1.1探索勾股定理(第一课时)教学设计

合集下载

北师大版八年级数学上册1.1《探索勾股定理》课件

北师大版八年级数学上册1.1《探索勾股定理》课件

c=

2.在△ABC中,∠C=90°,若c=13,ቤተ መጻሕፍቲ ባይዱ=12,则
a=

3.若直角三角形中,有两边长是3和4,则第三
边长的平方为( )
A 25 B 14 C 7 D 7或25
二、提高训练
4.一个长为10 m为梯子斜靠在墙上,梯子的顶端距
地面的垂直高度为8m,梯子的顶端下滑2 m后,底端
滑动
m.
5.已知Rt△ABC中,∠C=90°,若 a+b=14cm, c=10cm,则Rt△ABC的面积为( )
视察这三 个正方形
你发现图中三个正方形的面积之间 存在什么关系吗?
换个角度来看呢?
你发现了什么?
结论1 以等腰直角三角形两直角边为边长 的小正方形的面积的和,等于以斜边为边长的正 方形的面积.
分小组动手操作实践
用四张全等的等腰直角三角形纸片,拼成一个 正方形。(不能重叠,不能有间隙)
∵c2= 4×12 a2 ∴c2=2a2
(1)如果三角形的三边长分别为a,b,c,则 a2+b2=c2
( ×)
(2)如果直角三角形的三边长分别为a,b,c,则a2+b2=c2
( ×)
( 3) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 a+b=c
( ×)
(4) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 b2=c2-a2
2002年国际数 学家大会会标 ——弦图.
四、课堂小结 定理内容
重要的 思想方 法及数 学思想
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界.

八年级数学上册《探索勾股定理》教案、教学设计

八年级数学上册《探索勾股定理》教案、教学设计
-设计具有挑战性的延伸性问题,激发学生的探究欲望,为下一节课的学习打下基础。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。

第一课时勾股定理优秀教学案例

第一课时勾股定理优秀教学案例
(五)作业小结
1.布置巩固性作业:让学生运用勾股定理解决实际问题,如计算房屋建筑中的长度、设计直角三角形图案等。检查学生对勾股定理的理解和应用能力。
2.布置拓展性作业:让学生探索其他数学定理或公式,如平方根、立方根等。培养学生的探索精神和创新能力。
3.鼓励学生进行自我评价,反思自己在学习过程中的优点和不足。指导学生制定改进措施,提高学习效果。
此外,我还注重课堂评价的多元化,充分关注学生的个体差异,给予他们积极的评价和鼓励,使他们在课堂上充满自信,更好地投入到学习过程中。整个教学过程既注重知识的传授,又重视学生的全面发展,体现了新课程改革的理念和要求。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的内容,理解直角三角形三边之间的关系,能够运用勾股定理解决实际问题。
(一)导入新课
1.故事导入:讲述毕达哥拉斯如何通过观察木匠修鞋匠的鞋子长度比例,发现了勾股定理。引导学生关注古代数学家的伟大发现,激发学生学习兴趣。
2.实物模型导入:展示古代的勾股定理证明雕塑,让学生直观地感受数学与艺术的完美结合。引发学生对勾股定理的好奇心,激发他们的探究欲望。
3.现实生活实例导入:分析房屋建筑、自行车轮胎等实例,让学生感受到勾股定理在实际应用中的重要性,引发学生思考。
2.鼓励学生提出问题,培养他们的问题意识和批判性思维。例如,在教学过程中,让学生大胆质疑,挑战古代数学家的证明方法。
3.创设循序渐进的问题序列,引导学生逐步深入探究勾股定理。例如,从简单的情形开始,让学生观察、实验、猜测,逐步引导学生得出勾股定理的结论。
(三)小组合作
1.组织学生进行小组讨论,培养他们的团队协作能力和沟通能力。例如,在探究勾股定理的过程中,让学生分组讨论,相互启发,共同解决问题。

1.1勾股定理 一等奖创新教学设计

1.1勾股定理 一等奖创新教学设计

1.1勾股定理一等奖创新教学设计《17.1 勾股定理》第一课时教学设计教学内容:人教版八年级数学下册《17.1 勾股定理》第1课时.教材分析:勾股定理是学生在掌握了直角三角形有关性质的基础上进行学习的,在学习中起到承上启下的作用。

