2019高考数学一轮复习课件集合.ppt

合集下载

2019届高三数学一轮复习---与对数函数有关的定义域和值域问题教学课件 (共16张PPT)

2019届高三数学一轮复习---与对数函数有关的定义域和值域问题教学课件 (共16张PPT)

4x 3 0
3
3 3 ,得 x 1 定义域为 ( ,1]. 4 4
,得
x 1 0且x 1 1
3 x 0
1 x 3, 且x 2
定义域为(1,2) (2,3).
方法归纳:求对数型函数定义域的方法同前面讲到的 求的一般函数定义域的方法一样,但应特别注意的是:
log2 ( x 3) 的值域为 R.
(2) y log3 ( x 4x 7) (3) y log1 (3 x )
2
2
(2)令t x 2 4x 7, 则 t ( x 2)2 3 3
y log3 t 在 [3,)上单调递增
3
y log3 t log3 3 1
(1) y log1 ( x 2) 【练习】
2
(2) y lg( x 2x 6)
2
解:(1) 令t x 2, 则 t
2
2
2
2
y log1 t 在 [2,)上单调递减
y log1 t log1 2 1 值域为(,1]
2 2
(2)令t x 2 2 x 6, 则 t ( x 1) 2 7 7 又 t 0, 0 t 7
4
3 1 y t 2t 5, t [ , ] 2 2 对称轴为 t 1
2
当 t 1 时,ymin (1) 2 (1) 5 4
2
1 2 1 17 3 1 当t 或 时,ymax ( 2 ) 2 ( 2 ) 5 4 2 2 17 值域为[ 4, ]. 4
2、形如 y loga f ( x) 函数值域.

