行程问题中的相遇问题ppt课件
合集下载
课件PPT《相遇问题》
03
04
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
我已经掌握了相遇问题的基本 概念和公式,能够解决简单的 相遇问题。
预告下节课内容
下节课我们将学习追及问题,探讨两 个物体在同一路线上同向而行,速度 快的物体追上速度慢的物体的问题。
解决这类问题通常需要综合运 用速度叠加原理、相遇时间计 算公式以及逻辑推理等方法。
通过分析问题的本质和建立数 学模型,可以逐步推导出问题 的答案。
05
火车过桥与错车中的相遇问题
火车过桥时间计算
桥长+车长=速度×时间 (桥长+车长)÷速度=时间
(桥长+车长)÷时间=速度
两列火车错车时间计算
(甲车长+乙车长)÷速度和=错车时间 速度和×错车时间=甲车长+乙车长
顺流而下与逆流而上相遇时间计算
当两个物体在同向流动的水中 相遇时,顺流而下的物体会比 逆流而上的物体更快地相遇。
相遇时间可以通过以下公式计 算:相遇时间 = 路程和 / (顺 流速度 + 逆流速度)。
其中,顺流速度 = 船速 + 水 速,逆流速度 = 船速 - 水速。
复杂流水行船相遇问题解析
在复杂的流水行船相遇问题中, 可能需要考虑多个物体的速度、 水流速度以及它们之间的相对 位置等因素。
02
直线相遇问题
同向而行求相遇时间
02
01
03
速度差×相遇时间=路程差 路程差÷速度差=相遇时间 路程差÷相遇时间=速度差
相向而行求路程和
行程问题中的相遇问题PPT课件
一、回顾练
习1、甲的速度是每小时行4千米,则他x小时行
( 4X )千米.
2、乙3小时走了x千米,则他的速度( x 千米/时).
3
3、甲每小时行4千米,乙每小时行5千米,则甲、
乙 一小时共行( 9 )千米,y小时共行
( 9y )千米.
4、某一段路程 x 千米,如果火车以49千米/时的
速度行驶,那么火车行完全程需要( x )
s甲s乙s总
s先s甲s乙s总
第11页/共14页
当堂达标
1.甲、乙两站相距284千米,慢车从甲站开往乙 站,每小时行48千米,慢车出发1小时后,有一 快车从乙站开往甲站,每小时行70千米,设快车 出发x小时后与慢车相遇,则所列方程正确的是
()
A.70x+48(x-1)=284 B.70x+48(x+1)=284
第13页/共14页
感谢您的观看!
第14页/共14页
C.70(x-1)+48x=284 D.70x-48(x+1)=284
2.甲、乙两地路程为180千米,一人骑自行车从甲
地出发每时走15千米,另一人骑摩托车从乙地
出发,已知摩托车速度是自行车速度的3倍,若
两人同时出发,相向而行,问经过多少时间两
人相遇?
第12页/共14页
作业
课本P107页第10题 P112页第6题
小结:这节课我们学习了行程问题中的相遇。
归纳如下:
相遇
A车路程
B车路程
相等关系:A车路程+B车路程=相距路 程
相等关系: B车路程 = A车先路程 + A车后行路程 或 B车路程 = A车路程 + 相距路程
第10页/共14页
习1、甲的速度是每小时行4千米,则他x小时行
( 4X )千米.
2、乙3小时走了x千米,则他的速度( x 千米/时).
3
3、甲每小时行4千米,乙每小时行5千米,则甲、
乙 一小时共行( 9 )千米,y小时共行
( 9y )千米.
4、某一段路程 x 千米,如果火车以49千米/时的
速度行驶,那么火车行完全程需要( x )
s甲s乙s总
s先s甲s乙s总
第11页/共14页
当堂达标
1.甲、乙两站相距284千米,慢车从甲站开往乙 站,每小时行48千米,慢车出发1小时后,有一 快车从乙站开往甲站,每小时行70千米,设快车 出发x小时后与慢车相遇,则所列方程正确的是
()
A.70x+48(x-1)=284 B.70x+48(x+1)=284
第13页/共14页
感谢您的观看!