勾股定理是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系,可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。

勾股定理的探索和证明蕴含着丰富的数学思想和科学方法,是培养学生良好思想品质的载体,它在数学的发展过程中起着重要的作用,勾股定理是数与形结合的优美典范。

学情分析:从学生的身心发展特点以及认知水平来看,八年级的学生逻辑思维还是比较薄弱的,但是他们已经具备一定的观察、归纳、探索和推理的能力。

因此本节课需要通过形象直观的图形去感受发现新知识。

在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补法解决问题的意识和能力还远远不够,因此我采用直观教具、学具,多媒体演示等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

教学目标分析:初中数学课程标准中对勾股定理部分提出如下要求:在研究图形性质和运动等过程中,进一步发展空间观念在多种形式的数学活动中,发展合情推理能力经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

依据对课标、教材及学生的认知特点,确定本节课的教学目标如下:知识与技能目标:了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。

过程与方法目标:在勾股定理的探索过程中,发展合情推理能力,体会数学思维的严谨性数形结合的数学思想,发展形象思维。

同时,在探究活动中感受解决问题方法的多样性。

情感态度与价值观目标:通过对勾股定理发展历史的了解,尤其是对中国古代数学家对勾股定理的研究,使学生感受数学文化的魅力,激发学生的民族自豪感和学习热情。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

《探索勾股定理》第一课时说课稿 -参考教案

《探索勾股定理》第一课时说课稿 -参考教案

《探索勾股定理》第一课时说课稿 |参考教案《探索勾股定理》第一课时说课稿课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

八年级数学上册 探索勾股定理(第一课时)教案 北师大版

八年级数学上册 探索勾股定理(第一课时)教案  北师大版

探索勾股定理教学设计第(一)课时教学设计思想:本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的.教学目标:(一)知识与技能1.体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理.2.会利用勾股定理解释生活中的简单现象.(二)过程与方法1.在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想.2.在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力.(三)情感、态度与价值观1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气.教学重点探索和验证勾股定理.教学难点在方格纸上通过计算面积的方法探索勾股定理.教学方法交流—探索—猜想.在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系.教具准备学生每人课前准备若干张方格纸、投影片教学安排3课时.教学过程Ⅰ.创设问题情境,引入新课[师]上面三个小问题是我们以前讨论过的,我们简单的回忆一下.[生](1)三角形按角的大小来分类可分为:直角三角形、锐角三角形、钝角三角形;(2)对于一般三角形来说,我们可以用SAS(边角边)、ASA(角边角)、AAS(角角边)、SSS(边边边)来判断两个三角形全等;而对于直角三角形来说,除以上四种方法外,还可以用HL(即有斜边和一条直角边对应相等的两个直角三角形全等).(3)两个直角三角形,有两边对应相等,有两种情况:第一种情况:两条直角边对应相等,这时,我们可注意到它们的夹角也对应相等,利用SAS可判断它们全等.第二种情况:一条直角边和斜边对应相等,利用HL公理即可判断它们全等.综上所述,两个直角三角形,如果有两边对应相等,则这两个直角三角形全等.[师]我们可以注意到直角三角形有它独有的一些特征.在我们学习和生活中,你是否还发现直角三角形的其他特征呢?这节课,我们就来继续研究直角三角形.Ⅱ.讲述新课1.问题串[师](1)观察图1.正方形A中含有_________个小方格,即A的面积是_________个单位面积;正方形B中含有_________个小方格,即B的面积是_________个单位面积;正方形C中含有_________个小方格,即C的面积是_________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)请将上述结果填入下表,你能发现正方形A,B,C的面积关系吗?A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1图2图3[生]在图1中,正方形A含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B的面积也是1个单位面积;正方形C含2个小方格,所以C的面积是2个单位面积.[师]如何求得正方形C的面积呢?[生]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积.[生]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,值得发扬广大,那么图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请与你的同学们讨论、交流。