2019版高考数学(文)一轮复习全国经典版:第1章 集合与常用逻辑用语 第1讲集合的概念与运算

2019版高考数学(文)一轮复习全国经典版:第1章 集合与常用逻辑用语 第1讲集合的概念与运算

第1讲集合的概念与运算板块一知识梳理·自主学习[必备知识]考点1集合与元素1.集合中元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于两种,用符号∈或∉表示.3.集合的表示法:列举法、描述法、图示法.4.常见数集的记法A B或B A∅⊆A∅B(B≠∅)[必会结论]1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1,非空真子集的个数为2n-2.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)集合{x|y=x-1}与集合{y|y=x-1}是同一个集合.()(2)已知集合A={x|mx=1},B={1,2},且A⊆B,则实数m=1 或m=12.()(3)M={x|x≤1},N={x|x>ρ},要使M∩N=∅,则ρ所满足的条件是ρ≥1.()(4)若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y ∈B}中有4个元素.()(5)若5∈{1,m+2,m2+4},则m的取值集合为{1,-1,3}.()答案(1)×(2)×(3)√(4)×(5)×2.[2017·北京高考]若集合A={x|-2<x<1},B={x|x<-1或x >3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}答案 A解析∵A={x|-2<x<1},B={x|x<-1或x>3},∴A∩B={x|-2<x<-1}.故选A.3.[课本改编]已知集合A={x|x2-2x-3≤0},B={x|0<x≤4},则A∪B=()A.[-1,4] B.(0,3]C.(-1,0]∪(1,4] D.[-1,0]∪(1,4]答案 A解析A={x|x2-2x-3≤0}={x|-1≤x≤3},故A∪B=[-1,4].选A.4.[2017·全国卷Ⅰ]已知集合A={x|x<1},B={x|3x<1},则() A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅答案 A解析∵B={x|3x<1},∴B={x|x<0}.又A={x|x<1},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.5.[2018·重庆模拟]已知集合A={x∈N|πx<16},B={x|x2-5x+4<0},则A∩(∁R B)的真子集的个数为()A.1 B.3C.4 D.7答案 B解析因为A={x∈N|πx<16}={0,1,2},B={x|x2-5x+4<0}={x|1<x<4},故∁R B={x|x≤1或x≥4},故A∩(∁R B)={0,1},故A∩(∁B)的真子集的个数为3.故选B.R板块二典例探究·考向突破考向集合的基本概念例1(1)[2017·郑州模拟]已知集合A={x|y=1-x2,x∈Z},B ={p-q|p∈A,q∈A},则集合B中元素的个数为()A.1 B.3C.5 D.7答案 C解析由题意知A={-1,0,1},当p=-1,q=-1,0,1时,p -q=0,-1,-2;当p=0,q=-1,0,1时,p-q=1,0,-1;当p =1,q=-1,0,1时,p-q=2,1,0.根据集合中元素的互异性可知,集合B中的元素为-2,-1,0,1,2,共计5个,选C.(2)已知集合A={a2,a+1,-3},B={a-3,a-2,a2+1},若A∩B={-3},则a=________.答案-1解析由A∩B={-3}知,-3∈B.又a2+1≥1,故只有a-3,a-2可能等于-3.①当a-3=-3时,a=0,此时A={0,1,-3},B={-3,-2,1},A∩B={1,-3}.故a=0舍去.②当a-2=-3时,a=-1,此时A={1,0,-3},B={-4,-3,2},满足A∩B={-3},故a=-1.触类旁通解决集合概念问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.本例(1)集合B中的代表元素为实数p-q.(2)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.【变式训练1】(1)[2018·昆明模拟]若集合A={x|x2-9x<0,x∈N *},B ={|y 4y ∈N *,y ∈N *,则A ∩B 中元素的个数为________. 答案 3解析 解不等式x 2-9x <0可得0<x <9,所以A ={x |0<x <9,x ∈N *}={1,2,3,4,5,6,7,8},又4y ∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A ∩B =B ,A ∩B 中元素的个数为3.(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.答案 -32解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 此时当m =-32时,m +2=12≠3符合题意.所以m =-32.考向 集合间的基本关系例 2 已知集合A ={x |x <-3或x >7},B ={x |x <2m -1},若B ⊆A ,则实数m 的取值范围是________.答案 (-∞,-1]解析 由题意知2m -1≤-3,m ≤-1,∴m 的取值范围是(-∞,-1].本例中的B 改为B ={x |m +1≤x ≤2m -1},其余不变,该如何求解?解 当B =∅时,有m +1>2m -1,则m <2.当B ≠∅时,⎩⎪⎨⎪⎧ m +1≤2m -1,2m -1<-3或⎩⎪⎨⎪⎧m +1≤2m -1,m +1>7, 解得m >6.综上可知m 的取值范围是(-∞,2)∪(6,+∞).本例中的A 改为A ={x |-3≤x ≤7},B 改为B ={x |m +1≤x ≤2m -1},又该如何求解?解 当B =∅时,满足B ⊆A ,此时有m +1>2m -1,即m <2;当B ≠∅时,要使B ⊆A ,则有⎩⎪⎨⎪⎧ m +1≥-3,2m -1≤7,m ≥2,解得2≤m ≤4. 综上可知m 的取值范围是(-∞,4].触类旁通根据两集合的关系求参数的方法(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.【变式训练2】 设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系;(2)若B A ,求实数a 组成的集合C .解 (1)由x 2-8x +15=0,得x =3或x =5,∴A ={3,5}.若a =15,由ax -1=0,得15x -1=0,即x =5.∴B ={5}.∴B A .(2)∵A ={3,5},又B A ,故若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由ax -1=0,得x =1a .∴1a =3或1a =5,即a =13或a =15.故C =⎩⎨⎧⎭⎬⎫0,13,15. 考向 集合的基本运算 命题角度1 集合的交集及运算例 3 [2017·山东高考]设集合M ={x ||x -1|<1},N ={x |x <2},则M ∩N =( )A .(-1,1)B .(-1,2)C .(0,2)D .(1,2)答案 C解析 ∵M ={x |0<x <2},N ={x |x <2},∴M ∩N ={x |0<x <2}∩{x |x <2}={x |0<x <2}.故选C.命题角度2 集合的并集及运算例 4 [2018·武汉模拟]设全集U =R ,集合A ={x |2x -x 2>0},B ={y |y =e x +1},则A ∪B 等于( )A .{x |x <2}B .{x |1<x <2}C .{x |x >1}D .{x |x >0} 答案 D解析 由2x -x 2>0得0<x <2,故A ={x |0<x <2},由y =e x +1得y >1,故B ={y |y >1},所以A ∪B ={x |x >0}.故选D.命题角度3 集合的补集及运算例 5 [2016·浙江高考]已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D.(-∞,-2]∪[1,+∞)答案 B解析∵Q=(-∞,-2]∪[2,+∞),∴∁R Q=(-2,2),∴P∪(∁RQ)=(-2,3].故选B.命题角度4抽象集合的运算例6[2018·唐山统一测试]若全集U=R,集合A={|x x+1x-6≤0,B={x|2x<1},则下图中阴影部分表示的集合是()A.{x|2<x<3} B.{x|-1≤x<0}C.{x|0≤x<6} D.{x|1≤x≤6}答案 C解析A={x|-1≤x<6},B={x|x<0},A∩(∁U B)={x|0≤x<6}.选C项.触类旁通集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和V enn图.