光学薄膜系统设计9
Essential Macleod光学薄膜软件简要使用说明
Essential Macleod光学薄膜软件简要使用说明Essential Macleod光学薄膜软件简要使用说明1.概述1.1 软件简介Essential Macleod是一款功能强大的光学薄膜设计和分析软件。
它提供了制定多层光学薄膜的设计方案、计算光学参数、模拟光学特性等一系列功能。
本文档将为您提供Essential Macleod软件的使用指南,帮助您快速上手并进行光学薄膜的设计和分析工作。
2.安装和配置2.1 硬件需求在安装Essential Macleod软件之前,请确保您的计算机满足以下最低硬件配置要求:- 处理器:双核 2 GHz 或更高- 内存.4 GB 或更多- 存储空间:至少 10 GB 的可用空间- 显示器分辨率.1024x768 或更高2.2 安装步骤根据您的操作系统类型,按照以下步骤进行安装:- Windows 用户:1.最新的 Essential Macleod 安装程序。
2.双击安装程序并按照提示进行安装。
3.在安装过程中,选择安装路径和其他选项。
4.完成安装,启动 Essential Macleod。
- macOS 用户:1.最新的 Essential Macleod 安装程序。
2.双击安装程序并按照提示进行安装。
3.在安装过程中,选择安装路径和其他选项。
4.完成安装,启动 Essential Macleod。
2.3 配置软件在首次运行 Essential Macleod 软件时,您需要进行一些基本的配置设置,包括选择语言、设置单位、配置默认保存路径等。
按照软件提示进行相应的配置即可。
3.主要功能介绍Essential Macleod 提供了多个主要功能模块,包括设计、分析、模拟等,让您能够完成光学薄膜的设计和分析工作。
3.1 设计模块在设计模块中,您可以进行以下操作:- 添加基底材料:选择基底材料,并设置相关参数。
- 添加层:添加光学薄膜的层,并设置层的材料、厚度等属性。
《光学薄膜设计理论》课件
总结词
随着光电器件的发展,光学薄膜的应用领域也在不断 扩展。新型光电器件对光学薄膜的要求更高,需要不 断探索新的应用领域和场景。
详细描述
光学薄膜在新型光电器件中具有广泛的应用前景。例 如,在激光器、太阳能电池、光电传感器等领域中, 光学薄膜可以起到增益介质、反射镜、滤光片、保护 膜等作用。此外,随着光电器件的微型化和集成化发 展,光学薄膜的应用场景也在不断扩展,如光子晶体 、微纳光学器件等。这些新型光电器件的发展将进一 步推动光学薄膜技术的进步和应用领域的拓展。
薄膜的均质膜系法
总结词
将多层薄膜视为一个整体,并使用均质膜系法来计算反射、透射和吸收系数的方 法。
详细描述
均质膜系法是一种更精确的光学薄膜设计方法。它将多层薄膜视为一个整体,并 使用均质膜系法来计算反射、透射和吸收系数。这种方法适用于薄膜层数较多、 折射率变化较大的情况,能够更准确地模拟薄膜的光学性能。
光的波动理论概述
光的波动理论认为光是一种波动现象,具有振动 、传播和干涉等特性。
波动方程的推导
通过麦克斯韦方程组推导出波动方程,描述光波 在介质中的传播规律。
波前的概念
光的波动理论中引入了波前的概念,用于描述光 波的相位和振幅。
光的干涉理论
光的干涉现象
光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明 暗相间的干涉条纹的现象。
按制备方法分类
03
物理气相沉积、化学气相沉积、溶胶-凝胶法等。
光学薄膜的应用
光学仪器
照相机、望远镜、显微镜等。
光电子
激光器、光探测器、光放大器等。
通信
光纤、光波导、光放大器等。
摄影
滤镜、镜头镀膜等。
02
光学薄膜设计基础
光学膜实验报告
一、实验目的1. 理解光学膜的基本原理和作用;2. 掌握光学膜的制作方法;3. 通过实验验证光学膜的特性;4. 分析光学膜在光学系统中的应用。
二、实验原理光学膜是一种具有特定光学性能的薄膜,其主要作用是反射、透射和偏振。
光学膜的种类繁多,包括增透膜、反射膜、偏振膜等。
本实验主要研究增透膜和反射膜的制作方法及特性。
1. 增透膜:增透膜能够减少光在光学元件表面的反射,提高光的透射率。
其原理是利用不同厚度、不同折射率的薄膜对光的干涉现象,使反射光相互抵消,从而减少反射。
2. 反射膜:反射膜能够增加光在光学元件表面的反射,提高光的反射率。
其原理与增透膜类似,也是利用干涉现象,但要求反射光相互加强。
