相似三角形的判定(1)教案

合集下载

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。

二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。

(2)学生掌握相似三角形判定定理1,并了解它的证明。

(3)使学生初步掌握相似三角形的判定定理1的应用。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。

三、教学重难点:重点:掌握相似三角形判定定理1及其应用。

难点:定理1的证明方法。

四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。

(2)、师生共同总结:两角对应相等的两个三角形相似。

2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。

(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案一、教学目标1. 让学生理解三角形相似的概念。

2. 引导学生掌握三角形相似的判定方法。

3. 培养学生运用相似三角形解决实际问题的能力。

二、教学内容1. 三角形相似的定义。

2. 三角形相似的判定方法:AA相似定理、SAS相似定理、RHS相似定理。

3. 相似三角形的性质:对应边成比例、对应角相等。

三、教学重点与难点1. 教学重点:三角形相似的概念、判定方法及性质。

2. 教学难点:三角形相似的判定方法的灵活运用。

四、教学方法与手段1. 教学方法:讲解法、示范法、练习法、小组合作学习法。

2. 教学手段:黑板、多媒体课件、几何模型。

五、教学过程1. 导入新课:通过展示一些生活中的图片,如相似的树叶、钥匙等,引导学生发现相似现象,激发学生的学习兴趣。

2. 讲解三角形相似的概念:给出三角形相似的定义,解释相似三角形的含义。

3. 讲解三角形相似的判定方法:a. AA相似定理:若两个三角形的两边及其夹角分别相等,则这两个三角形相似。

b. SAS相似定理:若两个三角形的两边及它们夹角的夹角分别相等,则这两个三角形相似。

c. RHS相似定理:若两个三角形的斜边及夹在斜边之间的角分别相等,则这两个三角形相似。

4. 讲解相似三角形的性质:对应边成比例、对应角相等。

5. 课堂练习:布置一些有关三角形相似的判断题目,让学生独立完成,巩固所学知识。

6. 总结与拓展:对本节课的内容进行总结,提问学生有哪些实际问题可以运用相似三角形解决,引导学生思考。

7. 课后作业:布置一些有关三角形相似的练习题目,巩固所学知识。

六、教学评价1. 评价目标:检查学生对三角形相似的概念、判定方法和性质的理解及应用能力。

2. 评价方法:课堂练习、课后作业、小组讨论、课堂提问。

3. 评价内容:a. 学生能否正确理解三角形相似的定义。

b. 学生能否熟练运用AA、SAS、RHS相似定理判定三角形相似。

c. 学生能否掌握相似三角形的性质,如对应边成比例、对应角相等。

三角形相似的判定数学教案设计

三角形相似的判定数学教案设计

三角形相似的判定数学教案设计一、教学目标:1. 知识与技能:学生能够理解相似三角形的概念。

学生能够应用AA相似定理、SAS相似定理、ASA相似定理和HL相似定理判定两个三角形相似。

2. 过程与方法:学生通过观察、分析和推理,培养逻辑思维能力。

学生通过小组合作和讨论,提高合作交流能力。

3. 情感态度价值观:学生培养对数学的兴趣和好奇心,激发学习动力。