核心规律解决集合问题,要正确理解有关集合的含义,认清集合元素的属性;再依据元素的不同属性,采用不同的方法对集合进行化简求解,一般的规律为:(1)若给定的集合是不等式的解集,用数轴来解;(2)若给定的集合是点集,用数形结合法求解;(3)若给定的集合是抽象集合,用Venn图求解.满分策略1.元素的属性:描述法表示集合问题时,认清集合中元素的属性(是点集、数集或其他情形)是正确求解集合问题的先决条件.2.元素的互异性:在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.空集的特殊性:在解决有关A∩B=∅,A⊆B等集合问题时,要先考虑∅是否成立,以防漏解.板块三启智培优·破译高考创新交汇系列1——集合中的创新性问题[2018·吉林模拟]设全集U={1,2,3,4,5,6},且U的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M={2,3,6},则∁U M表示的6位字符串为________;(2)已知A={1,3},B⊆U,若集合A∪B表示的字符串为101001,则满足条件的集合B的个数是________.解题视点考查新定义问题,关键是正确理解题目中的新定义,利用集合间的关系及运算解决问题.解析(1)由已知得,∁U M={1,4,5},则∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,则B可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B的个数是4.答案(1)100110(2)4答题启示解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.跟踪训练设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个答案 D解析“孤立元”是1的集合:{1},{1,3,4},{1,4,5},{1,3,4,5}.“孤立元”是2的集合:{2},{2,4,5}.“孤立元”是3的集合:{3}.“孤立元”是4的集合:{4},{1,2,4}.“孤立元”是5的集合:{5},{1,2,5},{2,3,5},{1,2,3,5}.共有13个.故选D.板块四模拟演练·提能增分[A级基础达标]1.[2017·全国卷Ⅱ]设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}答案 C解析∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.2.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则()A.M=N B.M⊆NC.N⊆M D.M∩N=∅答案 C解析M={x||x|≤1}=[-1,1],N={y|y=x2,|x|≤1}=[0,1],所以N⊆M.故选C.3.[2017·山东高考]设函数y=4-x2的定义域为A,函数y=ln (1-x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)答案 D解析∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.4.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是()A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞) 答案 D解析因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.故选D.5.[2017·全国卷Ⅲ]已知集合A={(x,y)|x2+y2=1},B={(x,y)|y =x},则A∩B中元素的个数为()A.3 B.2C .1D .0答案 B解析 集合A 表示以原点O 为圆心,半径为1的圆上的所有点的集合,集合B 表示直线y =x 上的所有点的集合.由图形可知,直线与圆有两个交点,所以A ∩B 中元素的个数为2.故选B.6.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 集合B ={1,2,3,4},有4个元素,集合A ={1,2},则集合C 的个数问题可转化为{3,4}的子集个数问题,即22=4.7.[2018·陕西模拟]设全集U =R ,集合A ={|x ∈Z x 3-x ≥0},B ={x ∈Z |x 2≤9},则图中阴影部分表示的集合为( )A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}答案 B解析 题图中阴影部分表示的是A ∩B ,因为A ={|x ∈Z xx -3≤0}={|x ∈Z ⎩⎪⎨⎪⎧x (x -3)≤0,x -3≠0}={x ∈Z |0≤x <3}={0,1,2},B ={x ∈Z |-3≤x ≤3}={-3,-2,-1,0,1,2,3},所以A ∩B ={0,1,2}.故选B.8.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________.答案 (-1,+∞)解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.9.[2018·郑州模拟]已知集合A ={x ∈R ||x +2|<3},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -m x -2<0,且A ∩B =(-1,n ),则m =________,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.10.设m ,n ∈R ,集合{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m ,则m -n =________.答案 -2解析 ∵{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m 且m ≠0,∴m +n =0, 即m =-n ,于是nm =-1.∴由两集合相等,得m =-1,n =1,∴m -n =-2.[B 级 知能提升]1.已知集合A ={|y y =⎝ ⎛⎭⎪⎫12x ,x ∈R },B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1}B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}答案 D解析 因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}.所以D 正确.2.[2018·湖南模拟]设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)答案 B解析 集合A 讨论后利用数轴可知⎩⎪⎨⎪⎧ a ≥1,a -1≤1或⎩⎪⎨⎪⎧a ≤1,a -1≤a .解得1≤a ≤2或a ≤1,即a ≤2.故选B.3.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i 两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a ja i 需有意义,故不能有0,同时不一定有1,故C ,D 错误.4.已知集合A ={x ∈R |x 2-ax +b =0},B ={x ∈R |x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R |ax 2+bx +c ≤7},求集合P ∩Z .解 (1)因为A ∩B ={3},所以3∈B ,所以32+3c +15=0,c =-8,所以B ={x ∈R |x 2-8x +15=0}={3,5}.又因为A ∩B ={3},A ∪B ={3,5},所以A ={3},所以方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9,所以a =6,b =9,c =-8.(2)不等式ax 2+bx +c ≤7即6x 2+9x -8≤7, 所以2x 2+3x -5≤0, 所以-52≤x ≤1, 所以P ={|x -52≤x ≤1},所以P ∩Z ={|x -52≤x ≤1}∩Z ={-2,-1,0,1}.5.[2018·南宁段考]已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围. 解 (1)因为a =3,所以P ={x |4≤x ≤7}, ∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x -10≤0}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)当P ≠∅时,由P ∪Q =Q 得P ⊆Q , 所以⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1,解得0≤a ≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a <0. 综上,实数a 的取值范围是(-∞,2].。

