们发挥的地方。

我们令A[N]=1,呵呵,很特殊了吧,还不止,我们这里再令N=1,这样题目变成什么了呢?我翻译一下:已知A[N]是任意等比数列,它的前1项和x,前2项和Y,前3项和是z,则下列等式恒成立的是?你猜,呵呵,这样直接可以排除2,3了,那么1,4呢?我们假设A[1]=1,A[2]=2,A[3]=4,这样符合题意吧?很明显1不正确,4任然正确,答案是4第二题:如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则的值为.向量如何秒杀呢,其实就只说向量,也有两三钟秒杀的方法,我觉得好用的就是特殊化+坐标化!!呵呵,就是把三角形特殊化为等腰直角三角形,这意思也是任意三角形吧,按照题意,我们画出MN的直线,若,,根据上面的两个公式,可以求出,大家记得吗---是直线的截距式(不记得的都面壁去吧,这可是基础)根据截距式我们得出MN的直线方程为MX+NY=1,我们还有个条件没有用,直线MN过中点,明显BC中点为(1/2,1/2),对吧,带入得M+N=2这个是07年江西的一道高考题,常规方法要比这个麻烦的多,而且可能大部分同学还不会做,而换成秒杀的—就是最基本的加减运算啦!!其实秒杀呢,每张卷子都能用到的是那种集合,求范围等等的题目,就不举例子了!!还有就是三角函数,解析几何(这个主要是取特殊位置的直线),至于三角函数,也分好多种吧,比如,题目让你求一个三角函数表达式的值,而且是道选择题。

比如哦:tanA*tanB+conA*sinB等等的算式吧,然后选择项里面都是常数,也就是和AB无关,那么很明显,不管AB取什么,结果都一样,这时候,我们就可以随便给AB值,就可以得出最后结果,这样的题我见过不少!!上面说的都是一些简单但很常用的,难一点的应该算是变换,或者用到复指数等,比如函数旋转等等,就可以利用复向量的旋转特性去解决,哦,对了,还有一种很常用的,我随便出题:X平方+Y平方=1,求X+Y的取值范围常规的方法肯定是画图等等,或者消元了呗,但我们可以用三角函数去做,X平方+Y平方=1,令X=COSA,Y=SINA,也就是求conA+sinA的范围,明显是正负根2,是吧?一眼就看出来了,当然,一般题目不会这么简单,比如:3X平方+4Y平方=1,求X,Y取值范围,,这时候画图就不好使了哦,因为不是园,但三角函数依然可以,我们令3X平方=conA平方,4Y平方=sinA平方,然后是不是和上面一样了呢!!好了秒杀就这样吧!压轴题下面这道是我高考的压轴题,是道椭圆的题,不算难。

大家应该知道,压轴题一般会在数列不等式,解析几何两者之间选一道,数列的也想整一道例题,可时间有限,就算了。

下面是09年的山东理科数学压轴题:第一问:送分第二问:,呵呵,我还记得在考场上,我看到时就笑了,高考题考来考去也就是这些基本的不变的东西。

这个代表什么呢?这个是题眼,其实我们都很清楚。

OA*OB=0(向量点乘),其实看到这里,后面的不用想也能再脑中出来一推东西,我大概说下:首先OA*OB=0,所以X1X2+Y1Y2=0明显韦达定理要用了,然后要连立直线了,比如设直线AB为:Y=KX+M (设出来这个直线的时候,脑子里面应该本能的想到一个词“分类”,就是K不存在的情况,一定要分类,给大家说,只要能分类的,一定要分类,因为每一个分类就有一定的分,我们的目的就是拿分!!)然后可以得出K和M的一个等式,(有一个式子,那肯定能根据题目其它的一个条件得出另外一个式子,这两个式子联立,一般就可以做出来了)哦,这个说明下,这是看到OA*OB=0后出来的一推东西,后面的还没看呢,继续看,呵呵出来了,切线,我们都知道,根据切线,肯定能得出一个等式,这样题目思路就清晰了!上面这些,大家是不是都能熟练的背下来呢,其实这道题难得不是这些,难在你是不是明白题意。

还有对圆锥曲线问题,大家心里一定一定要坚定一个信念----那就是直线和曲线联立!!这句话很重要,只有你能找到直线和曲线联立(一定要找对哦,比如说这道题,你总不能OA和椭圆联立吧?!只有你能想到用AB去联立,那么后面的一直到韦达定理,一般就可以得8分了。

大家可能会想,谁都知道用AB联立,可是到了高考那样的氛围,你还能像平时一样大脑清醒吗?而且万一不是一条直线呢等等的情况,你真不一定找到)题目还要:并求|AB |的取值范围,若不存在说明理由玄长公式,对吧,因为知道了K和M 的关系,所以玄长公式里面只有一个K ,而K又有一定的范围,所以再结合不等式的知识,可以求出范围,当然还要考虑K不存在的情况,不然又要扣分!啰嗦了这么多,想告诉大家的:其实就是一定要有思路。

思路哪里来的?是不是从OA*OB=0这里展开一系列的想法呢?可以说,思路就是一个题眼,得出一个总体框架,然后在实际做题中把各个细节填满,问题在于,你如何知道哪里是题眼?就是知道,你如何正确处理?嗯,问到点子上了,我记得我高二高三的时候,每做一道很典型的题,我都会把这道题想的很透很透,然后,闲暇时,脑子里想的就是最近做过的和新学得知识,时间上了,基本上见些东西,就能本能的搜索到相应的应对方法。

大家可能会问,高考题是会变的,而且数学又是一门很灵活的东西,随便一点变化,都可以出来很多很多的题目。

其实高考是在变,而且变的很灵活。

但是高考中更多的是不变,所谓不变就是知识点不变,考点不变(相对来说吧),以及更重要的是难题的入手点不变!!或者就是说题眼不变,最多就是变个说法!!就拿OA*OB=0来说,可以衍生出很多不同的说法,比如中点,角分线等等,还有比如向量AF=3FB向量,这个也是大题中常见的。

这样的如何出处理?,带入坐标,会得到两个式子,这两个式子中的一个比较简单比如:X2=3X1,还有一个关于Y 的,如何用,任何时候,都只用其中一个,你如果两个都用,那你就...用哪个呢?很显然啊,用X2=3X1,这个对吧,因为这个简单。

然后再如何做呢?这个可以用韦达定理了吗?其实可以,只要对这个式子做几次变化,就可以用韦达定理了,从而又要联立直线。

或者你可以联立后,解除X1,X2,然后带入X2=3X1,一样可以得到一个等式。

相关文档
最新文档