学生学会运用数学知识解决实际问题,培养应用意识。

二、教学重难点:1. 教学重点:学生掌握相似三角形的判定定理。

学生能够运用判定定理判断两个三角形是否相似。

2. 教学难点:学生理解并应用AA相似定理、SAS相似定理、ASA相似定理和HL 相似定理。

学生解决实际问题,运用相似三角形的知识。

三、教学准备:1. 教师准备PPT,展示相似三角形的判定定理和实例。

2. 教师准备一些实际的三角形图形,用于讲解和练习。

四、教学过程:1. 导入:教师通过展示一些实际的三角形图形,引导学生观察和思考三角形的相似性。

教师提出问题,引发学生对相似三角形的兴趣。

2. 知识讲解:教师讲解AA相似定理、SAS相似定理、ASA相似定理和HL相似定理。

教师通过示例,解释每个定理的应用方法和步骤。

3. 课堂练习:教师给出一些三角形图形,让学生运用判定定理判断是否相似。

教师鼓励学生相互讨论和交流,共同解决问题。

4. 巩固练习:教师给出一些实际问题,让学生运用相似三角形的知识解决。

教师引导学生思考和讨论,帮助学生理解相似三角形的应用。

五、作业布置:1. 学生完成课后练习题,巩固对相似三角形的理解和应用。

2. 学生选择一个实际问题,运用相似三角形的知识解决,并写一篇短文总结解题过程和心得体会。

六、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性,以及与同学的合作交流情况。

2. 作业完成情况:检查学生完成课后练习题的情况,关注学生的解题思路和答案的正确性。

3. 实际问题解决:评估学生在解决实际问题时的思路和方法,以及对相似三角形知识的应用能力。

九年级数学下册人教版27.2.1相似三角形的判定第一课时说课稿

九年级数学下册人教版27.2.1相似三角形的判定第一课时说课稿
4.激励评价:注重对学生学习过程的评价,鼓励他们克服困难、不断进步,提高他们的自信心。
5.课后拓展:布置一些富有挑战性的课后作业,引导学生运用所学知识解决实际问题,提高他们的应用能力。
三、教学方法与手段
(一)教学策略
在本节课的教学中,我将主要采用以下教学方法:
1.情境教学法:通过生活实例引入相似三角形的概念,让学生在具体的情境中感受和理解数学知识。
(四)总结反馈
在总结反馈阶段,我将引导学生自我评价,并提供有效的反馈和建议:
1.学生自我评价:让学生回顾自己的学习过程,总结自己在理解相似三角形概念、判定方法等方面的优点和不足。
2.教师反馈:根据学生的回答和表现,给予及时的评价和反馈,指出他们的错误和不足,并提供改进的建议。
3.课堂小结:对本节课的主要知识点进行总结,强调相似三角形的定义、性质和判定方法的重要性。
2.反思教学方法和策略,根据学生的反馈和学习情况,调整教学方式和内容,以提高教学效果。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.相似三角形的定义:通过展示不同大小的两个三角形,引导学生发现它们的形状相同,从而引入相似三角形的定义。
2.相似三角形的性质:引导学生观察和操作,发现相似三角形的对应边成比例、对应角相等等性质。
3.相似三角形的判定方法:通过具体案例和引导学生进行推理和验证,逐步引导学生掌握AA、SAS、SSS等判定方法。
2.启发式教学法:引导学生通过观察、操作、猜想、验证等方法,自主发现相似三角形的性质和判定方法,培养他们的探究精神。
3.小组合作学习法:组织学生进行小组讨论和问题探究,让他们在合作中交流思想、共享成果,增强团队意识。
4.案例教学法:通过分析具体案例,使学生学会运用相似三角形的判定方法解决实际问题。