2019版高考数学一轮复习 第二章 函数、导数及其应用 第13讲 抽象函数配套课件 理

2019版高考数学一轮复习 第二章 函数、导数及其应用 第13讲 抽象函数配套课件 理
21
解析:因为 f(x)=2x,f(x1+x2)=2x1+x2 =2x1·2x2 =f(x1)·f(x2), 所以①成立,②不成立;显然,函数 f(x)=2x 单调递增,即
fxx11--xf2x2>0.故③成立;当 x1>0 时,f(x1)>1,fx1x1-1>0;当
x1<0
时,0<f(x1)<1,fx1x1-1>0,故④不成立;f(-x1)= 2-x1
11
考点 2 对数函数型抽象函数 例2:已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义 域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0, f(2)=1. (1)求证:f(x)是偶函数; (2)求证:f(x)在(0,+∞)上是增函数; (3)解不等式f(2x2-1)<2.
A.f(0)=0 C.f(1)=12f(2)
B.f(1)=2f12 D.f(x)f(-x)<0 Nhomakorabea10
解析:∵f(0)=f(0+0)=f(0)+f(0),∴f(0)=0. f(1)=f12+12=f12+f12=2f12, f(2)=f(1+1)=f(1)+f(1)=2f(1),∴f(1)=12f(2). 令 y=-x,得 f(x-x)=f(x)+f(-x),即 f(-x)=-f(x), ∴f(x)f(-x)=-[f(x)]2≤0.故选 D. 答案:D
fx1·xx21=f(x1)+fxx21>f(x1),f(x)是增函数.
15
【互动探究】 2.对于函数 f(x)定义域中任意 x1,x2(x1≠x2),有如下结论: ①f(x1+x2)=f(x1)+f(x2); ②f(x1·x2)=f(x1)+f(x2); ③fxx11--xf2x2>0; ④fx1+2 x2<fx1+2 fx2. 当 f(x)=lg x 时,上述结论中正确的序号是__②__③___.

2019年高考理科数学一轮复习全国版提分宝典全考点普查教学课件第1课集合的概念和运算(共47张PPT)

2019年高考理科数学一轮复习全国版提分宝典全考点普查教学课件第1课集合的概念和运算(共47张PPT)

6
of
22
6
(1)③满足 a , b 1,0,1,2 ,且关于 x 的方程 ax + 2 x + b = 0有实数解得 有序数对 a , b 的个数为( B )
2
A.3
B.6
C.8
D.10
解析: 当 a = 0 时,方程为 2 x + b = 0 ,此时一定有解.
当b = 1, 0 ,1,2 时,满足条件的有序数对为 0, 1 , 0,0 , 0,1 , 0,2 .
2
第1课 第 (1) ③题 P2
7
of
22
7
小提示
与集合有关问题的解题方略 确定集合的代表元素;
看代表元素满足的条件;
根据条件列式求参数的值或确定集合元素的个数,但要注 意,检验集合中元素是否满足互异性.
第1课 小提示 P2
8
of
22
8
9 2 (2)若集合A = x R | ax 3 x + 2 = 0 中只有一个元素,则 a = 0或 . 8
2 2 2
问:它们是否为同一个集合?并说明理由. 解: 三个集合的代表元素互不相同,∴它们是互不相同的集合. 集合①
2
x | y = x + 1 的代表元素是 x ,它满足条件 y = x + 1 , ∴ x | y = x + 1 R ; 集合② y | y = x + 1 的代表元素是 y ,满足条件 y = x + 1 的 y 的取值
当 a 0 时,方程为一元二次方程,Δ = 4 4ab ≥ 0, 解得 ab ≤ 1. 当a 1,1,2时, 满足条件的有序数对为 1, 1 , 1,0 , 1,1 , 1,2 , 1, 1 , 1,0 , 1,1 , 2, 1 , 2,0 , 故使关于 x 的方程 ax + 2 x + b = 0 有实数解的有序数对 a , b 的个数 为13. 故选B.