第14页/共14页
C.70(x-1)+48x=284 D.70x-48(x+1)=284
2.甲、乙两地路程为180千米,一人骑自行车从甲
地出发每时走15千米,另一人骑摩托车从乙地
出发,已知摩托车速度是自行车速度的3倍,若
两人同时出发,相向而行,问经过多少时间两
人相遇?
第12页/共14页
作业
课本P107页第10题 P112页第6题
小结:这节课我们学习了行程问题中的相遇。
归纳如下:
相遇
A车路程
B车路程
相等关系:A车路程+B车路程=相距路 程
相等关系: B车路程 = A车先路程 + A车后行路程 或 B车路程 = A车路程 + 相距路程
第10页/共14页
《相遇问题》课件ppt
多个物体在不同时间、不同方向相遇:需要综合考虑时间 和空间因素,建立更为复杂的数学模型。
三维空间中的相遇问题
物体在三维空间中相遇,需要考虑垂直和水平方向的距离:需要使用三维坐标系 和向 Nhomakorabea计算方法。
考虑空气阻力、重力等因素:三维空间中物体的运动还受到重力和空气阻力的影 响,因此需要综合考虑这些因素。
物理方法
总结词
利用物理学的原理和方法来求解相遇问题
详细描述
物理方法通常涉及到速度、加速度等物理概念。通过对物体的运动过程进行分析 ,建立相关的物理方程,从而求解相遇问题。在某些情况下,还可以使用动能定 理、动量定理等物理定理来简化问题的求解
03
相遇问题的实际应用
追及问题
总结词
在直线运动中,两人或多个物体同时从不同位置出发,在相 对运动中不断靠近或远离的问题。
总结词
在环形的跑道上,多个人或物体同时从不同位置出发,不断追逐相遇的问题。
详细描述
环型跑道问题需要考虑不同方向上的相对运动,需要分析每圈运动中各物体的相 对位置和速度变化,列出方程求解。
火车相遇问题
总结词
两列火车同时从不同的火车站出发,在相对运动中相遇的问 题。
详细描述
火车相遇问题需要考虑火车自身的长度和速度,同时还需要 考虑两列火车相对速度的变化。需要分析运动过程,列出方 程求解。
解决方法和思路
解析法
通过对相遇问题的数学模型进行解析,得出解决问题的公式和方法。
综合法
通过画图、分析运动过程、找出等量关系等方法,综合解决相遇问题。
经典例题解析
两辆汽车相向而行,在一条直线上,已知两车之间的距离和 两车行驶的速度,求两车相遇的时间。
两艘船同时出发,相向而行,在一条直线上,已知两船之间 的距离和两船行驶的速度,求两船相遇的时间和相遇的位置 。
三维空间中的相遇问题
物体在三维空间中相遇,需要考虑垂直和水平方向的距离:需要使用三维坐标系 和向 Nhomakorabea计算方法。
考虑空气阻力、重力等因素:三维空间中物体的运动还受到重力和空气阻力的影 响,因此需要综合考虑这些因素。
物理方法
总结词
利用物理学的原理和方法来求解相遇问题
详细描述
物理方法通常涉及到速度、加速度等物理概念。通过对物体的运动过程进行分析 ,建立相关的物理方程,从而求解相遇问题。在某些情况下,还可以使用动能定 理、动量定理等物理定理来简化问题的求解
03
相遇问题的实际应用
追及问题
总结词
在直线运动中,两人或多个物体同时从不同位置出发,在相 对运动中不断靠近或远离的问题。
总结词
在环形的跑道上,多个人或物体同时从不同位置出发,不断追逐相遇的问题。
详细描述
环型跑道问题需要考虑不同方向上的相对运动,需要分析每圈运动中各物体的相 对位置和速度变化,列出方程求解。
火车相遇问题
总结词
两列火车同时从不同的火车站出发,在相对运动中相遇的问 题。
详细描述
火车相遇问题需要考虑火车自身的长度和速度,同时还需要 考虑两列火车相对速度的变化。需要分析运动过程,列出方 程求解。
