R语言学习系列27-方差分析讲课教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R语言学习系列27-

方差分析

22. 方差分析

一、方差分析原理

1. 方差分析概述

方差分析可用来研究多个分组的均值有无差异,其中分组是按影响因素的不同水平值组合进行划分的。

方差分析是对总变异进行分析。看总变异是由哪些部分组成的,这些部分间的关系如何。

方差分析,是用来检验两个或两个以上均值间差别显著性(影响观察结果的因素:原因变量(列变量)的个数大于2,或分组变量(行变量)的个数大于1)。一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。

方差分析可用于:

(1)完全随机设计(单因素)、随机区组设计(双因素)、析因设计、拉丁方设计和正交设计等资料;

(2)可对两因素间交互作用差异进行显著性检验;

(3)进行方差齐性检验。

要比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方(Mean Square)。

2. 基本思想

基本思想是,将所有测量值上的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。

根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方

除以各自的自由度得出各部分的均方,然后列出方差分析表算出F检验值,作

出统计推断。

方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就

越明确,对各种效应的作用就越了解,统计推断就越准确。

效应项与试验设计或统计分析的目的有关,一般有:主效应(包括各种因素),交互影响项(因素间的多级交互影响),协变量(来自回归的变异项),等等。

当分析和确定了各个效应项S后,根据原始观察资料可计算出各个离均差平方和SS,再根据相应的自由度df,由公式MS=SS/df,求出均方MS,最后由相应的均方,求出各个变异项的F值,F值实际上是两个均方之比值,通常情况下,分母的均方是误差项的均方。

根据F值的分子、分母均方的自由度f1和f2,在确定显著性水平为α情况下,由F(f1, f2)临界值表查得单侧Fα界限值。当F

P值>α,不拒绝原假设H0,说明不拒绝这个效应项的效应为0的原假设,也即这个效应项是可能对总变异没有实质影响的;若F>Fα则P 值≤α,拒绝原假设H0,也即这个效应项是很可能对总变异有实质影响的。

3.方差分析的实验设计

为了确定方差分析表中各个有关效应项,需要在试验设计阶段就作出安排,再根据设计要求进行试验,得出原始观察值,按原来设计方案算出方差分析表中的各项。

在试验设计阶段通常需要考虑如下4个方面:

(1)研究的因变量

即试验所要观察的主要指标,一次试验时可以有多个观察指标,方差分析时也可以同时对多个因变量进行分析;

(2)因素和水平

试验的因素(factor)可以是品种、人员、方法、时间、地区等等,因素所处的状态叫水平(level)。在每一个因素下面可以分成若干水平。

(3)因素间的交互影响

多因素的试验设计,有时需要分析因素间的交互影响(interaction),2个因素间的交互影响称为一级交互影响(A×B);3个因素间的交互影响称为二级交互影响(A×B×C)。

当交互影响项呈现统计不显著时,表明各个因素独立,当呈现统计显著时,就需要列出这个交互影响项的效应,以助于作出正确的统

计推断。

举例解释上述概念:要考察焦虑症的治疗疗效,一个因素是治疗方案,有2种治疗方案,即该因素有2个水平;(治疗方案称为组间因子,因为每个患者只能被分配到一个组别中,没有患者同时接受两种治疗);再考虑一个因素治疗时间,也有两个水平:治疗5周和治疗6个月,同一患者在5周和6个月不止一次地被测量(两次),称为重复测量(治疗时间称为组内因子,因为每个患者在所有水平下都进行了测量)。

建立方差分析模型时,既要考虑两个因素治疗方案和治疗时间(主效应),又要考虑治疗方案和时间的交互影响(交互效应),此时即两因素混合模型方差分析。

当某个因素的各个水平下的因变量的均值呈现统计显著性差异时,必要时可作两两水平间的比较,称为均值间的两两比较。

二、R语言实现

方差分析对数据的要求:满足正态性(来自同一正态总体)和方差齐性(各组方差相等),在这两个条件下,若各组有差异,则只可能是来自影响因

素的不同水平。

用aov()函数进行方差分析,基本格式为:

aov(formula, data=NULL, projections=FALSE, qr=TRUE,

contrasts=NULL, ...)

其中,formula为方差分析公式;

data为数据框;

projection设置是否返回预测结果;

qr设置是否返回QR分解结果;

contrasts为公式中一些因子的列表。

formula公式的表示:(y为因变量,ABC为分组因子)

常见研究设计的表达式:(小写字母表示定量变量,大写字母表示组别因子,Subject是对被试者独有的标识变量)

注意:非均衡设计时或存在协变量时,效应项的顺序对结果影响较大,越基础的效应越需要放在表达式前面,首先是协变量、然后是主效应、接着是双因素的交互项,再接着是三因素的交互项。若研究不是正交的,一定要谨慎设置效应的顺序。

有三种类型的方法可以分解y~A+B+A:B右边各效应对y所解释的方差:类型I(序贯型)

效应根据表达式中先出现的效应做调整。A不做调整,B根据A调整,A:B交互项根据A和B调整。

类型II(分层型)

效应根据同水平或低水平的效应做调整。A根据B调整,B依据A调整,A:B交互项同时根据A和B调整。

类型III(边界型)

每个效应根据模型其他各效应做相应调整。A根据B和A:B做调整,A:B 交互项根据A和B调整。

R默认调用类型I方法,其他软件(比如SAS和SPSS)默认调用类型III 方法。car包中的Anova()函数(不要与标准anova()函数混淆)提供了使用类型II或类型III方法的选项,而aov()函数使用的是类型I方法。若想使结果与其他软件(如SAS和SPSS)提供的结果保持一致,可以使用Anova()函数。

三、单因素方差分析

1个因变量,1个影响因素:

总差异Y ij = 平均差异μ + 因素差异αi + 随机差异εij

相关文档
最新文档