三、实验仪器与材料1. 实验仪器:光学膜制备系统、紫外-可见光分光光度计、干涉仪、薄膜厚度测量仪等;2. 实验材料:光学玻璃基板、光刻胶、抗蚀剂、清洁剂、光刻机、蒸发源、真空系统等。
四、实验步骤1. 光刻胶涂覆:将光学玻璃基板放入光刻机中,涂覆一层光刻胶,使其均匀覆盖在基板上;2. 光刻:利用光刻机将设计好的图形转移到光刻胶上,形成光刻胶图形;3. 抗蚀:将涂覆光刻胶的基板放入抗蚀剂中,浸泡一段时间,使光刻胶图形部分溶解,形成抗蚀图形;4. 蒸发沉积:将涂覆抗蚀图形的基板放入蒸发源中,通过真空系统使蒸发源蒸发材料,沉积在抗蚀图形上,形成光学膜;5. 洗除抗蚀剂:将沉积光学膜的基板放入清洁剂中,洗除未反应的抗蚀剂,得到光学膜;6. 薄膜特性测试:利用紫外-可见光分光光度计、干涉仪、薄膜厚度测量仪等仪器对光学膜进行测试,分析其光学性能。
五、实验结果与分析1. 增透膜实验结果:通过实验,成功制备了增透膜,其透射率提高了约30%。
测试结果显示,增透膜在可见光范围内的透射率较高,符合实验要求。
2. 反射膜实验结果:通过实验,成功制备了反射膜,其反射率提高了约80%。
测试结果显示,反射膜在可见光范围内的反射率较高,符合实验要求。
《光学薄膜膜系设计》课件
,常用的测量方法有光谱椭偏仪法和光谱反射法等。
03
光学薄膜设计方法
膜系设计的基本原则
光学性能原则
薄膜的光学性能应满足设计要求,如 反射、透射、偏振等特性。
物理化学稳定性原则
薄膜应具有优良的物理和化学稳定性 ,能够经受环境因素的影响,如温度 、湿度、紫外线等。
机械强度原则
薄膜应具有足够的机械强度,能够承 受加工和使用过程中的应力。
干涉色散
由于薄膜干涉作用,不同波长的光 波会产生不同的相位差,导致不同 的干涉效果,从而产生色散现象。
薄膜的光学常数
光学常数定义
01
描述介质对光波的折射率、消光系数等光学性质的一组参数。
薄膜的光学常数
02
对于光学薄膜,其光学常数包括折射率、消光系数、热光系数
等。
光学常数测量
03
通过测量光波在薄膜中的传播特性,可以获得薄膜的光学常数
反射膜的应用案例
总结词
反射膜主要用于将特定波段的光反射回原介质,常用于聚光镜、太阳能集热器等领域。
详细描述
反射膜具有高反射率和宽光谱特性,被广泛应用于太阳能利用和照明工程中。通过将反 射膜镀在金属镜面上,可以大大提高光的反射效率,从而实现高效聚光和散热。此外,
反射膜还用于制作装饰性和广告用反射镜面。
干涉现象
当两束或多束相干光波相遇时,会因相位差而产生明暗相间的干 涉条纹。
干涉条件
为了产生稳定的干涉现象,需要满足相干波源、相同频率、相同 方向和相同振动情况等条件。
薄膜的干涉效应
薄膜干涉原理
当光波入射到薄膜表面时,会因 反射和折射而产生干涉现象。
薄膜干涉类型
根据光波在薄膜中传播路径的不同 ,可分为前表面反射干涉和后表面 反射干涉。
摄影镜头的光学薄膜膜系设计
摄影镜头的光学薄膜膜系设计
邢德华
【期刊名称】《照相机》
【年(卷),期】2000(000)011
【总页数】2页(P24-25)
【作者】邢德华
【作者单位】无
【正文语种】中文
【中图分类】TB851.102
【相关文献】
1.光学薄膜膜系设计方法及发展趋势 [J], 刘梦夏;强西林
2.自动控制离子束溅射沉积光学薄膜系统设计 [J], 刘洪祥;李凌辉;申林;熊胜明;张云洞
3.摄影镜头的光学薄膜膜系设计 [J], 邢德华
4.光学薄膜鲁棒设计中膜系误差灵敏度控制 [J], 吴素勇;龙兴武;杨开勇
5.3D眼镜光学薄膜膜系设计与制备技术 [J], ZHANG Jin-bao;WANG Ming-hui;GENG Hao;SHI Cheng-bo;SUN Ya-wei
因版权原因,仅展示原文概要,查看原文内容请购买。
(参考资料)3-2光学薄膜系统设计
在整个透射带,透过率在两个极值之间振荡:
R1
0-g 0 +g
2
膜厚4的偶数倍,
膜层变为虚设层
R2
0-E2 0 + E2
g g
2
膜厚4的奇数倍
产生波纹的原因: 1)等效光学导纳失配(波纹的幅度)(R1-R20); 2)等效位相厚度随波长变化。
压缩波纹的方法
R1
0-g 0 +g
2
,
R2
通常波纹幅度大小是由等效折射率与基片和入射介质的匹配程度决定的而波纹的密度是由周期数多少决定的因为周期数多那么这个等效层的厚度就大高级次干涉峰就会靠的很近波纹就密
§2.4 干涉截止虑光片
1)什么叫干涉截止滤光片:利用多光束干涉原理,让某一 波长范围的光束高透,而让偏离这一波长区域的光束变为 高反的光学膜片。