三角形相似的判定教案范文

三角形相似的判定教案范文

三角形相似的判定教案一、教学目标:知识与技能:1. 学生能理解相似三角形的概念,掌握三角形相似的判定方法。

2. 学生能够运用相似三角形的性质解决实际问题。

过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、动手能力和表达能力。

2. 学生能够运用转化思想,将复杂几何问题转化为相似三角形问题。

情感态度价值观:1. 学生培养对数学的兴趣,增强自信心,树立克服困难的勇气。

2. 学生学会合作交流,培养团队精神。

二、教学内容:1. 三角形的相似概念:学生通过观察、分析,理解相似三角形的定义。

2. 三角形相似的判定方法:学生掌握SSS、SAS、ASA、AAS四种判定方法,并能灵活运用。

3. 相似三角形的性质:学生了解相似三角形的性质,包括对应边成比例、对应角相等。

三、教学重点与难点:重点:1. 学生掌握三角形相似的判定方法。

2. 学生能够运用相似三角形的性质解决实际问题。

难点:1. 学生理解并灵活运用SSS、SAS、ASA、AAS四种判定方法。

2. 学生解决复杂几何问题,运用转化思想。

四、教学过程:1. 导入:通过展示生活中的实例,引导学生思考三角形相似的概念。

2. 新课导入:介绍三角形相似的定义,引导学生观察、分析,理解相似三角形的性质。

3. 判定方法的学习:讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题让学生动手实践。

4. 课堂练习:设计不同难度的练习题,让学生巩固所学知识。

5. 总结与拓展:总结相似三角形的判定方法,引导学生思考如何运用相似三角形解决实际问题。

五、课后作业:1. 完成课后练习题,巩固三角形相似的判定方法。

教学评价:1. 课后作业的完成情况,检验学生对知识点的掌握。

2. 课堂练习的参与度,观察学生对问题的思考和解决能力。

3. 学生对相似三角形概念的理解,以及对实际问题的运用能力。

六、教学策略与方法:1. 采用问题驱动法,引导学生通过观察、操作、思考、讨论等活动,发现规律,掌握相似三角形的判定方法。

23.3.2相似三角形的判定(1)公开课教案

23.3.2相似三角形的判定(1)公开课教案

23.3.2相似三角形的判定(1)教学设计教学内容:课本P64页~P67页。

教学目标:1、理解相似三角形的判定定理1,会用相似三角形的判定定理1判定两个三角形相似。

2、通过与全等三角形类比,体验特殊与一般的关系。

教学重点:相似三角形的判定1教学难点:相似三角形的判定1的应用;教学准备:课件教学方法:讲授法教学过程一、课前5分测全等三角形的判定:SAS,ASA(AAS),SSS,HL。

二、相似三角形的判定1、猜想:相似三角形的判定方法。

SAS,AA,SSS。

2、论证:两角分别相等的两个三角形相似。

已知:△ABC和△DEF中,∠A=∠D,∠B=∠E。

求证:△ABC∽△DEF。

BE证明:在边AB或它的延长线上截取AG=DE,过点G作BC的平行线交AC于点H,则B△ABC∽△AGH。

∵GH∥BC,∴∠AGH=∠B在△AGH和△DEF中,∵∠A=∠D,AG=DE,∠AGH=∠E;∴△AGH≌△DEF(ASA)。

∴△ABC∽△DEF。

3、相似三角形的判定定理1(1)文字表述:两角分别相等的两个三角形相似。

(2)图形表述:BE(3)符号表述:在△ABC和△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF。

4、应用例1、在RT△ABC中,∠C=90°,CD⊥AB,垂足为D。

(1)找出其中的相似三角形,并说明理由。

A BCD解:(1)△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD; ∵CD⊥AB,∴∠ADC=∠BDC=∠C=90°;∴∠A =90°-∠ACD=∠BCD∴△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD;例2、如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFCBC AD EF例 3.求证:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

变式练习已知:如图,在ΔABC 中,AD 、BE 分别是BC 、AC 上的高,AD 、BE 相交于点F 。

《相似三角形的判定(第1课时)》教案

《相似三角形的判定(第1课时)》教案

相似三角形的判定第1课时相似三角形的判定〔1〕【知识与技能】会说判定两个三角形相似的方法:两个角分别相等的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力.【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理1以及推导过程,并会用判定定理1来证明和计算.【教学难点】相似三角形的判定定理1的运用.一、情境导入,初步认识1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例.△ABC与△A′B′C′会相似吗?为什么?是否存在判定两个三角形相似的简便方法?本节就是探索识别两个三角形相似的方法.二、思考探究,获取新知同学们观察你与你的同伴用的三角尺,及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.〔1〕45°角的三角尺是等腰直角三角形,它们是相似的.〔2〕30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好似就会“相似〞.是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,那么第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说,两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢?例1 如图,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.解:相似,因为∠C=∠C′,∠A=∠A′,根据相似三角形的判定定理1可知△A′B′C′∽△ABC.例2 在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?解:由三角形的内角和定理知∠C′=180°-∠A′-∠B′=180°-50°-60°=70°,∴∠C′=∠B,又∵∠A=∠A′,∴△ABC∽△A′C′B′.【教学说明】教师注意引导学生分析∠B不一定与∠B′对应.例3 如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.证明:∵DE∥BC,∴∠AED=∠∵EF∥AB,∴∠CEF=∠A.∴△ADE∽△EFC三、运用新知,深化理解1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC 会相似,你怎样画这条直线?说明理由.和你的同伴交流作法是否一样.【答案】1.△ACD∽△CBD∽△ABC①过D点作DE∥BC,DE交AC于点E②以AD为一边在△ABC内部作∠ADE=∠C,另一边DE交AC于点E.【教学说明】第2题注意分类讨论.四、师生互动,课堂小结这节课你学到哪些判定三角形相似的方法?还有什么疑惑?说说看.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从学生所熟悉的特殊三角板入手,通过学生动手操作探究相似三角形的判定定理1,从中感受学习几何的乐趣,从而激发学生学习兴趣,培养学生的几何推理能力.。