勾股定理—教学设计及点评

勾股定理—教学设计及点评

义务教育课程标准实验教科书北师大版八年级上册第一章第一节探索勾股定理(第一课时)重庆市珊瑚初级中学校程小娟一、教学内容解析1. 内容探索勾股定理(第一课时)2. 内容解析勾股定理是学生在已经掌握了直角三角形有关角的性质基础上进行学习的,它从边的角度进一步揭示直角三角形三边之间存在的数量关系,是解决直角三角形问题的依据之一.在数学发展史上,东西方很早就展开了对勾股定理的研究,产生了各种各样证明勾股定理的方法,并由此导出了无理数的概念,引发了数学史上的第一次数学危机.因此,勾股定理具有丰富的文化内涵,学习勾股定理可以引发学生对数学文化、数学历史的思考.同时,勾股定理的发现、验证中,蕴含着发展学生探究能力不可多得的思维材料.本节课是义务教育课程标准实验教科书北师大版八年级上册第一章《勾股定理》第一节第一课时.教材在编写时重视对学生动手操作能力和观察分析问题能力的培养,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过练习比较、推理论证,表征方式的转换,理解勾股定理。

本节是已学习直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.二、教学目标与目标解析1.学习目标(1)经历用方格子计算面积的办法探索勾股定理以及利用图形面积验证勾股定理的过程,渗透“特殊到一般”、“数形结合”的数学思想,培养学生分析问题和解决问题的能力,提升学生几何直观的数学素养.(2)能准确利用文字语言、几何图形语言、字母符号语言表述勾股定理,会初步运用勾股定理进行简单的计算和解释生活中的简单现象.(3)利用古代中外勾股定理的发现故事,感受数学文化,热爱我国悠久文化的同时,学习多元文化,了解不同民族为人类的发展所做的贡献.2.目标解析勾股定理作为平面几何有关度量的最基本定理,既是对直角三角形的进一步探究,又是后续学习三角函数、四边形和圆,以及平面解析几何中两点间距离公式等的基础,它具有承上启下的作用.因此能准确地表述勾股定理,并能运用勾股定理进行简单的计算.本课是本章的第一课时,学习内容主要是探索勾股定理而不是证明,因此需要学生通过“观察——操作——猜想——验证”的过程,在此过程中自然发展发现问题、提出问题、分析问题、解决问题的能力.体会从特殊到一般、数形结合的思想,以及对勾股定理历史的认识.三、学生学情分析我任教的学校是重庆市首批示范初中,所教学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积的割补法解决问题的意识和能力还有待提高.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.综合以上分析,确定了如下的教学重点和教学难点.教学重点:探索和验证勾股定理.教学难点:在方格纸上利用割补法计算面积探索勾股定理.四、教学策略分析本节课中采用启发式教学方法,小组讨论式合作学习方法,合理地使用多媒体和教具分解学生学习的难度.学生遇到的第一个难点可能是在方格纸中,求利用一般直角三角形斜边构造的正方形的面积.解决这个难点的策略是设置问题台阶,先通过求等腰直角三角形斜边构造的正方形面积时,启发学生用多种方法:数格子和拼图;再通过小组合作研究“割”、“补”的方式;最后在交流展示时,利用喷绘纸描出“割”、“补”后的所求的正方形的面积,同时将面积的表示方法展示在黑板上帮助学生理解.第二个难点可能是在直角边是小数的情况下探究勾股定理.解决这个难点的策略是引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,坐标纸中完成画图,能帮助学生有效完成探究.同时,利用板书和课件能生动、有效地帮助学生有条理开展探究活动和梳理本节课的主要学习内容,板书与课件随着学生的思维同步展开.五、教学过程设计(一)引入1.幻灯片展示2002年国际数学大会的会标:会标中四个直角三角形中的三边存在怎样的数量关系?《周髀算经》中谈到“勾三股四弦五”(画出图形),为什么两直角边分别是3和4,斜边一定是5?【设计意图】看到会标,部分学生会想到“勾三股四弦五”.这样以学生的认知为基础引入,激发学习兴趣的同时,自然向学生渗透与勾股定理有关的历史文化,增强民族自豪感.根据教材的介绍,此时,老师可直接告诉学生:事实上,古人发现,直角三角形三条边长度的平方存在一种特殊的关系.为活动1为什么要计算直角三角形的三边平方作铺垫.2.引出课题《探索勾股定理》——研究直角三角形三边关系.简单介绍本章内容:探索并证明勾股定理及其逆定理,并运用这两个定理去解决有关问题,以此加深对直角三角形的认识.【设计意图】本节是勾股定理的章起始课,应该让学生简单了解本章的学习内容和学习目标,明确探索和学习勾股定理的必要性.(二)探究活动1:(1)请在方格纸上任意画一个直角三角形;(2)用直尺测量....它们的三条边长度;(3)计算三边长度的平方;(4)探究三边长度的平方有什么数量关系.师生活动:学生先自己操作,然后老师展示几何画板度量,得到基本的猜想.问:通过计算,你画的直角三角形三边长度的平方有什么数量关系?