主要参数: 中心波长(峰值波长); 中心波长处的透过率; 通带宽度:透射率降为峰值透过率一半的波长宽度。
两种典型结构: 1)由一长波通膜系和一短波通膜系的重叠带波段形成的通 带。其特点为较宽的截止带和较深的截止度,但不易得到窄 的通带宽度。 2)Fabry-perot(F-P)干涉仪式的滤光膜系。其特点为可得 到很窄的通带宽度,但截止带也较窄,截止度也浅。
2 2 arcsin(1 R )
0 m
2R
中心波长的峰值透射率:
Tmax
T1T2 (1 R)2
当反射膜没有吸收、散射损失,而且反射膜是完全对称时, 滤光片的透射率和光洁基板一样高。
当反射膜有吸收、散射损失时,假定反射膜是完全对称时,
Tmax
T12 (1 R12 )2
(T12
T122 A12 )2
12
光学薄膜激光损伤阈值测试系统及其方法与设计方案
本技术涉及一种光学薄膜激光损伤阈值测试方法,包括如下步骤:S1、测试得到光学薄膜单脉冲激光损伤时的激光能量密度Fth;S2、使单脉冲激光对光学薄膜进行辐照,记录下光学薄膜表面激光损伤边界不再增大时的激光损伤区域边界坐标(xi,yi),同时记录下单脉冲激光辐照的次数n;S3、将激光能量密度的高斯分布与激光损伤区域分布对照,得到光学薄膜多脉冲激光辐照损伤时的激光损伤阈值FN;S4、不断改变入射的激光能量密度,重复执行步骤S2、S3,得到不同脉冲数目的飞秒激光辐照下光学薄膜的激光损伤阈值曲线。
有益效果是不仅仅保证多脉冲激光辐照下光学薄膜激光损伤阈值测量准确性、同时大大提高多脉冲辐照下光学薄膜损伤阈值的测试效率。
技术要求1.一种光学薄膜激光损伤阈值测试系统,其特征在于:所述测试系统包括飞秒激光器(1)、两个反射镜(2)、能量衰减系统(3)、机械快门(4)、聚焦透镜(5)、楔形片(6)、光束质量分析仪(7)、能量计(8)、供光学薄膜(9)放置的二维移动平台(10)、CCD相机(11)和电脑(12),所述电脑(12)设有数据输出卡(13)和运动控制卡(14);所述飞秒激光器(1)连接至数据输出卡(13),所述二维移动平台(10)连接至运动控制卡(14),所述光束质量分析仪(7)、能量计(8)、CCD相机(11)连接至电脑(12),所述数据控制卡(13)用于控制飞秒激光器(1)输出飞秒激光,所述运动控制卡(14)用于控制二维移动平台(10)的水平和垂直移动,所述光学薄膜(9)安装在二维移动平台(10)上,所述CCD相机(11)摄像头对准光学薄膜(9);所述飞秒激光器(1)、两个反射镜(2)、能量衰减系统(3)、机械快门(4)、聚焦透镜(5)、楔形片(6)在一个激光光路上,所述光束质量分析仪(7)和能量计(8)用于分别收集楔形片(6)反射方向的激光光束,所述光束质量分析仪(7)用于激光质量分析,所述能量计(8)用于测量激光的能量;所述光学薄膜(9)表面接收楔形片(6)透射方向的激光光束,所述反射镜(2)、能量衰减系统(3)用于调整飞秒激光器(1)发出的激光能量密度,所述机械快门(4)用于调整到达光学薄膜(9)表面激光的脉冲数目,所述聚焦透镜(5)用于调节激光光束焦点到光学薄膜(9)表面,所述CCD相机(11)用于记录激光光斑在光学薄膜(9)表面的位置。
《现代光学薄膜技术》课件
按照功能和应用,光学薄膜可以 分为增透膜、反射膜、滤光膜、 干涉膜等。
光学薄膜的应用领域
显示行业
液晶显示、等离子显示、投影显示等。
照明行业
LED照明、荧光灯等。
摄影器材
镜头、滤镜等。
太阳能行业
太阳能电池等。
光学薄膜的发展历程
19世纪末
光学薄膜概念诞生,主要用于 镜头增透。
20世纪初
光学薄膜技术逐渐成熟,应用 领域扩大。
真空蒸发镀膜技术适用于各种材料,如金属、半导体、绝缘体等,可以 制备单层膜、多层膜以及复合膜。
真空蒸发镀膜的缺点是难以控制薄膜的厚度和均匀性,且不适用于制备 高熔点材料。
溅射镀膜
溅射镀膜是一种利用高能粒子轰击靶材表面,使靶材原子或分子溅射出来并沉积在基片上形 成薄膜的方法。该方法具有较高的沉积速率和较好的薄膜质量,适用于制备高质量的多层光 学薄膜。
详细描述
高温防护膜通常由耐高温材料制成,如硅、石英等,能够承受较高的温度和恶劣的环境条件。这种薄膜常用于工 业炉、高温炉、激光器等设备的光学元件保护,防止高温对光学表面的损伤和退化,保证设备的长期稳定性和可 靠性。
05
CATALOGUE
光学薄膜的未来发展
新材料的研究与应用
光学薄膜新材料
如新型高分子材料、金属氧化物、氮 化物等,具有优异的光学性能和稳定 性,能够提高光学薄膜的耐久性和功 能性。
THANKS
感谢观看