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2

解析:(1)由题意可得其中 1 人必须完成 2 项工作,其他 2 1 2 2 人各完成 1 项工作,可得安排方式为 C3· C4· A2=36(种),或列式 4×3 1 2 1 为 C3· C4· C2=3× 2 ×2=36(种). 故选 D. (2)①当组成四位数的数字中有一个偶数时,四位数的个数 3 1 4 为 C5· C4· A4=960. ②当组成四位数的数字中不含偶数时,四位数的个数为 A4 5 =120. 故符合题意的四位数一共有 960+120=1 080(个).
从12人中选出512种选法从除去男生甲和女生乙外的10人中任选310种选法所以男生甲和女生乙不能同时入选的选法有c1067212017新课标全国卷安排3名志愿者完成4工作每人至少完成1项每项工作由1人完成则不同的安排方式共有22017天津卷用数字123456789组成没有重复数字且至多有一个数字是偶数的四位数这样的四位数一共有个
(3)组合数公式 m n! A n nn-1n-2„n-m+1 m Cn =⑨Am= = . m! m!n-m! m (4)组合数的性质 m n -m 性质 1:Cn = Cn . m m -1 m 性质 2:Cn+1=Cn +Cn (m≤n,n∈N*,m∈N*).
二、必明 3●个易误点 1.要注意均匀分组与不均匀分组的区别,均匀分组不要重 复计数. 2.解受条件限制的组合题,通常有直接法(合理分类)和间 接法(排除法).分类时标准应统一,避免出现遗漏或重复. 3.解组合应用题时,应注意“至少”、“至多”、“恰好” 等词的含义.
5.(2017· 浙江卷)从 6 男 2 女共 8 名学生中选出队长 1 人, 副队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至少 有 1 名女生,共有________种不同的选法.(用数字作答)

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

2019年6月1日
缘分让我们相遇,缘分让我们在一起
1
2.常用逻辑用语 (1)理解命题的概念.
(2)了解“若 p,则 q”形式的命题及其逆命题、否命题
与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的含义. (4)了.解逻辑联结词“或”“且”“非”的含义. (5)理解全称量词和存在量词的意义.
第一章 集合与常用逻辑用语
考纲链接
1.集合 (1)集合的含义与表示 ①了解集合的含义,体会元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两.个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
=∅,则实数 a 的取值范围为________.
2019年6月1日
缘分让我们相遇,缘分让我们在一起
19
解:(1)因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,ba=-1,从而 b=1, 所以 a=-1,b=1,所以 b-a=2.故填 2. (2)由 A=∅知方程 ax2+3x-2=0 无实根, 当 a=0 时,x=23不合题意,舍去;
(6)能正确地对含一个量词的命题进行否定 .
2019年6月1日
缘分让我们相遇,缘分让我们在一起
2
• 1.1 集合及其运算
2019年6月1日
缘分让我们相遇,缘分让我们在一起
3
1.集合的基本概念

2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】

2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】
解 ∵log2ab=1,∴ab=2, ∴2a+b≥2 2ab=4,当 a=1,b=2 时,2a+b 的最 小值为 4.
触类旁通 利用基本不等式求最值问题的解题策略
(1)利用基本(均值)不等式解题一定要注意应用的前提: “一正”“二定”“三相等”.
(2)在利用基本(均值)不等式求最值时,要根据式子的特 征灵活变形,配凑出积、和为常数的形式,然后再利用基本 (均值)不等式.
【变式训练 1】 (1)已知 0<x<1,则 x(3-3x)取得最大
值时 x 的值为( )
1132 A.3 B.2 C.4 D.3
解析

0<x<1


x·(3

3x)

1 3
·3x·(3

3x)≤
1 3
3x+23-3x2=34,当 3x=3-3x,即 x=12时,x(3-3x)取得 最大值34.选 C.
3.其中a+2 b叫做正数 a,b 的 做正数 a,b 的 几何平均数 .
算术平均数
, ab叫
考点 3 利用基本不等式求最大、最小值问题 1.如果 x,y∈(0,+∞),且 xy=P(定值), 那么当 x=y 时,x+y 有最小值 2 P.(简记:“积定 和最小”) 2.如果 x,y∈(0,+∞),且 x+y=S(定值), 那么当 x=y 时,xy 有最大值S42.(简记:“和定积最大”)
触类旁通 求条件最值注意的问题
(1)要敏锐的洞察到已知条件与要求式子的联系,并能 灵活进行转化;
(2)常用的技巧有:“1”的代换,配凑法,放缩法,换元 法.
【变式训练 2】 (1)[2018·珠海模拟]已知 x>0,y>0,x +3y+xy=9,则 x+3y 的最小值为( )