【设计意图】有学生会猜想到直角三角形三边平方的关系.要验证猜想结果的正确性,需要我们动手操作验证.自然想到画一个直角三角形,通过度量、计算边长的平方,初步获得结论.(因为度量存在一定的误差)我再通过几何画板出示一组直角三角形,让学生进一步观察与猜想.再让学生回忆小学知识:正方形的面积等于边长的平方,因此直角三角形三边的平方结果可以借用正方形的面积来表示,利用几何直观,我们将计算边长的平方转化为计算正方形的面积.学生在方格纸中计算正方形的面积,是有一定基础的.这样既避免了由测量带来的误差,也拓展了计算面积的方法,自然引出活动2.活动2:(1)观察图1-1,正方形A中含有个小方格,即A的面积是个单位面积;正方形B的面积是个单位面积,正方形C的面积是个单位面积.师生活动:学生口答图1-1、图1-2的面积,发现A,B,C面积之间的关系,并回答C 的面积是如何计算得到的.问:A、B、C面积之间的关系能不能分别用中间那个直角三角形的边长表示?【设计意图】等腰直角三角形比较特殊,从“形”上来看,体现探究的过程是一个从特殊到一般的过程,自然引出下一个活动:一般直角三角形的探究.而C的面积,学生有多种算法,本例比较特殊,用凑整的方法较为简单.但学生用补成正方形或是分割成三角形的计算方法,应该要给予展示和鼓励,从而为图1-3和图1-4中C面积的计算方法做铺垫.此时,可介绍古希腊著名数学家毕达哥拉斯从用地砖铺成的地面中发现了等腰直角三角形的某种特性.在西方,勾股定理也称为毕达哥拉斯定理,为纪念毕达哥拉斯学派,1955年,希腊曾发行了一枚邮票.在探究中自然介绍与勾股定理有关的西方文化知识.(2)观察图1-3,图1-4,并填写下表:小组活动:4人小组,两人探究图1-3,两人探究图1-4,主要展示C 面积的算法方法总结:方法一(割):分割为四个直角三角形和一个小正方形.方法二(补):补成大正方形,用大正方形的面积减去四个直角三角形的面积.问:直角三角形周边的三个正方形的面积与中间那个直角三角形三边的关系.师生活动:本活动中,学生的难点是如何通过割补法求C 的面积.因此教学过程中安排了小组活动.课堂中,黑板上会贴上图1-3,图1-4这两个基本图形的喷绘纸,学生用记号笔标记如何用割补法求C 的面积.此时,教师引导学生观察国际数学大会的会标就是方法1中的图,并进一步说明,此图是中国古代数学家赵爽首先绘制的,我们称此图为“勾股圆方图”,赵爽用数形结合的方法,给出了勾股定理的详细证明,比西方国家早了1000多年,下节课我们将来具体研究.【设计意图】对一般直角三角形的探究进一步说明结论的正确性,体现从特殊到一般的数学思想.从毕达哥拉斯发现勾股定理,到引出赵爽弦图,再一次让学生了解勾股定理悠久的历史文化,了解不同民族为人类的发展所做的贡献,渗透爱国主义教育,并为下一课时用“面积法”证明勾股定理奠定基础.活动3:如果直角三角形的两直角边分别为0.4个单位长度和0.6个单位长度,上面猜想的数量关系还成立吗?【设计意图】活动2中,直角三角形的直角边都是整数,为了进一步体现结论的一般性,本活动设计了直角边是小数的情况,从“数”验证结论的一般性.直角边是小数的情况,学生可能会比较困难,此时,引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,并在方格纸中完成画图,能帮助学生有效完成探究.活动4:如图,请回答A,B,C面积之间的关系【设计意图】活动2和活动3中,直角三角形的直角边都是有理数,为了进一步体现结论的一般性,本活动设计了直角三角形三边都是无理数的情况.从教材的安排来看,实数是在勾股定理学习之后呈现的,因此在教学中学生对本图了解即可,这也是无理数发现的过程.再回到活动1中几何画板的展示,拖动直角三角形的顶点,进一步让学生了解在任意边长的情况下,直角边的平方和仍然等于斜边的平方.从等腰直角三角形到一般直角三角形,从直角边是整数到小数再到无理数,活动中体现了基于数学核心素养“直观想象”的教学理念.同时,在本活动中完善了探究方法:观察——操作——猜想——验证.通过活动2、3、4,得到如下结论:结论:S A +S B=S c222a b c += 隐去直角三角形周边的正方形,得到勾股定理:☆勾股定理:如果 的两直角边分别为a 和b ,斜边为c ,那么 . 几何语言:∵ ,∴ .归纳总结勾股定理过程: (1)结合探索过程,学生用自己的语言叙述,直角三角形的两条直角边与斜边的关系;(2)阅读教材,勾画关键词;(3)结合图形,用数学符号表示勾股定理.(三)应用跟踪练习:教材第3页随堂练习第1题(口答)【例1】(1)求下列直角三角形的边长.(2)在Rt △ABC 中,∠A =90°,AB =3,54BC AC =,求AC 的长.【设计意图】本例是勾股定理的简单运用.通过讲解,一是老师示范解答过程;二是让学生知道:在直角三角形中,如果知道两条边的长,可用勾股定理求出第三边长.【变式】在Rt △ABC 中,∠C =90°,BC =4,AB+AC =8,求AC 的长.B C A c ba 86B C A B C A B【设计意图】利用勾股定理建立方程求边长是常见的方法.【例2】理解“勾三股四弦五”老师展示肢体语言,同时让学生跟着一起做。