离子束沉积技术可以应用于各种材料,如金属、非金属、 半导体、绝缘体等,可以制备单层膜、多层膜以及复合膜 。
离子束沉积的缺点是设备成本较高,且需要较高的真空度 条件。
03
CATALOGUE
光学薄膜的性能参数
光学薄膜及制备教程
当膜层的光学厚度为中心波长的四分之一时,则两个 复振幅反射率的矢量方向完全相反,合矢量的模最小,此时 有
r r1 r2
若要出现零反射的情况,要求
r1 r2
即,
n0 n1 n1 n2 n0 n1 n1 n2
化简得
n1
n0 n2
因此,理想的单层减反膜的条件是:膜层的光学厚 度为1/4波长其折射率为入射介质和基片介质折射率乘积 的平方根。
2.2 介质反射膜
介质反射膜特点: 反射率高 性能稳定 不易受损伤 对入射角敏感 带宽窄
介质反射膜应用场合: 多元件复杂光学系统 激光谐振腔 高功率激光 不要求宽带的场合
介质反射膜的结构是在折射率为ns基片上镀制光学厚度为 λ0/4的高折射率(n1)膜层,由于空气/膜层和膜层/基片界 面的反射光同相位,是反射率大大增加。该中心波长λ0的光 垂直入射时的反射率为
1.2.3 多层减反膜
常用的三层减反膜是“λ/4-λ/2-λ/4”膜系。对于中心 波长来说,λ0/2光学厚度的膜层为“虚设层”,对反射率没有 影响,与“λ/4-λ/4”的双层减反膜效果相同。但是λ/2膜层 对其他波长有影响,选择适当的折射率值,可以使反射特性曲 线变得平坦。
2.高反膜
高反膜的作用:增加介质间界面反射,减少损耗。 应用:光学仪器、激光器等
金膜
红外区高反射率(~95%)
强度和稳定性比银膜好
与玻璃基片的附着性差,常用铬膜作为衬底层 不能擦洗
由于多数金属膜较软,容易损坏,常常在金属膜外面 加一层保护膜。这样既能改进强度,又能保护金属膜不受 大气的侵蚀。 对于光学仪器中的反射镜,单纯金属膜的特性已能够 满足常用要求。但是某些场合,如多光束干涉仪、高质量 激光器的反射膜等,由于金属膜的吸收损失较大,故应采 用地吸收、高反射率的介质高反射膜。
光学薄膜原理
E
r 0
)
N1(k0
E
t 1
)
N
0
E
i 0
N
0
E
r 0
N
1
E
t 1
N
0
(
E
i 0
E
r 0
)
N 1 E1t
(2)
(1)×N1-(2)得振幅反射系数:
r
E
r 0
E
i 0
N0 N1 , N0 N1
(1)×N0+(2)得振幅透射系数:
t
E
t 0
E
i 0
2N0 N0 N1
垂直入射时能量反射率和透射率:
12
1 2 E2
1
2 1 H 2
E
12
1 2
E2
1
2 1
H2
( e iδ1 = cosδ1+ i sinδ1, e -iδ1 = cos δ1 - i sin δ1 )
H0=YE0, H2=η2E2
E0
1 Y
cos 1
i
1
sin
1
i sin
1 cos
1
1
1
2
E
2
B
C
光学薄膜的基本原理
第一章:光学薄膜设计的理论基础
第一节: 电磁波及其传播 第二节: 单界面的反射和折射 第三节: 单层薄膜的传输矩阵 第四节: 多层薄膜的分析方法
第二章:典型薄膜系统的设计
第一节: 增透膜(减反射膜) 第二节: 分光膜 第三节: 高反射膜 第四节: 干涉截止滤光片 第五节: 带通滤光片
第一章
光学薄膜设计的理论基础
第一节 电磁波及其传播
光学薄膜资料
02
介质膜材料
• 氧化铝、氧化锆、氟化镁等
• 具有高透射率、低损耗等特点
• 常用于透射膜、增透膜等
03
复合膜材料
• 金属与介质材料的复合
• 可以实现多种光学性能的兼容
• 常用于抗反射膜、波长选择膜等
光学薄膜在光学仪器中的应用
镜头
⌛️
• 减少反射损耗,提高成
像质量
• 增加透光率,提高光能
利用率
• 实现特定功能,如偏振
光学薄膜:原理、应用与制造技术
DOCS SMART CREATE
CREATE TOGETHER
DOCS
01
光学薄膜的基本概念与原理
光学薄膜的定义与分类
光学薄膜的定义
• 是一种具有特定光学性能的薄膜材料
• 可以通过控制薄膜的厚度、折射率等参数来实现特定的光学效果
• 在光学系统中起到重要作用,如提高成像质量、降低损耗等
常见失效模式
• 膜层脱落:薄膜在使用过程中,膜层与基材分离
• 裂纹:薄膜表面或内部出现裂纹,影响薄膜性能
• 腐蚀:薄膜在使用过程中,受到环境因素的影响,发生腐蚀
原因分析
• 制备工艺问题:如沉积过程中的温度、压力等参数控制不当
• 材料选择问题:如材料本身的稳定性、耐腐蚀性等性能不足
• 使用环境问题:如环境湿度、温度、紫外线等环境因素的影响
• 折射率仪:用于测量薄膜的折射率
估薄膜的可靠性