解决方法和思路
解析法
通过对相遇问题的数学模型进行解析,得出解决问题的公式和方法。
综合法
通过画图、分析运动过程、找出等量关系等方法,综合解决相遇问题。
经典例题解析
两辆汽车相向而行,在一条直线上,已知两车之间的距离和 两车行驶的速度,求两车相遇的时间。
两艘船同时出发,相向而行,在一条直线上,已知两船之间 的距离和两船行驶的速度,求两船相遇的时间和相遇的位置 。
小升初奥数行程问题--相遇问题精选教学PPT课件
•
九、没有人不想和你同坐一辆豪华轿车 ,但你 需要的 ,却是 轿车坏 了还会 和你一 起搭巴 士的人 。
•
十、我喜欢你的意思就是:从现在起, 你已经 具备伤 害我的 能力, 以及不 好意思 我看谁 都像情 敌。
•
十一、不相信下辈子,只想善待你今生 。因为 我不知 道,下 一辈子 是否还 能遇见 你,所 以我今 生才会 那么努 力把最 好的给 你。
A 甲
80米 C
第一次
第二次 D
60米
B 乙
例6.小张与小王分别从甲乙两地同时出发,在两地之间往返行驶 (到达另一地后就立即返回),他们在离甲地3.5千米处第一 次相遇,在离乙地2千米处第二次相遇。问他们两人第四次相 遇的地点离乙地多远?(相遇指迎面相遇)
看图解析
第三次
小张
3.5千米
甲
C
8.5千米
•
五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。
•
六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
•
七、最让人羡慕的,不是被很多人追, 而是遇 见一个 不管怎 样,都 不会放 弃你的 人;纵 然知道 活不会 这么轻 易,但 我希望 你在我 的未来 里,余 生都是 你。
答:求A、B两地之间的距离是210米。
第二次 第一次 150米 甲
120米 A
B 乙
例5. A、B是圆的直径的两端点,甲在A
点,乙在B点同时出发反向而行,他
们在C点第一次相遇,C点离A点有
80米,在D点第二次相遇,D点离B
A 甲
点有60米,求这个圆的周长?
D
B 乙
(完整版)相遇问题优质ppt讲义
(50+65)×6=690(千米) 860-690=170(千米)
例题
一辆汽车和一辆摩托车同时从相距860千米的两地相向开出。汽车的速度是50千米/时, 摩托车的速度是65千米/时,6小时后两车相距多少千米?10小时后呢?
10小时
汽车
摩托车
②
(50+65)×10=1150(千米) 1150-860=290(千米)
导 学 一 : 先出发或故障问题
例题
1、甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时 行驶41千米,乙车先出发2小时后,甲车才出发,求从出发到相遇经过几小时?
解析:甲乙出发时间有先后,乙车先行驶的2小时路程不是甲乙两车同时相对而行的路程
总路程 :770-2×41= 698(千米) 速度和: 41+45=86(千米 ∕小时) 时间: 698÷86=8 (小时)
总结
相遇问题
先先出发或故障问
相遇过头问题
注意相遇总路程
相遇问题→未相遇时, 路程和<总路程
相遇过头,路程和>总路程
总结
相遇问题
中点问题
1、与中点有关的相遇问题→ 找路程差
2、找速度差 3、 求出相遇时间→路程差÷
速度差
数学思考:
生与死
从前,在某个国家里有这样一个习俗,每个被判处死的犯人,在处死前要抽一次签,这是他起死回
我爱展示
1、妈妈从家出发到学校接小红,妈妈每分钟走75米,妈妈走了3分钟后,小红从学校出 发,小红每分钟走60米。从小红家到学校有2925米,再经过多少分钟妈妈和小红相遇 ?