1.1探索勾股定理 第1课时 教案

1.1探索勾股定理 第1课时 教案

手段
采用讲授法,自主学习法,同时用实物与教具,PPT等相结合。
使用
教材

构想








第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
图1图2图3
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, .
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, .
7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,
若AB=8cm,BC=10cm,求EC的长.




(一)设计理念
依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.
课题
1.1探索勾股定理
课型
班级授课
第几
课时
第一课时
授课
时间
教具学具
投影仪



学目Leabharlann 标【知识与能力】1.经历用测量法和数格子的方法探索勾股定理的过程,发展合情推理能力,体会数形结合的思想.

《探索勾股定理》教学设计

《探索勾股定理》教学设计

《探索勾股定理》教学设计竞存中学数学组甄伟伟【教学内容】北师大版八年级数学上册第一章第一节《探索勾股定理》第一课时【教材分析】本节课的主要内容是勾股定理的探索及简单应用,勾股定理是几何中的重要定理之一,揭示的是直角三角形的三边关系,通过探索勾股定理的过程可以加深对直角三角形的认识和理解,很大程度上影响后续课时的学习。

【学情分析】八年级学生已经具备了一定的生活经验和动手实践能力,并且对直角三角形的概念有了初步的认识,因而能够在教师的引导下,通过操作、观察、猜想、验证的过程,掌握勾股定理,并加以应用。

【教学目标】一、知识与技能目标通过测量数格子的方法探索勾股定理,掌握勾股定理,并能简单运用。

二、过程与方法目标通过操作、观察、猜想、发现勾股定理的过程,发展学生的合情推理和归纳概括能力,渗透数形结合的思想。

三、情感、态度与价值观目标经历积极交流讨论,探索勾股定理的数学活动过程,发展学生的合作意识,把实际问题转化为数学问题,让学生感受到数学就在日常生活中。

【教学重点】勾股定理的探索和理解。

【教学难点】在探索勾股定理的过程中如何计算具体图形的面积,以及勾股定理的简单运用。

【课时划分】本课共两课时,本设计为第一课时【教学过程】一、板书课题二、出示学习目标三、出示自学指导:认真看课本1--2页内容,注意;1.任意画两个直角三角形,通过测量发现三边的平方存在怎样的关系.2.数图1-2和图1-3中的格子数(即面积)发现具有什么关系.3.熟记勾股定理的内容.(六分钟后检测)四、学生自学,教师巡视。

五、检测与指导问题一:在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?(学生展示)师:基于测量值的计算,肯定有些误差,因此,我们需借助格子图进一步验证。