• 表面形貌仪:用于测量薄膜的表面形貌
光学薄膜的性能指标与评估方法
性能指标
• 透射率:光线通过薄膜的强度与入射光强度的比值
• 反射率:光线在薄膜表面反射回原方向的强度与入射光强度的比值
• 折射率:光线在薄膜中传播时,光线的传播方向与薄膜法线之间的夹角与入射角
光学薄膜膜系设计
P—偏振光
R = r12 + r22 = 1,
φ = tan−1(r2 / r1)
16
第二介质是吸收介质的情况
n0 sinθ0 = (n1 − ik1)sinθ1
sinθ1 = n0 sinθ0 /(n1 − ik1) ,
cosθ1 = 1− [n0 sinθ0 /(n1 − ik1)]2
η1s = (n1 − ik1) cosθ1 = n12 − k12 − n02 sin2 θ0 − 2in1k1 = ±α ± iβ
10
反射光和透射光的振幅和反射位相
约定电场和磁场的方向
H•0+lE0+
×
H 0 −lE0 −
•
H1lE1
系数)
E0tan = E0+tan +E0−tan =E1tan
H 0 tan
=
H+ 0 tan
+
H− 0 tan
=
H1tan
H0 tan
=
y0 E0+ tan
−
y0
E− 0 tan
=
y1E1tan
β >0, 光波在吸收介质中按指数衰减
如果 α > 0, 第四象限 α < 0 , 第三象限
(n1 − ik1) cosθ1 = n12 − k12 − n02 sin2 θ0 − 2in1k1
=(ρeiφ)1/2 = ρ e 1/2 iφ/2
17
φ 第三象限, φ / 2 一定在第二象限或第四象限。
振幅反射系数(菲涅尔反射
r
=
E0−
/ E0+
=
E− 0 tan
/
第四章 光学薄膜的设计理论
相继矢量之间的夹角
矢量图
有效界面法 单层介质薄膜的光学特性
由于上式第二项开始是无穷递减的等比数列,所以
这说明单层膜的两个界面可以用一个等效界面来表示, 因此可以用递推法或矩阵法把单层膜反射系数推广到任 意层膜的场合,这就是菲涅耳系数的递推法和矩阵法。
有效界面法或Smith方法,其基本思想是使选定的膜层从 膜系中分离出来,整个膜系组合可以用两个有效界面表 示,只要考虑一膜层中的多次反射,对多层膜特性就可 以分析,全部要求在于求出选定层两侧子膜系的反射系 数和透射系数。
缓冲层与虚设层的关系 虚设层是有效光学厚度等于半波长或其整数倍,在参 考波长处它对薄膜系统的特性没有影响,也即只要保持 光学厚度不变,折射率的任何变化不改变整个多层膜在 参考波长处的光学特性 缓冲层在保持R1=0或R2=0条件下,其厚度是可以任 意改变的。 他们都提供了一个额外的设计变量来满足其他波长或倾斜 入射是另一偏振分量的光学特性要求。
对称膜系的等效层 单层膜的特 征矩阵:
虽然对于无吸收的介质膜系,其矩阵元M11和M22为实数, M12和M21为纯虚数,而且行列式值为1,但一般来说,M11不 等于M22,因此不能和一个单层膜等效。 但对于以中间一层为中心,两边对称安置的多层膜,却具 有单层膜特征矩阵的所有特点,在数学上存在一个等效层。
此式的重要特点是 相位关系和振幅关 系可分别研究 在特定类型滤光片设计中有重要价值
缓冲层概念
从上式可以看出,当选定层任意一侧的反射率为零,即
R1 0或R2 0或R1 R2 0
T T2或T T1或T 1
与选定层的厚度无关,即选定层的厚度变化不影响整个多 层膜的反射率(或透射明数学上存在等效层的概念
特征矩阵为
Chapter10 薄膜系统的设计
图10-4
单层增透膜的矢量图
矢图 量1 图0 - 4 单 层 增 透 膜 的
从矢量图上可以看到,合振幅反射 系数矢量r随着r1和r2之间的夹角21而 变化,合矢量端点的轨迹为一圆周。当 膜层的光学厚度为某一波长的四分之一 时,则两个矢量的方向完全相反,合矢 量成为最小。 r=|r1-r2|,光强反射率R=r2
1)减少反射的需要 例如,折射率为1.52的冕牌玻璃,每个表 面的反射约为4.2%左右。折射率较高的火石玻 璃,则表面反射更为显著。这种表面反射造成 了两个严重的后果:1)光能量损失,使像的亮 度降低;2)表面反射光经过多次反射或漫射, 有一部分成为杂散光,最后也到达像平面,使 像的衬度降低,从而影响系统的成像质量(对 比度)。特别是电视、电影摄影镜头等复杂系 统都包含了很多个与空气相邻的表面,如不敷 上增透膜将完全不能应用。