解析:1、 妈妈先出发了( 3 )分钟,也就是走了( 225)米
2、小红与妈妈共同行走的总路程为( 2925-225=2700(米 ) ) 3、速度和为 ( 75+60=135米 ∕ 分钟 )
《相遇问题》课件ppt
详细描述
两车相背而行,即从不同的方向向同一个目的地行驶,途中两车不会相遇。 对于这类问题,我们只需考虑两车行驶的总路程以及两车行驶的时间。
两车环形相遇
总结词
两车环形相遇问题较为复杂,需要考虑多个因素。
详细描述
两车在圆形跑道上行驶,从同一方向出发,途中会相遇一次,这类问题需要考虑 两车行驶的路程、速度以及时间等多个因素。
船相遇
总结词
船相遇问题通常是在海上或者河流中发生的。
详细描述
船相遇问题需要考虑两条船相对速度以及它们相对距离的变化。这类问题通 常需要使用相对速度和相对距离来求解。
04
相遇问题的实际应用
城市交通规划
交通拥堵
城市交通规划需要考虑道路拥堵问题,相遇问题可以确定车辆相遇的概率以及拥 堵产生的概率。
交通枢纽设计
可以进一步探索相遇问题的变体和扩展,例如多物体 相遇、相遇的最短路径等问题。
可以继续完善相遇问题的课件,添加更多的实例和练 习题,以帮助学生更好地掌握相关知识。
THANKS
谢谢您的观看
代数法
总结词
通过列方程、解方程,求解相遇问题中的未知量。
详细描述
代数法是一种通过列方程、解方程的方法,求解相遇问题中的未知量。在代数法中,需要根据相遇问题的实际 情况,列出相应的方程,然后运用代数知识进行求解。需要注意的是,在列方程的过程中,需要将相遇问题中 的所有未知量都表示出来,以便后续的计算。
程序实现
总结词
通过编程实现相遇问题的自动化求解。
详细描述
程序实现是一种通过编程的方法,实现相遇问题的自动 化求解。在程序实现中,需要根据相遇问题的实际情况 ,编写相应的程序代码,然后运行程序进行求解。需要 注意的是,在编写程序的过程中,需要考虑到所有未知 量和计算步骤的影响,以便得到正确的结果。同时,程 序实现可以大大简化求解过程,提高求解效率。
两车相背而行,即从不同的方向向同一个目的地行驶,途中两车不会相遇。 对于这类问题,我们只需考虑两车行驶的总路程以及两车行驶的时间。
两车环形相遇
总结词
两车环形相遇问题较为复杂,需要考虑多个因素。
详细描述
两车在圆形跑道上行驶,从同一方向出发,途中会相遇一次,这类问题需要考虑 两车行驶的路程、速度以及时间等多个因素。
船相遇
总结词
船相遇问题通常是在海上或者河流中发生的。
详细描述
船相遇问题需要考虑两条船相对速度以及它们相对距离的变化。这类问题通 常需要使用相对速度和相对距离来求解。
04
相遇问题的实际应用
城市交通规划
交通拥堵
城市交通规划需要考虑道路拥堵问题,相遇问题可以确定车辆相遇的概率以及拥 堵产生的概率。
交通枢纽设计
可以进一步探索相遇问题的变体和扩展,例如多物体 相遇、相遇的最短路径等问题。
可以继续完善相遇问题的课件,添加更多的实例和练 习题,以帮助学生更好地掌握相关知识。
THANKS
谢谢您的观看
代数法
总结词
通过列方程、解方程,求解相遇问题中的未知量。
详细描述
代数法是一种通过列方程、解方程的方法,求解相遇问题中的未知量。在代数法中,需要根据相遇问题的实际 情况,列出相应的方程,然后运用代数知识进行求解。需要注意的是,在列方程的过程中,需要将相遇问题中 的所有未知量都表示出来,以便后续的计算。
程序实现
总结词
通过编程实现相遇问题的自动化求解。
详细描述
程序实现是一种通过编程的方法,实现相遇问题的自动 化求解。在程序实现中,需要根据相遇问题的实际情况 ,编写相应的程序代码,然后运行程序进行求解。需要 注意的是,在编写程序的过程中,需要考虑到所有未知 量和计算步骤的影响,以便得到正确的结果。同时,程 序实现可以大大简化求解过程,提高求解效率。
人教版五年级上册数学相遇问题(课件)
2、明明与丽丽从相距1200米的两地同时相向而行,明明速度为 每分钟80米,丽丽速度为每分钟70米,当两人相距150米时,明 明已经走了多少米?
例题2
邮车与公共汽车同时由甲城开往乙城,邮车每小时行60千米, 公共汽车每小时行54千米,邮车到达乙地,立即返回甲城,途中 与公共汽车相遇,已知两城相距171千米。问两车从出发到相遇 共用了多少时间?
解析:利用和差问题解题。
速度和:322.5 1.5 21(5 千米/时)
轿车速度:215 25 2 12(0 千米/时)
卡车速度:215-120 9(5 千米/时)
答:轿车的速度为每小时120千米, 卡车的速度为每小时95千米。
练习3
1、甲、乙两车从相距360千米的两地同时相向而行,2.5小时后相遇。已知甲 速是乙速的2倍,求两车速度。
行程问题(相遇)
1.什么是相遇?两个人或车 + 相向而行 路程=速度×时间
2.相遇问题基本公式
相遇路程=速度和×相遇时间
相遇路程÷相遇时间=速度和 相遇路程÷速度和=相遇时间
1、 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时
行6千米,乙每小时行4千米。两人几小时后相遇?