问题二:出示图1-2,你能发现下面图中分别以直角三角形的三边长为边所做的正方形面积之间有怎样的关系。

(兵教兵,学生展示讲解)①直接数出正方形内部所包含的完整小方格的个数,而将不足一个方格的部分都算半个(结果也恰好相等,这时教师可以给予学生适当的鼓励,并进一步追问其中的道理,使得学生明确这个方法的缺陷,甚至使学生可能对这个方法进行完善,并得到方法②);②将不足一个方格的部分进行适当的拼凑,以拼凑出若干个完整的小方格;③将斜边上的正方形划分为若干个边长都是整数的直角三角形,再利用三角形面积公式得出其面积;④在斜边上的正方形的各边上补一个直角三角形,得到一个大的正方形。

《探索勾股定理》八年级(上)

《探索勾股定理》八年级(上)

1.1探索勾股定理(一)教学设计李兴林铁厂中学八年级 2013年11月11日一、教材分析本节课所学内容是北师大版八年级数学上册第一章第1节《探索勾股定理》第一课时。

勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。

本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。

此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

二、教学目标1、知识与技能目标:掌握勾股定理,并学会用符号表示;会初步运用勾股定理进行简单的计算和实际运用;进一步发展学生的动手操作能力和简单的推理能力。

2、过程与方法目标:让学生经历“观察—猜想—归纳—验证”的探索过程,领悟“数形结合”的思想方法,体验“从特殊到一般”的逻辑推理过程。

3、情感态度与价值观目标:在勾股定理的探索过程中中穿插勾股定理的数学史和数学故事,激发学生学数学、爱数学、做数学的情感;感受数学之美,探究之趣。

三、教学重点、难点1、重点:用面积法探索勾股定理,理解并掌握勾股定理。

2、难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。

四、教学方法以“学生主体,教师为主导”的自主探究、小组合作学习。

五、教学准备多媒体课件、三角板、导学案。

六、教学过程本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业。

(一)创设情境,引入新课:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

那勾股定理到底是一个什么样的定理呢?今天我们就来一同探索勾股定理。

(板书课题) (二)探索发现:1、等腰直角三角形观察图5,对于等腰直角三角形,将正方形A 、正方形B 和已计算的正方形C 的面积填入下表,它们的面积有什么关系?发现:正方形A 面积 + 正方形B 面积 = 正方形C 面积 问题:你是怎样得到的呢?(数格子) 2、一般直角三角形观察图6,对于一般直角三角形,正方形A 、正方形B 、正方形C 面积又有什么关系呢?发现:正方形A 面积 + 正方形B 面积 = 正方形C 面积 问题:你是怎样得到的呢?(分割法)3、正方形面积与直角三角形三边的关系(分组讨论,交流并发言)若我们设两条直角边长分别为a 、b ,斜边为c ,你能用三角形的边长来表示这三个正方形的面积吗?结论:由于 正方形A 面积 + 正方形B 面积 = 正方形C 面积,所以222c b a =+.即:两条直角边的平方和等于斜边的平方。

北师大版-数学-八年级上册-第一章第一节勾股定理 第一课时教案--

北师大版-数学-八年级上册-第一章第一节勾股定理 第一课时教案--

《八年级上第一章第一节勾股定理》教案第1课时 1.1勾股定理(1)【教学课型】:新课◆课程目标导航:【教学目标】:1. 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2. 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

【教学重点】:了解勾股定理的由来并能用它解决一些简单问题。

【教学难点】:勾股定理的发现【教学工具】:1.学生准备方格纸.2.多媒体课件,易折的小木棍◆教学情景导入王大妈家的天线杆在一次大风中被刮成了两节,成了如图所示的样子,(出示动画课件)rew天线杆高24米,在离地面9米处断裂,杆顶落地点离线杆底的距离在什么范围内?生:这是已知三角形的两边,求第三边范围,利用三角形三边关系可求出杆顶落地点离线杆底的距离在大于7米且小于24米之间。

师:好!如果线杆底部仍和地面垂直,顶部到底部的距离唯一吗?如何解决?(用小木棍演示三角形三边的变化过程。

)将这个图形抽象成数学图形,这是已知直角三角形两边求第三边的问题,这节课我们就来探索直角三角形三边有什么关系。

(板书课题)◆教学过程设计1.活动与探究[师](出示课件)观察右图,并回答问题:图中的三个正方形和直角三角形之间有什么关系?正方形的边长恰好是直角三角形的三边长。