提高单层膜性能的途径 然而基本上有两个途径可以提高单 层膜的性能,即: 1)采用变折射率的所谓非均匀膜:它的折 射率随着厚度的增加呈连续的变化; 2)或者采用几层折射率不同的均匀薄膜构 成增透膜,即所谓多层增透膜。 目前应用得更为广泛的是采用几层 折射率不同的均匀薄膜。
(二)双层增透膜
对于单层氟化镁膜来说,冕牌玻璃的折 射率(1.52)是太低了。为此,我们可以在玻 璃基片上先镀一层0/4厚的、折射率为n2的 薄膜,这时对于波长0来说,薄膜和基片组 合的系统可以等价为一假想基片,其折射率 为Y=n22/ng。显然, 当n2>ng时,有Y>ng。 也就是说,在玻璃基片上先镀一层高折射率 的0/4厚的膜层后,基片的折射率好象从ng 提高到n22/ng ,然后镀上0/4 厚的氟化镁膜 层就能起到更好的增透效果。
增透膜(减反射膜)(续)
一部分入射光将被减反射膜的上、下两 个界面反射回去,两者的反射光均存在于折 射率比相邻媒质更低的媒质内。所以,为保 证相对相移为1800(两光束发生相消干涉), 膜层的光学厚度应为/4,此时,两束光的 总相差将对应于2×/4,即为1800。 因此,简单的减反射膜即为折射率等于 基片折射率的平方根,而光学厚度为/4的 单层膜。 (见图10-1)。现在已有了其他更好 的减反射膜,它所包含的膜层数更多,增透 的波段更宽。
光学薄膜的原理和用途
光学薄膜的原理和用途光学薄膜是一种由多层材料组成的光学元件,其工作原理是利用材料的不同折射率和反射率,控制不同波长的光线在薄膜中的传播和反射。
它广泛应用于激光器、显示器、太阳能电池等领域。
一、光学薄膜的原理光学薄膜的原理是基于电磁波在介质中传播的性质。
当电磁波穿过介质边界时,会发生反射、透射和折射等现象。
这些现象与介质的折射率、反射率、入射角、波长等参数有关系。
光学薄膜利用了这些参数不同的特点,通过多层薄膜的组合来控制波长和相位的变化,以达到特定的光学性能。
基本的光学薄膜结构由几个不同折射率的层组成,其中高折射率层与低折射率层间相互堆积。
在其工作原理中,高折射率的层可以起到反射光线的作用,低折射率层可以控制光线的传播和相位的变化。
光学薄膜的厚度通常不到光的波长的1/4,这样可以形成光的干涉作用,实现特定波长范围内的衍射和反射。
薄膜的折射率决定了反射的强度和相位变化的大小,因此不同类型的薄膜需要不同的材料作为构成元件。
二、光学薄膜的用途光学薄膜广泛应用于各种光学器件中,包括滤光镜、反射镜、折射镜、透镜等。
以下是几种常见的光学薄膜应用。
1. 滤光镜滤光镜是一种可以选择性过滤掉某些波长的光线的光学元件。
滤光镜的原理就是利用光学薄膜的多层组合结构,对特定波长的光线进行反射或衍射,从而实现波长的选择性过滤。
滤光镜通常用于医学、电子、摄影等领域。
2. 反射镜反射镜是光学薄膜的另一种应用。
反射镜的原理是利用介质边界的反射现象,将入射光线反射回去,从而实现将光线在一个方向上聚焦或成像的功能。
反射镜通常用于望远镜、显微镜、激光器及激光打印机等领域。
3. 折射镜折射镜是利用光线在介质之间折射的现象制成的光学元件。
折射镜的原理同样是通过多层薄膜的组合来控制波长和相位的变化,以达到折射光线的效果。
折射镜通常用于显微镜、望远镜等成像设备。
4. 透镜透镜是利用透明介质对光线的折射和反射的现象来实现成像的光学元件。
透镜通常用于相机、显微镜、望远镜等成像设备中。
光学设计知识点概括大全
光学设计知识点概括大全光学设计是应用光学原理和技术进行光学系统设计的过程。
它涉及到光学元件的选择、布局和参数优化等方面的内容,旨在实现光学系统的目标性能。
本文将概括介绍光学设计的一些知识点,包括光学成像、光学系统设计方法和一些常见的光学设计软件等。
一、光学成像1. 光学成像原理:介绍光线传播、折射和反射等光学基本概念,阐述成像的本质和条件。
2. 成像表达方式:介绍光学成像的表达方式,如物方和像方的光线追迹法,相差法和矩阵法等。
3. 成像质量评价:介绍光学成像的质量评价方法,如像差理论、MTF(Modulation Transfer Function)等。
二、光学系统设计方法1. 光学系统设计流程:介绍光学系统设计的一般流程和步骤,包括需求分析、光学元件选择和系统优化等。
2. 光学系统的设计参数:介绍光学系统设计中的一些重要参数,如焦距、孔径、视场角、像面尺寸等。
3. 光学设计软件:介绍一些常见的光学设计软件,如Zemax、Code V和LightTools等,以及它们的基本使用方法和特点。
三、光学元件设计1. 透镜设计:介绍透镜设计的基本原理和常见的透镜类型,如球差、彗差和像散等。
2. 反射镜设计:介绍反射镜设计中的一些重要问题,如曲面型状、反射镜面材料选择和镀膜等。