甲
20千米
能够了解相遇的基本条件并能够感知相遇的过程, 通过画图或者运用路程和、速度和、相遇时间三个 量的关系解题
能够体会并掌握数形结合的思想
能准确的求出相遇路程即路程和 能够灵活的运用数量关系来解决相遇问题 能准确的根据图形来解决多次相遇问题
利用图形,具体形象感知分析理解 脱离图形,抽象理解数量关系
复习
1.一辆小汽车每小时行80千米,4小时能行多少千米? 列 式: 80×4 关系式: 速度×时间=路程
例题2
邮车与公共汽车同时由甲城开往乙城,邮车每小时行60千米, 公共汽车每小时行54千米,邮车到达乙地,立即返回甲城,途中 与公共汽车相遇,已知两城相距171千米。问两车从出发到相遇 共用了多少时间?
解析:利用和差问题解题。
速度和:322.5 1.5 21(5 千米/时)
轿车速度:215 25 2 12(0 千米/时)
卡车速度:215-120 9(5 千米/时)
答:轿车的速度为每小时120千米, 卡车的速度为每小时95千米。
练习3
1、甲、乙两车从相距360千米的两地同时相向而行,2.5小时后相遇。已知甲 速是乙速的2倍,求两车速度。
行程问题(相遇)
1.什么是相遇?两个人或车 + 相向而行 路程=速度×时间
2.相遇问题基本公式
相遇路程=速度和×相遇时间
相遇路程÷相遇时间=速度和 相遇路程÷速度和=相遇时间
1、 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时
行6千米,乙每小时行4千米。两人几小时后相遇?
甲
20千米
能够了解相遇的基本条件并能够感知相遇的过程, 通过画图或者运用路程和、速度和、相遇时间三个 量的关系解题
能够体会并掌握数形结合的思想
能准确的求出相遇路程即路程和 能够灵活的运用数量关系来解决相遇问题 能准确的根据图形来解决多次相遇问题
利用图形,具体形象感知分析理解 脱离图形,抽象理解数量关系
复习
1.一辆小汽车每小时行80千米,4小时能行多少千米? 列 式: 80×4 关系式: 速度×时间=路程
相遇问题课件ppt
详细描述
根据两个物体的运动轨迹和相对位置 ,可以建立方程来表示它们在时间或 距离上的关系。通过解方程,可以找 到相遇的时间、地点或距离等关键信 息,从而解决相遇问题。
利用速度和时间关系求解
要点一
总结词
利用速度和时间的关系是解决相遇问题的重要思路之一。
要点二
详细描述
在相遇问题中,两个物体的速度和时间是关键因素。通过 分析它们的速度和时间关系,可以确定它们在何时何地相 遇。例如,如果两个物体以不同的速度相向而行,那么它 们相遇的时间可以通过它们的速度和距离来计算。
距离公式法
总结词
利用距离、速度和时间之间的关系来解决相遇问题。
详细描述
根据距离公式,两个物体在同一直线上运动,一个物体以速度v1从起点出发,另 一个物体以速度v2从另一起点出发,两者将在t时间后相遇。通过解方程得到相 遇时间t,进而确定相遇地点。
运动轨迹法
总结词
通过绘制运动轨迹图来解决相遇问题。
详细描述
这类问题通常涉及到半径、速度和时间的关 系。两物体在圆形轨道上运动,它们分别从 不同的起点出发,沿着相反的方向运动。在 某一时刻,它们相遇。这类问题需要找出两 物体的半径、速度和时间之间的关系,以确 定它们何时相遇。
04
CHAPTER
相遇问题的变种题型
有障碍物的相遇问题
总结词
这类问题涉及到两个物体在运动过程中遇到障碍物,需要计 算它们相遇的时间和地点。
天文问题
如两颗行星在太空中相对 运动,何时何地相遇。
02
CHAPTER
相遇问题的基本解法
相对速度法
总结词
通过比较两个物体的相对速度来解决相遇问题。
详细描述
在相遇问题中,两个物体在同一直线上运动,当它们朝向对方运动时,它们的 相对速度是两者速度之和;当它们背向对方运动时,相对速度是两者速度之差 。通过计算相对速度和距离,可以确定相遇时间。
根据两个物体的运动轨迹和相对位置 ,可以建立方程来表示它们在时间或 距离上的关系。通过解方程,可以找 到相遇的时间、地点或距离等关键信 息,从而解决相遇问题。
利用速度和时间关系求解
要点一
总结词
利用速度和时间的关系是解决相遇问题的重要思路之一。
要点二
详细描述