相似三角形的判定教案

相似三角形的判定教案

编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是相似三角形的判定教案,是优秀的数学教案文章,供老师家长们参考学习。

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

北京版数学九年级上册《相似三角形判定定理一》教学设计

北京版数学九年级上册《相似三角形判定定理一》教学设计

北京版数学九年级上册《相似三角形判定定理一》教学设计一. 教材分析《相似三角形判定定理一》是北京版数学九年级上册的一个重要内容。

本节课主要让学生了解相似三角形的判定方法,掌握AA相似定理,并能够运用这一定理解决实际问题。

教材通过生动的实例引入相似三角形的概念,接着引导学生探究相似三角形的判定方法,最后通过大量的练习让学生熟练掌握这一定理。

二. 学情分析九年级的学生已经具备了一定的几何知识,对三角形有了基本的了解。

但是,他们对相似三角形的认识还比较模糊,对AA相似定理的理解和运用还需要加强。

因此,在教学过程中,教师需要注重引导学生从实际问题中发现相似三角形的判定方法,并通过大量的练习让学生熟练掌握。

三. 教学目标1.了解相似三角形的概念,掌握AA相似定理。

2.能够运用AA相似定理解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.重点:相似三角形的概念,AA相似定理。

2.难点:AA相似定理的运用。

五. 教学方法1.情境教学法:通过生动的实例引入相似三角形的概念,激发学生的学习兴趣。

2.探究教学法:引导学生分组讨论,自主发现AA相似定理。

3.实践教学法:通过大量的练习,让学生在实践中掌握AA相似定理。

六. 教学准备1.教学课件:制作课件,展示相似三角形的实例和判定方法。

2.练习题:准备适量的练习题,让学生在课堂上练习。

3.板书设计:设计好板书,突出重点内容。

七. 教学过程1.导入(5分钟)利用生活中的实例,如相似的图形、建筑物的比例等,引导学生思考:什么是相似三角形?相似三角形有什么特点?2.呈现(10分钟)展示教材中的实例,引导学生观察、分析,发现相似三角形的判定方法。

通过讲解,阐述AA相似定理的定义和判定方法。

3.操练(10分钟)让学生分组讨论,自主发现AA相似定理。

每组选取一个实例,进行判定,并解释原因。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生在课堂上完成练习题,运用AA相似定理进行判定。

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案第一章:三角形相似的概念介绍1.1 引入新课:通过展示两组形状相似的三角形,让学生观察并思考它们的共同特点。