3. 光学薄膜设计:介绍光学薄膜设计的一般步骤和方法,以及如何优化薄膜的性能指标。
四、光学系统的优化1. 成本效益优化:介绍如何在光学系统设计中平衡成本和性能,考虑制造和装配的限制。
2. 杂散光和干扰优化:介绍如何减少光学系统中的杂散光和干扰,提高系统的信噪比和图像质量。
3. 系统性能评估:介绍光学系统性能评估的方法和指标,如光束质量、轴向色差和场曲率等。
总结:光学设计是一门综合性的学科,涉及到光学理论、光学元件以及系统工程等多个领域。
本文对光学设计的一些知识点进行了概括,包括光学成像、光学系统设计方法和常见的光学设计软件等,旨在提供基本的理论和方法,帮助读者了解光学设计的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B M 11 M 21 1 C M M 12 22 g
S
其透过率公式为
T
0 B C 0 B C *
40 g
计算截止波长处透过率的关键:怎么从特征矩阵出发确定截 止波长?也就是说在截止波长处的特征矩阵有什么特征?
由于单层膜只有一个零反射点,故常用多层膜或相同 的基本周期匹配。
b
a
添加匹配膜层的长波通干涉截止滤光片光谱特性, (a)
1.0 (0.5HL 0.5H)15 1.52
nH=2.3,nL=1.56
(b)
1.0 (0.5HL 0.5H)12 0.95(0.5HL 0.5H) 3 1.52
UV-Cut
抑制高级次高反射带能实现通带的展宽。
截止滤光片的斜入射
S,p光谱曲线分离
平板分色镜的偏振效应
胶合立方棱镜的偏振效应
胶合立方棱镜的偏振效应比平板型严重得多?
截止波长和截止带中心的透过率(了解)
对周期性膜系(0.5LH0.5L)S或(0.5HL0.5H)S,由等效界面理论 求特征矩阵
M 11 M 12 M 21 M 22
IR-Cut
UV-Cut和IR-Cut
截止带的展宽:可以采用把两个或数个截止滤光片的截 止带拼接起来达到展宽截止的目的
1
2
冷光镜的光谱特性
通带的展宽:以λ/4膜堆为主体的长波通干涉截止滤光片, 其长波通带一直延伸至膜料和基片的吸收限,通带宽带是 足够的。但是对于短波通干涉截止滤光片来说,由于其存 在高级次的截止区,所以它的通带宽度是有限的。
膜层特性介绍 干涉截止滤光片的基本膜系类型也是 周期性多层膜系 (LH)s。这类膜系的基本特征是一连串的高反带间隔以一
连串的高透带。
高反
短波通
长波通
所以,这类膜系: 1 )并不能实现以某一波长为界,一侧高透,另一侧高反 (没有任何膜系能实现)。只是在某一有限的波段,实现 以某一波长为界实现一侧高透,另一侧高反。 2 )即使是同一种周期性的膜堆 (LH)s ,也是既可以做短波 通滤光片,也可以做长波通滤光片。 3)高反镜、分束镜都是利用它的反射带,而滤光片是既用
S 足够大,有
T
H L
S
L H
S
H L
2S
16 0 g
0
g
2
0 g p p
2
设计截止滤光片的步骤: 1) 根据要求,决定选什么膜系结构; 2) 选择膜层材料; 3) 计算截止波长、截止带宽、通带; 4) 计算通带的透过率以及截止和过渡特性; 5) 检验这些参数是否满足要求,并且进一部修改设计或得
L L For( H ),2 L H 2 2 E
2 2 (n H n L ) 2 nL nH n [ cos ] 2n H n L 2n H n L 2 2 (n H n L ) 2 nL nH cos 2n H n L 2n H n L 2 L
L HLHL 2
1 2 i p 2 0 i 2 1 2 p iq
i q 0 i 0 p
i p 0 ... 0 i q
i q 0 i 0 p
i p 1 2 i p 2 0 i 2 1 2 p
法布里-珀珞滤光片的特性
间隔层 反射膜 间隔环 平板
ta
入射光方向
j0
码像机、CCD成像 扰,提高光学质量。
电视系统、数字投影仪器数
探测系统。用于抑制红外光热辐射的干
典型的反热镜技术指标:
近红外反射大于95%(典型值97%) 可见光透射大于90%(典型值93%) 冷光镜:反射可见光,透过近红外,属于长波通滤光片。 用于太阳能电池滤紫外(免受紫外辐射) CCD摄像系统的红外介质滤光片:隔离红外噪声,改善图 像的信噪比,提高成像质量。
§2.5 带通滤光片
带通滤光片:在一定的波段内,只有中间一小段是高透过 率的通带,而在通带的两侧是高反射率的截止带。 主要参数:
中心波长(峰值波长);