[师]好!那这三个正方形的面积有无联系呢?我们先来看看方个格中的图形:bca(1)观察方格中的图1.正方形A 中含有_________个小方格,即A 的面积是_________; 正方形B 中含有_________个小方格,即B 的面积是_________ 正方形C 中含有_________个小方格,即C 的面积是_________.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?(与同伴交流.)A 的面积(单位面积)B 的面积(单位面积) C 的面积(单位面积) 图1 图2 图3([生1]在图1中,正方形A 含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B 的面积也是1个单位面积;正方形C 含2个小方格,所以C 的面积是2个单位面积.[师]如何求得正方形C 的面积呢?[生2]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积. [生3]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生4]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.)[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请小组讨论、交流。

人教版八年级勾股定理教学设计第一课时

人教版八年级勾股定理教学设计第一课时
-设计意图:通过基础练习,使学生熟练掌握勾股定理的基本运用,增强对定理的记忆和理解。
2.实践应用题:选择生活中一个直角三角形的实例,运用勾股定理计算其边长,并简述解题过程。
-设计意图:培养学生将数学知识应用于实际生活的能力,体会数学的实用价值。
3.思考提高题:结合勾股定理,探讨直角三角形其他相关性质,如相似三角形的判定、特殊角的三角函数值等。
3.布置课后作业:根据学生的学习情况,布置适量的课后作业,帮助学生巩固所学知识,提高解题能力。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学生对课堂所学知识的内化,特布置以下作业:
1.基础知识巩固题:完成教材第十五章第二节后的练习题,包括勾股定理的概念理解、定理的直接应用以及简单问题的解决。
针对以上学情,教师在教学过程中应关注学生的个体差异,因材施教,充分调动学生的学习兴趣,引导学生主动探究,提高学生的几何素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表述及其证明方法。
2.能够运用勾股定理解决实际问题,如计算直角三角形的边长、判断直角三角形等。
3.理解勾股定理在实际生活中的应用,提高学生的几何素养。
4.学会使用勾股定理进行简单的几何作图,如构造直角三角形、等腰直角三角形等。
5.能够运用勾股定理推导出其他相关定理,如相似三角形的性质、正弦、余弦函数的定义等。
(二)过程与方法
在教学过程中,教师应采用以下方法引导学生学习勾股定理:
1.创设情境,导入新课:通过介绍勾股定理的历史背景,激发学生的学习兴趣。
3.解释勾股定理的应用:通过讲解典型例题,让学生了解勾股定理在实际问题中的应用,如计算直角三角形的边长、判断直角三角形等。
(三)学生小组讨论,500字

北师大版八年级数学上册1.1探索勾股定理教学设计

北师大版八年级数学上册1.1探索勾股定理教学设计
4.学会运用勾股定理进行图形的拼接、分割与计算,提高空间想象能力和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等环节,引导学生自主发现勾股定理,培养其观察、分析、解决问题的能力。
2.采用小组合作、讨论交流等形式,让学生在合作中学习,提高沟通能力和团队协作精神。
3.运用数形结合、分类讨论等数学方法,培养学生的逻辑思维和解决问题的策略。
2.学生通过实际测量、计算,验证勾股定理的正确性。
3.教师给出勾股定理的数学表达式:a² + b² = c²,并解释其含义。
4.教师讲解勾股定理的证明过程,如欧几里得的证明方法、我国古代数学家的证明方法等。
讲授新知环节旨在让学生掌握勾股定理的基本概念,理解其数学表达和证明过程。
(三)学生小组讨论,500字
c.三边长分别为9cm、12cm、15cm。
2.提高题:
(1)已知直角三角形的斜边长度为13cm,一条直角边长为5cm,求另一条直角边的长度。
(2)一个直角三角形的两直角边分别为x和y(x < y),且满足x² + y² = 41,求这个直角三角形的斜边长度。
3.拓展题:
(1)在直角三角形中,如果将两直角边的长度分别增加1,斜边的长度会增加多少?
1.激发学生的学习兴趣,通过生动有趣的实例,引导学生主动参与课堂活动,提高其学习积极性。
2.关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
3.加强对学生逻辑思维的训练,培养其运用数学知识解决问题的能力。
4.注重知识间的联系,帮助学生构建完整的知识体系,提高其综合运用能力。
三、教学重难点和教学设想
北师大版八年级数学上册1.1探索勾股定理教学设计
一、教学目标