1.2 讲解三角形相似的定义:两个三角形如果对应角度相等,对应边长成比例,则这两个三角形相似。

1.3 举例说明:通过具体的三角形例子,解释相似三角形的判定条件。

1.4 练习:让学生解决一些判断三角形相似的问题,巩固所学知识。

第二章:AA相似定理2.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长比例关系。

2.2 讲解AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

2.3 举例说明:通过具体的三角形例子,解释AA相似定理的应用。

2.4 练习:让学生解决一些判断三角形相似的问题,运用AA相似定理。

第三章:SAS相似定理3.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长和角度关系。

3.2 讲解SAS相似定理:如果两个三角形的两个角分别相等,并且夹角对应的边成比例,则这两个三角形相似。

3.3 举例说明:通过具体的三角形例子,解释SAS相似定理的应用。

3.4 练习:让学生解决一些判断三角形相似的问题,运用SAS相似定理。

第四章:SSS相似定理4.1 引入新课:通过展示两组形状相似的三角形,引导学生思考它们的边长关系。

4.2 讲解SSS相似定理:如果两个三角形的三条边分别成比例,则这两个三角形相似。

4.3 举例说明:通过具体的三角形例子,解释SSS相似定理的应用。

4.4 练习:让学生解决一些判断三角形相似的问题,运用SSS相似定理。

第五章:三角形相似的应用5.1 引入新课:通过展示一些实际问题,引导学生思考三角形相似的应用。

5.2 讲解三角形相似在实际问题中的应用:例如,通过相似三角形的性质解决几何图形的面积、角度等问题。

5.3 举例说明:通过具体的实际问题,解释三角形相似的应用。

5.4 练习:让学生解决一些实际问题,运用三角形相似的性质。

九年级数学上册《相似三角形判定定理一》教案、教学设计

九年级数学上册《相似三角形判定定理一》教案、教学设计
2.学生在推理和证明过程中的困难,引导他们运用已学的知识和方法,逐步解决问题。
3.学生的个体差异,针对不同学生的需求,提供适当的学习指导和支持。
4.学生在合作学习中的参与度,鼓励他们积极发言,分享自己的想法和观点。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形的判定定理一。
1.判断题:给出几个相似三角形的判定题目,让学生判断其是否符合判定定理一。
2.填空题:给出几个相似三角形的图形,要求学生填写相似比。
3.计算题:运用相似三角形的判定定理一解决实际问题。
学生在完成练习题的过程中,教师巡回指导,针对学生的错误给予及时纠正和解答。
(五)总结归纳
在总结归纳环节,首先让学生回顾本节课所学的相似三角形的判定定理一,然后提问:
-尝试证明相似三角形的另一个判定定理:如果两个三角形的一个角相等,且对应边成比例,那么这两个三角形相似。
3.实践应用题:
-结合所学知识,设计一道与相似三角形判定定理一相关的实际问题,要求至少包含两个已知量和两个未知量。
-将设计的问题及解答过程写下来,与同学们分享,共同讨论。
4.研究性学习题:
-以小组为单位,选择一个研究方向,如相似三角形在实际建筑中的应用、相似三角形在艺术作品中的体现等,进行资料收集和整理。
1.请举例说明相似三角形在实际生活中的应用。
2.如何运用相似三角形的判定定理一解决以下问题:(给出几个具体问题)
3.相似三角形判定定理一的证明过程中,有哪些关键步骤?
要求学生在讨论过程中,充分发表自己的观点,互相学习,共同解决问题。教师在旁边观察学生的讨论情况,适时给予指导。
(四)课堂练习
在课堂练习环节,设计以下练习题:

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。

2、能运用相似三角形的概念判断两个三角形相似。

3、理解“相似三角形的对应角相等,对应边成比例”的性质。

重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。

知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的对应角相等,对应边成比例。

3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。

2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。

3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。

教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。

以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。

那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。

问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。

2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。

注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。

相似三角形的判定(1)教案

相似三角形的判定(1)教案

子长县秀延初级中学教学设计教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AFEFAC BC AF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFAC BC DF DB AC AB BF DB BC AB === 针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.可让学生独立完成,通过此题可加深学生对比例线段的理解.论,相互交流,形成认识,最后教师再与全班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.三、合作研学、重组构建问题3如图,在△ABC 中,DE// BC,DE分别交AB、AC于D、E,则△ABC与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC 能相似吗?为什么?平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理). 将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.达标检测1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D为△ABC中BC边的中点,E为AD 中点,连接并延长BE交AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.课堂 小结 1.这节课你学到了哪些知识?2.你还有哪些疑惑?作业设计必做题:教材P31练习1题2题 选做题:如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm ,求 DE 的长.板 书 设 计 相似三角形的判定 1. 情境导入 2. 探究新知 3. 随堂练习 4. 课堂小结。