在相遇问题中,两个物体的速度和时间是关键因素。通过 分析它们的速度和时间关系,可以确定它们在何时何地相 遇。例如,如果两个物体以不同的速度相向而行,那么它 们相遇的时间可以通过它们的速度和距离来计算。
距离公式法
总结词
利用距离、速度和时间之间的关系来解决相遇问题。
详细描述
根据距离公式,两个物体在同一直线上运动,一个物体以速度v1从起点出发,另 一个物体以速度v2从另一起点出发,两者将在t时间后相遇。通过解方程得到相 遇时间t,进而确定相遇地点。
运动轨迹法
总结词
通过绘制运动轨迹图来解决相遇问题。
详细描述
这类问题通常涉及到半径、速度和时间的关 系。两物体在圆形轨道上运动,它们分别从 不同的起点出发,沿着相反的方向运动。在 某一时刻,它们相遇。这类问题需要找出两 物体的半径、速度和时间之间的关系,以确 定它们何时相遇。
04
CHAPTER
相遇问题的变种题型
有障碍物的相遇问题
总结词
这类问题涉及到两个物体在运动过程中遇到障碍物,需要计 算它们相遇的时间和地点。
天文问题
如两颗行星在太空中相对 运动,何时何地相遇。
02
CHAPTER
相遇问题的基本解法
相对速度法
总结词
通过比较两个物体的相对速度来解决相遇问题。
详细描述
在相遇问题中,两个物体在同一直线上运动,当它们朝向对方运动时,它们的 相对速度是两者速度之和;当它们背向对方运动时,相对速度是两者速度之差 。通过计算相对速度和距离,可以确定相遇时间。
相遇问题ppt课件
化学反应的发生需要分子之间发生碰撞并传递能量。通过研究分子碰撞的频率 和能量传递的方式,可以了解反应的速率和机理。
相遇问题在工程中的应用
车辆碰撞
在道路交通安全领域,车辆碰撞是一个重要的问题。通过研 究车辆碰撞的力学特性和碰撞后的损伤程度,可以评估车辆 的安全性能和设计改进方案。
飞机空气动力学
飞机在空中飞行时,其空气动力学性能与相遇问题密切相关 。通过研究飞机的空气动力学特性和飞行性能,可以优化飞 机的设计和操作。
距离变化
在t时刻,两质点各自走过的距离分别是s1(t)和s2(t),则 s1(t)+s2(t)=d。
相遇地点
设两质点的初始位置分别为A和B,则相遇地点C满足 AC=BC。
圆周型相遇问题
01
02
03
04
定义
两个质点分别从圆周上的两点 出发,沿着圆周相向而行,直
到相遇。
距离变化
假设两质点在t时刻相遇,则 他们在t时刻走过的距离之和
数值法的应用实例
相遇问题
两个物体在直线或曲线上运动, 在某一点相遇。可以通过建立运 动方程,使用数值法求解相遇的
时间和位置等信息。
碰撞问题
两个或多个物体发生碰撞,其运 动状态发生改变。可以通过建立 碰撞模型,使用数值法求解碰撞
后的速度、位置等信息。
弹性碰撞
两个物体发生弹性碰撞,其动量 和能量在碰撞前后保持不变。可 以通过建立弹性碰撞方程,使用 数值法求解碰撞前后的速度、位
解析法的基本思想是建立合适的数学模型, 将实际问题转化为数学问题,以便进行精确 求解。
解析法的求解步骤
01
02
03
建立数学模型
根据相遇问题的具体情况 ,建立合适的数学模型, 包括变量定义、方程建立 等。
相遇问题在工程中的应用
车辆碰撞
在道路交通安全领域,车辆碰撞是一个重要的问题。通过研 究车辆碰撞的力学特性和碰撞后的损伤程度,可以评估车辆 的安全性能和设计改进方案。
飞机空气动力学
飞机在空中飞行时,其空气动力学性能与相遇问题密切相关 。通过研究飞机的空气动力学特性和飞行性能,可以优化飞 机的设计和操作。
距离变化
在t时刻,两质点各自走过的距离分别是s1(t)和s2(t),则 s1(t)+s2(t)=d。
相遇地点
设两质点的初始位置分别为A和B,则相遇地点C满足 AC=BC。
圆周型相遇问题
01
02
03
04
定义
两个质点分别从圆周上的两点 出发,沿着圆周相向而行,直
到相遇。
距离变化
假设两质点在t时刻相遇,则 他们在t时刻走过的距离之和
数值法的应用实例
相遇问题
两个物体在直线或曲线上运动, 在某一点相遇。可以通过建立运 动方程,使用数值法求解相遇的
时间和位置等信息。
碰撞问题
两个或多个物体发生碰撞,其运 动状态发生改变。可以通过建立 碰撞模型,使用数值法求解碰撞
后的速度、位置等信息。
弹性碰撞
两个物体发生弹性碰撞,其动量 和能量在碰撞前后保持不变。可 以通过建立弹性碰撞方程,使用 数值法求解碰撞前后的速度、位