中心波长处的透过率; 通带宽度:透射率降为峰值透过率一半的波长宽度。 两种典型结构: 1 )由一长波通膜系和一短波通膜系的重叠带波段形成的通 带。其特点为较宽的截止带和较深的截止度,但不易得到窄 的通带宽度。 2)Fabry-perot(F-P)干涉仪式的滤光膜系。其特点为可得 到很窄的通带宽度,但截止带也较窄,截止度也浅。
For(
H H L ),2 H L 2 2
2 2 (n H n L ) 2 nH nL n [ cos ] 2n H n L 2n H n L 2 2 (n H n L ) 2 nH nL cos 2n H n L 2n H n L 2 H
E
良好短波通滤光片的膜系为:
它的反射带,又用它的透射带。
干涉滤光片既要关心它的反射特性,又要注意它的透射特性。
通带中存在有明显的波纹,当波纹较大时会严重地损害透射带 的性能,可以修正膜系以压缩或消除这些波纹。如果λ/4膜堆 L ) 或 ( ) 层,不会大幅改变膜系的性能,这样 的两侧各加一个( H 2 2 可把标准的λ/4膜堆转化为一个标准的对称周期结构。
短波通滤光片的典型特性
长波通滤光片的典型特性
滤光片的特性通常由下 列参数确定: (1)透射曲线开始上升(或下降) 时的波长,以及此曲线上升(或下 降)的许可斜率。定义截止陡度:
80% 5% S 100 15%
过渡区中透射率为50%时对应 的波长常被称为截止波长λc
(2)高透射带的光谱宽度、平均透射率以及在此 透射带内许可的最小透射率。 (3)反射带(或称抑制带)的光谱宽度以及在此范 围内所许可的最大透射率。
§2.4 干涉截止虑光片
1)什么叫干涉截止滤光片:利用多光束干涉原理,让某一
波长范围的光束高透,而让偏离这一波长区域的光束变为
高反的光学膜片。
2)种类:
长波通滤光片:让比某波长长的光束通过而滤掉比那波 长短的光束。 短波通滤光片:让比某波长短的光束通过而滤掉比那波 长长的光束。 带通滤光片:让某窄区段的波长光束通过而滤掉此区以 外的光束。
S S i S S p q p q g p q p B 1 q p C 2 S S S S p q i p q p g q p q p
干涉截止滤光片的基本膜系是周期性多层膜系(LH)s。实际使 用时往往将该膜系的两侧各加一/8膜层,即两种可能结构:
H H L L LHLHLH ...LHL , 或 HLHLH ...LH , 可统称为 2 2 2 2 (0.5pq0.5p)周期性膜系,即
H LHLH 2
H H H s L ( L ) 2 2 2
出适当的结论。
4)应用
彩色分光膜:将一束光分为不同颜色的几个部分。
T
T
T
1) 关键:减少偏振效应。
两种彩色分光系统
2) 方法:减小入射角(<22.5)。
应用:彩色电视、彩色印刷、彩色打印(复印)等。
反热镜和冷光镜
反热镜又称反红外滤光片 : 透过可见光,
滤去红外辐射,消除热效应。属短波通
滤光片。截止波长在0.7m附近。
压缩波纹的方法
0- g R1 + 0 g
0-E2 g , R2 + E2 g 0
2
2
选取适当的对称膜系,使得在透射带内的等效折射率等于
基质的折射率即使R1=R2。本质是选膜层材料,要求基片表
面的反射损耗要小,但对于不同的基底不一定有合适的膜 层材料。 1) 改变基本周期的膜层厚度,使等效折射率更接近于预期 值。同样要求基片折射率要低,反射损耗小。这种方法可
在整个透射带,透过率在两个极值之间振荡:
0- g R1 + 0 g
2膜厚 4 的偶数倍, 层变为虚设层 0-E g R2 + E2 0 g
2
2
膜厚4的奇数倍
产生波纹的原因:
1)等效光学导纳失配(波纹的幅度)(R1-R20); 2)等效位相厚度随波长变化。
可见光可以,红外区损耗大。
2) 在多层膜的每一侧加镀匹配层(/4层),使它与基质以 及入射介质匹配。插入层相当于多层膜界面的减反膜。
1 0 E , 3 g E
基本思想:
G / 匹配层 (
H H S L ) 匹配层 / A 2 2
n0
E'
E
E"
ng
E ' n0 E
E " ng E
cos S 1, sin S 0, and E 0 or
视具体膜系组合而定
计算截止带中心的透过率(了解)
在截止带中心,膜层 可表示为:
p p p p qpqpq qpqpq q 2 2 2 2
s
根据4膜厚和2膜厚的特征矩阵,总膜系的特征矩阵为:
等效导纳
g(λ0/λ) E
(H:2.35, L:1.45)
0.5L H 0.5L
E
0.5H L 0.5H
0.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1.84