探索勾股定理—教学设计及点评(获奖版)

探索勾股定理—教学设计及点评(获奖版)

探索勾股定理—教学设计及点评(获奖版)第十一届初中青年数学教师优秀课展示与培训活动探索勾股定理(第1课时)一、教材内容和内容分析一)教学内容本节课是XXX版教材《数学八年级(上)》第一章勾股定理第一节的内容,主要研究勾股定理的探究、证明及简单应用。

二)教学内容分析勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方。

它揭示了直角三角形三边之间的数量关系,把有一个角是直角这个形的特征转化成数量关系,搭建起了几何图形和数量关系之间的一座桥梁,体现了数形结合的思想方法。

它也是反映自然界基本规律的一条重要结论,勾股定理启发了人类对数学的深入思考,促成了三角学、解析几何学的建立,对数学进一步的发展拓宽了道路。

因此,可以这样说,勾股定理是数学发展的重要根基之一。

它不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一。

教学重点:探究并证明勾股定理二、教学目标和目标解析一)教学目标1.经历探索,验证勾股定理的过程,初步掌握勾股定理,进一步了解等面积法的应用;2.通过不同证明方法的探究,进一步发展空间观念和推理能力,体会数形结合的数学思想;3.借助勾股定理丰富的文化背景,培养学生的人文底蕴和科学精神的核心素养。

二)教学目标解析达成目标1:学生通过分析以特殊的直角三角形三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表达勾股定理的结论。

通过割补法构造图形验证勾股定理,从而理解直角三角形三边的数量关系。

达成目标2:以赵爽弦图和青朱出入图为载体,了解勾股定理各种证明方法之间的内在联系,即实质都是运用等面积法加以证明。

使学生感受多角度分析问题,多种方法解决问题。

同时,在图形的性质转化成数量关系的过程中,感受数形结合的思想。

达成目标3:通过了解勾股定理发展史,感受勾股定理所蕴含的厚重文化。

同时,增强学生的民族自豪感,感受数学对人类文明的发展所起的积极的推动作用。

三、教学问题诊断分析因为勾股定理反映的内容图形直观,甚至被XXX建议作为与外星人联系的信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理1.探索勾股定理(一)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.三、教学目标分析●知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.●数学思考让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.●解决问题进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.●情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.四、教法学法1.教学方法:引导—探究—发现法.2.学习方法:自主探究与合作交流相结合.五、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二:内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形, 13132214=+⨯⨯⨯=C S . 方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S . 方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的 直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.弦股勾(在西方称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理. 效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用;225100x1517② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.基础训练1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为 米.2.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离 为 m .3.如图,阴影部分是一个半圆,则阴影部分的面积为 .(π不取 近似值)4.底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为 cm .5.一艘轮船以16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开港口半小时后相距 km .提高训练6.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动 m .7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角 三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和 是cm 2.8.已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ). (A )24cm 2 (B )36cm 2 (C )48cm 2 (D )60cm 2 9.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个 正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为 S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ).CB32S S 7cmDACB 257(A )321S S S >+ (B )321S S S =+ (C )321S S S <+ (D )无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的 路线探宝. 他们登陆后先往东走8km ,又往北走2km ,遇到障碍后又往 西走3km ,再折向北走6km 处往东一拐,仅走1km 就找到了宝藏,则 登陆点到埋宝藏点的直线距离为 km .知识拓展11.如图,已知直角△ABC 的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.12.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.意图:进行分层训练,既满足了不同学生的需求,同时也便于老师及时地了解学生的情况.老师可以根据学生的情况选择上述题目进行练习,也可留作家庭作业.效果:通过分层练习,充分激发学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果.(4)评价方式根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行评价:首先,在探索勾股定理的过程中,对学生的参与热情、情感态度、探究的积极性、探究的效果等学习情况进行评价.其次,在“勾股定理的简单应用”这一教学环节中,通过例题和练习,可有效地评价学生理解和掌握知识的情况.第三,在“课堂小结”这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况.第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度.32168埋宝藏点登陆点86CBAB AC DE教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果.。

相关文档
最新文档