解析法的基本思想是建立合适的数学模型, 将实际问题转化为数学问题,以便进行精确 求解。
解析法的求解步骤
01
02
03
建立数学模型
根据相遇问题的具体情况 ,建立合适的数学模型, 包括变量定义、方程建立 等。
五年级数学相遇问题课件ppt
关系式: 路程÷速度=时间
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
以前我们研究的是一个物 体运动的行程问题,今天 我们要研究较为复杂的行 程问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
解:设经过x小时两车相遇. 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
40x+60x = 50
( 40 + 60 ) x = 50
面包车的速度 小轿车的速度 相遇时间 总路程
100X = 50 X = 50 ÷100
相遇时间 总路程 速度和
方解70:法X1+2设一5X00他:X=X=2们=42204经4000÷0过01X2分0钟时间相遇。方==222法44000(二00分÷÷:)(12700+50)
X=20 答:他们经过20分钟时间相遇。 。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
关于相遇,你是怎么理解的?
两个运动物体 两地 相向而行 走完了全程
如果说两人从两地同时出发直到相 遇,说明了什么?
两人所用的时间相同.
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
像这种有两个物 体同时从两地相向而 行直到相遇,有关这 样的应用题叫做“相 遇问题”。
运动结果: 相遇
X = 0.5
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
以前我们研究的是一个物 体运动的行程问题,今天 我们要研究较为复杂的行 程问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
解:设经过x小时两车相遇. 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
40x+60x = 50
( 40 + 60 ) x = 50
面包车的速度 小轿车的速度 相遇时间 总路程
100X = 50 X = 50 ÷100
相遇时间 总路程 速度和
方解70:法X1+2设一5X00他:X=X=2们=42204经4000÷0过01X2分0钟时间相遇。方==222法44000(二00分÷÷:)(12700+50)
X=20 答:他们经过20分钟时间相遇。 。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
关于相遇,你是怎么理解的?
两个运动物体 两地 相向而行 走完了全程
如果说两人从两地同时出发直到相 遇,说明了什么?
两人所用的时间相同.
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
像这种有两个物 体同时从两地相向而 行直到相遇,有关这 样的应用题叫做“相 遇问题”。
运动结果: 相遇
X = 0.5
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A车路程+B车路程 = 相距路程
A 50x
30x B
甲
240千米
乙
解:设B车行了x小时后与A车相遇
依题意,得
50x+30x=240
解得 x=3
答:B车行了3小时后与A车相遇。
.
4
精讲 例题
分
析
例1、 A、B两车分
线段图分析:
别停靠在相距240千米
的甲、乙两地,甲车每 小时行50千米,乙车 每小时行30千米。 (2)若两车同时相向
速度行驶,那么火车行完全程需要( x )
小时.
49
.
2
二、出示目标
• 1.识记行程问题中的路程、速度和时间之间 的关系,能辨别行程问题中的相遇问题.(重 点)
• 2.理解相遇问题的基本分析方法,学会解决 相遇问题(重点、Fra bibliotek点).