集合高考数学一轮复习课件

集合高考数学一轮复习课件
(2)互异性:给定集合中的元素是互不相同的(或者说是互异的),相同的对象
归入同一个集合时只能算作集合的一个元素.
(3)无序性:集合中各元素之间无先后排列的要求,没有一定的顺序关系.
集合的概念及表示
练习 2、下列说法中正确的是________. ①参加 2012 年中央电视台举办的春节联欢
晚会的优秀演员能组成集合;
即∁UA={x|x∈U,且x∉A}.
集合
补集的性质 (1)∁UU=___∅______; (2)∁U∅=_____U_____; (3)A∪(∁UA)=____U_____; (4)A∩(∁UA)=____∅_____; (5)∁U(∁UA)=____A_____; (6)(∁UA)∪(∁UB)=____∁_U(_A_∩__B_)______; (7)(∁UA)∩(∁UB)=____∁_U_(_A_∪__B_) _______.
是非负整数,|- 3|= 3是无理数,因此,① ②③正确,④错误.
集合的概念及表示
4、集合中元素的特征 (1)确定性:给定一个集合,任何一个对象是不是这个集合的元素就确定了, 即任何对象都能明确它是或不是这个集合的元素,两者必居其一,不会模 棱两可.这是判断一组对象能否构成集合的标准.如“ 较大的整数”就不能 构成集合.
无代表元素.D 代表元素写错.
集合的概念及表示 三、集合的分类
按照集合中元素个数的多少,集合分为有限集、无限集和空集。
类别
意义
有限集 含 有限 个元素的集合叫有限集.
无限集 含 无限 个元素的集合叫无限集.
空集 不含有任何元素的集合叫作空集,记作_∅__.
集合间的关系
第二讲 集合间的关系
给出下面两个集合A={1,2},B={1,2,3,4}.

2019版高考数学大一轮复习 第七章 不等式 第1节 不等式的性质与一元二次不等式课件 北师大版

2019版高考数学大一轮复习 第七章 不等式 第1节 不等式的性质与一元二次不等式课件 北师大版
x-3)>0, 解得 x>32或 x<-1. ∴不等式 2x2-x-3>0 的解集为x|x>32或x<-1.
答案 B
命题角度2 含参不等式 【例2-2】 解关于x的不等式ax2-2≥2x-ax(a≤0).
解 原不等式可化为ax2+(a-2)x-2≥0. ①当a=0时,原不等式化为x+1≤0,解得x≤-1. ②当 a<0 时,原不等式化为x-2a(x+1)≤0. 当2a>-1,即 a<-2 时,解得-1≤x≤2a;
法二 由1a<1b<0,可知 b<a<0.①中,因为 a+b<0,ab>0,所
0.故有a+1 b<a1b,即①正确; ②中,因为b<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0, ③中,因为 b<a<0,又1a<1b<0,则-1a>-1b>0,所以 a-1a>b- ④中,因为b<a<0,根据y=x2在(-∞,0)上为减函数,可得b2> 在定义域(0,+∞)上为增函数,所以ln b2>ln a2,故④错误.由以 正确. 答案 (1)A (2)C
法一 令 g(x)=mx-122+34m-6,x∈[1,3].
当m>0时,g(x)在[1,3]上是增函数, 所以g(x)max=g(3)=7m-6<0. 所以 m<67,则 0<m<67. 当m<0时,g(x)在[1,3]上是减函数, 所以g(x)max=g(1)=m-6<0. 所以m<6,所以m<0. 综上所述,m 的取值范围是m0<m<67或m<0.
)
A.①④
B.②③
C.①③
D.②④
解析 (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b. 又b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1, ∴b-a=a2-a+1=a-122+34>0,∴b>a,∴c≥b>a. (2)法一 因为1a<1b<0,故可取 a=-1,b=-2. 显然|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2= =ln 4>0,所以④错误.综上所述,可排除A,B,D.