3
精讲 例题
分
析
例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每 小时行50千米,乙车 每小时行30千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后与A车相遇?
时行30千米,A车出发 1.5小时后B车再出发。 (2)若两车相向而行,
x 3 8
A 501.5 50x
30x B
请问B车行了多长时间
甲
10
115千米
乙
后两车相距10千米? 50×1.5 + 50x +30x-10 = 115
x小时
.
x 5
9
8
归纳:
在列一元一次方程解行程问题时,我们常画出 线段图来分析数量关系。用线段图来分析数量 关系能够帮助我们更好的理解题意,找到适合 题意的等量关系式,设出适合的未知数,列出方 程。正确地作出线段图分析数量关系,能使我 们分析问题和解问题的能力得到提高。
C.70(x-1)+48x=284 D.70x-48(x+1)=284
2.甲、乙两地路程为180千米,一人骑自行车从甲 地出发每时走15千米,另一人骑摩托车从乙地 出发,已知摩托车速度是自行车速度的3倍,若
两人同时出发,相向而行,问经过多少时间两
人相遇?
.
13
作业
课本P107页第10题 P112页第6题
.
14
s甲 s乙 s总
s先 s甲 s乙 s总
.
12
当堂达标
1.甲、乙两站相距284千米,慢车从甲站开往乙 站,每小时行48千米,慢车出发1小时后,有一 快车从乙站开往甲站,每小时行70千米,设快车 出发x小时后与慢车相遇,则所列方程正确的是
()
A.70x+48(x-1)=284 B.70x+48(x+1)=284
千米?x小时
x =4
.
7
跟踪 练习
分
析
1、 A、B两车分别
线段图分析:
停靠在相距115千米的 甲、乙两地,A车每小 时行50千米,B车每小 时行30千米,A车出发
A 501.5 50x
甲
115千米
相等关系:
30x B
乙
1.5小时后B车再出发。 A车路程+A车同走的路程+ B车同
(1)若两车相向而行, 走
3.4实际问题与一元一次方程
行程问题
.
1
一、回顾练习
1、甲的速度是每小时行4千米,则他x小时行
( 4X )千米.
2、乙3小时走了x千米,则他的速度( x 千米/时).
3
3、甲每小时行4千米,乙每小时行5千米,则甲、
乙 一小时共行( 9 )千米,y小时共行
( 9y )千米.
4、某一段路程 x 千米,如果火车以49千米/时的
.
6
精讲 例题
分
析
线段图分析:
例1、 A、B两车分
别停靠在相距240千米
A
的甲、乙两地,甲车每 甲
50x
30x B
80千米
240千米
乙
小时行50千米,乙车
第二种情况:
每小时行30千米。
A车路程+B车路程-相距80千米=相距路
(2)若两车同时相向 程
而行,请问B车行了多 长时间后两车相距80
50x + 30x - 80 = 240
请问B车行了多长时间
后与A车相遇?
x小时
的5路0×程=1相.5距+路5程0x +30x = 115
.
x = 0.5
8
跟踪 练习
分
析
1、 A、B两车分别 停靠在相距115千米的
线段图分析:
A 501.5 50x 10 30x B
甲、乙两地,A车每小 甲
115千米
乙
时行50千米,B车每小 50×1.5 + 50x +30x+10 = 115
.
10
小结:这节课我们学习了行程问题中的相遇。
归纳如下:
相遇
A车路程
B车路程
相等关系:A车路程+B车路程=相距路 程
相等关系:
B车路程 = A车先路程 + A车后行路程
或
B车路程 = A车路程 + 相距路程
.
11
(一)、相遇问题的基本题型
1、同时出发(两段) 2、不同时出发 (三段 ) (二)、相遇问题的等量关系
A 50x
80千米
甲
240千米
第一种情况:
30x B
乙
而行,请问B车行了多 A车路程+B车路程+相距80千米=相距路
长时间后两车相距80 程 50x + 30x + 80 = 240
千米?x小时
x =2
相等关系:总量=. 各分量之和
5
市实验中学学生步行到郊外旅行。 (1)班学生组成前队,步行速度为4 千米/时,(2)班学生组成后队,速 度为6千米/时。前队出发1小时后, 后队才出发,后队追上前队需要多 长时间?