通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件

通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件

2. [考点二]已知“x>k”是“x+3 1<1”的充分不必要条件,则k的
取值范围是
()
A.[2,+∞)
B.[1,+∞)
C.(2,+∞)
D.(-∞,-1]
解析:由
3 x+1
<1,得
3 x+1
-1=
-x+2 x+1
<0,解得x<-1或
x>2.因为“x>k”是“
3 x+1
<1”的充分不必要条件,所以
k≥2. 答案:A
②命题α是命题β的逆命题,且命题γ是命题β的否命题;
③命题β是命题α的否命题,且命题γ是命题α的逆否命题.
A.①③
B.②
C.②③ D.①②③
解析:命题的四种形式,逆命题是把原命题中的条件和结论
互换,否命题是把原命题的条件和结论都加以否定,逆否命
题是把原命题中的条件与结论先都否定,然后交换条件与结
论所得,因此①正确,②错误,③正确,故选A. 答案:A
题三个命题中,真命题只有一个.
答案:C
4.[考点一、二]有下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中为真命题的是________(填写所有真命题的序号).
[全析考法]
充分条件与必要条件的判断
[例1] (1)(2017·浙江高考)已知等差数列{an}的公差为d,前
n项和为Sn,则“d>0”是“S4+S6>2S5”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-9

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-9
7 8 9 1 1 1 1 1 P 5 5 5 5 5 1 E(ξ)=5×(5+6+7+8+9)=7(元). η 的分布列为 η 2 4 6 8 2 3 1 1 P 5 10 5 10 2 3 1 1 E(η)=2×5+4×10+6×5+8×10=4(元), ∴E(ξ)-E(η)=7-4=3(元).故答案为 3. 答案:3
[变式练]——(着眼于举一反三) 1.(2018· 湖北黄冈调研)已知 6 只小白鼠中有 1 只感染了病毒,需 要对 6 只小白鼠进行病毒 DNA 化验来确定哪一只受到了感染. 下面是 两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为 止.方案乙:将 6 只小白鼠分为两组,每组三只,将其中一组的三只 小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒 DNA,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到 确定感染病毒的小白鼠为止;若化验结果显示不含病毒 DNA,则在另 外一组中逐个进行化验. (1)求执行方案乙化验次数恰好为 2 次的概率; (2)若首次化验的化验费为 10 元,第二次化验的化验费为 8 元, 第三次及以后每次化验的化验费都是 6 元,求方案甲所需化验费的分 布列和期望.
6.两个常用结论 (1)均值与方差的关系 2 2 D(X)=E(X )-E (X). (2)超几何分布的均值 nM 若 X 服从参数为 N,M,n 的超几何分布,则 E(X)= N .
二、必明 2●个易误点 1.两点分布,二项分布,超几何分布的均值与方差的计算 公式容易记混淆,准确记忆公式是解题的必要条件. 2.在实际问题中注意深刻理解题意,准确判断实际问题是 何种类型的分布是解题的关键.
np=6 解析:由题意知 np1-p=3,
4.(2018· 湖北调研)已知随机变量 η 满足 E(1-η)=5,D(1 -η)=5,则下列说法正确的是( ) A.E(η)=-5,D(η)=5 B.E(η)=-4,D(η)=-4 C.E(η)=-5,D(η)=-5 D.E(η)=-4,D(η)=5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)理解两个集合的并集与交集的含义,会求两个简
单集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求
给定子集的补集.
(3)能使用Venn图表示集合的关系及运算.
考情上线
1.以考查集合的运 算为主,也会考 查集合的性质及 集合与元素、集 合与集合之间的 关系.同时注意 Venn图的考查.
由①得符合题意
;②无解.
∴b2011-a2011=1-(-1)=2.
1.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A= {1,2},B={0,2010},则集合A*B的真子集的个数为( )
A.7
B.8
C.15
D.16
解析:由题知,A*B={0,2010,4020},所以A*B的真子集
若a,b∈R,集合{1,a+b,a}={0,,b},求 b2011-a2011的值.
由{1,a+b,a}={0,ba ,b}可知a≠0,因此只
能a+b=0,然后利用两集合相等的条件列出 方程组,分别求出a、b的值即可.
【解】 由{1,a+b,a}={0, ,b}可知a≠0,则只能 a+b=0.则有以下对应关系:
答案:B
2.若不等式x2-x≤0的解集为M,函数f(x)=ln(1-|x|)的定
义域为N,则M∩N为
()
A.[0,1)
B.(0,1)
C.[0,1]
D.(-1,0]
解析:不等式x2-x≤0的解集M={x|0≤x≤1}, f(x)=ln(1-|x|)的定义域N={x|-1<x<1}, 则M∩N={x|0≤x<1}.
的个数为23-1=7.
答案:A
1.子集与真子集的区别与联系:集合A的真子集一定是其子 集,而集合A的子集不一定是其真子集;若集合A有n个元 素,则其子集个数为2n,真子集个数为2n-1.
2.判断集合与集合的关系,基本方法是归纳为判断元素与集 合的关系.对于用描述法表示的集合,要紧紧抓住代表元素 及它的属性,可将元素列举出来直观发现或通过元素特征, 求同存异,定性分析.应做到意义化(分清集合的种类,数 集、点集、图形、定义域、值域、方程或不等式的解或解 集等)、具体化(具体求出相关的集合并化简)、直观化(借助 数轴、Venn图、函数图象等,即数形结合的思想).
3.常见集合的符号表示.
集合 自然数集 正整数集 整数集 有理数集 实数集
表示
N
N*或N+
Z
Q
R
4.集合的表示法: 列举法 、描述法 、 Venn图 .二、集合间的基本关系Fra bibliotek表示 关系
定义
记法
集合A与集合B中的所有 集合 相等 元素都相同
A=B
间的 基本 关系
A中任意一元素均为B中的 子集
元素
真 A中任意一元素均为B中的 子 元素,且B中至少有一个 集 元素A中没有
必要条件与命 会分析四种命题的相
必考内容.
题的四种形式
互关系.
2.考查四种命题
2.理解必要条件、充分 条件与充要条件的意义. 的相互关系.
一、元素与集合 1.集合中元素的三个特性: 确定性 、互异性 、无序性 .
2.集合中元素与集合的关系 元素与集合之间的关系有 属于和不属于两种,表示符 号为 ∈ 和 ∉ .
命题进行否定.
1.命题真假的判断是高 考每年必考的内容.
2.全称命题与特称命题 的否定也是高考的一 个热点.
3.高考也有可能涉及利 用命题的真假求参数 的取值范围的题目.
知识点
考纲下载
考情上线
1.了解“若p,则q”形式 的命题及其逆命题、 1.充分必要条件
充分条件、 否命题与逆否命题,
的判断为高考
答案:A
3.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B=
{x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为( )
A.1
B.2
C.3
D.4
解析:由已知得A={1,2},B={2,4},
∴∁U(A∪B)={3,5}.
答案:B
4.若集合A={x|x≤2},B={x|x≥a}满足A∩B={2},则实
集合的并集
符合 表示
A∪B
集合的交集
集合的补集
A∩B
全集为U,集合A的补集
为 ∁UA
图形 表示
{x|x∈A或 意义 x∈B}
{x|x∈A,且 x∈B}
{x|x∈U,且x∉A}
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2
+x=0}关系的韦恩(Venn)图是
()
解析:由N={x|x2+x=0},得N={-1,0}. ∵M={-1,0,1},∴N M,故选B.
1.掌握集合的概念,关键是把握集合中元素的特性,要特别 注意集合中元素的互异性,一方面利用集合元素的互异性 能顺利找到解题的切入点;另一方面,在解答完毕之时, 注意检验集合的元素是否满足互异性以确保答案正确.
2.用描述法表示集合时,首先应清楚集合的类型和元素的性 质.如集合{y|y=2x},{x|y=2x},{(x,y)|y=2x}表示不同的 集合.
2.以集合为载体考 查函数、不等式、 方程、三角函数、 曲线及轨迹等有关 知识.
3.有关集合的新定义 题也是高考的热点.
知识点
考纲下载
考情上线
1.了解命题的概念.
命题与 2.了解逻辑联结词“或”、 量词、 “且”、
“非”的含义. 基本逻 3.理解全称量词与存在量词的
辑联结 含义.

4.能正确地对含有一个量词的
A⊆B 或B⊇A
表示 关系
定义
空集
空集是任何集合的子集
空集是任何 非空集合的真 子集
记法
集合{∅}是空集吗?它与{0}、∅有什么区别? 提示:集合{∅}不是空集.空集是不含任何元素的集合, 而集合{∅}中有一个元素∅.若把∅看作一个元素则有 ∅∈{∅},而{0}表示集合中的元素为0.
三.集合的基本运算
数a=
.
解析:A∩B={x|a≤x≤2}={2}.∴a=2.
答案:2
5.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},
则(A∪B)∩(∁UC)=
.
解析:A∪B={2,3,4,5},∁UC={1,2,5}, ∴(A∪B)∩(∁UC)={2,5}.
答案:{2,5}
第一章 集合与常用逻辑用语


考纲下载

1.集合的含义与表示.
(1)了解集合的含义、元素与集合的“属于”关系.
(2)能用自然语言、图形语言、集合语言(列举法或描
述法)描述不同的具体问题.
2.集合间的基本关系.

(1)理解集合之间包含与相等的含义,能识别给定集 合的子集.

(2)在具体情境中,了解全集与空集的含义. 3.集合的基本运算.
相关文档
最新文档