《相似三角形的判定(第1课时)》教案 人教数学九年级下册

《相似三角形的判定(第1课时)》教案 人教数学九年级下册

27.2 相似三角形27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】判定三角形相似的定理的证明.五、课前准备教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A 1,∠B =∠B 1,∠C =∠C 1,,那么△ABC 与△A 1B 1C 1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1 平行线分线段成比例定理请分别度量l 3,l 4,l 5.在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长度,AB :BC 与DE :EF 相等吗?任意平移l 5,再量度AB,BC,DE,EF 的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)111111C B BC C A AC B A AB ==学生动手操作后可发现:DFEF AC BC DF DE AC AB DE EF AB BC EF DE BC AB l l l 543====,,,时,∥∥当 教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a ∥b ∥c ,则12122323A A B B A A B B =,23231212A AB B A A B B =, 12121313A A B B A A B B =,23231313A A B B A A B B =…教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7) 小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2 平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点 利用平行线分线段成比例定理及推论求线段长度出示课件14,例 如图,在△ABC 中,DE ∥BC ,AC=4,AB=3,EC=1.求AD 和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵ DE ∥BC , ∴. AD AE AB AC∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3 相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE ∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE ∽△ABC ,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:AC AE AB AD =,还需证明ABAD AC AE BC DE ==BC DE 或所以要将DE 平移到BC 上,使得BF=DE(如图),再证明:ACAE BC DE =即可. 证明:在△ADE 与△ABC 中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C ,过E 作EF//AB 交BC 于F,则,∵四边形DBFE 是平行四边形,∴DE=BF ,∴,∴, ∴△ADE ∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE ∽△ABC .,AC AE AB AD =BC BF AC AE =BC DE AC AE =BC DE AC AE AB AD ==教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE ∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。

数学《相似三角形的判定》教案

数学《相似三角形的判定》教案

相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。

从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。

同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。

2、这一内容可分为四课时完成,本教学设计是第一课时。

3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。

教学重点:三角形相似的判定定理1的理解和应用。

教学难点:三角形相似的判定定理1的证明方法。

因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。

二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。

三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。

(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。

九年级数学上册《相似三角形的判定定理1》教案、教学设计

九年级数学上册《相似三角形的判定定理1》教案、教学设计
6.教学评价,及时反馈:通过课堂提问、课后作业、阶段测试等多种形式,了解学生的学习情况,及时给予反馈,调整教学策略。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一些生活中的相似图形,如建筑物的立面图、摄影中的景物等,引导学生观察并发现相似图形的美感和应用价值。
2.提问:请学生回顾已学的全等三角形的判定方法,并思考相似三角形是否也有类似的判定方法。
3.实践应用题:设计一道与实际生活相关的相似三角形问题,让学生运用所学知识解决。
要求:学生通过观察、分析、计算,将相似三角形的判定定理1应用于实际问题,感受数学在生活中的价值。
4.小组讨论题:布置一道小组讨论题目,要求学生在课后分组讨论,共同解决问题。
要求:各小组成员积极参与讨论,充分发挥团队协作精神,共同完成解题任务。
3.定期对学生的作业情况进行反馈,帮助学生了解自己的学习进度和存在的问题。
a.引导学生观察已知相似三角形的特征,发现“两边成比例且夹角相等”的条件。
b.通过动态演示,让学生直观感受相似三角形的变化过程,加深对判定定理1的理解。
c.设计典型例题,让学生在解决问题中,学会运用判定定理1。
3.合作探究,化解难点:组织学生进行小组讨论,让学生在合作交流中,共同分析问题、解决问题,化解教学难点。
1.学生对相似三角形概念的理解程度,特别是对“两边成比例且夹角相等”的理解。
2.学生在解决实际问题时,能否灵活运用判定定理1,并注意排除干扰因素。
3.针对不同学生的认知水平,设计有针对性的教学活动,帮助学生在理解的基础上,提高解题技能。
4.关注学生的学习兴趣和动机,激发学生的学习积极性,培养其自主学习能力。
九年级数学上册《相似三角形的判定定理1》教案、教学设计

九年级数学《相似三角形的判定(1)》教案

九年级数学《相似三角形的判定(1)》教案

九年级数学《相似三角形(1)》教学设计教学流程安排5、为研究学生三角形判定的简单方法,我们先来学习平行线分线段成比例定理。

线分线段成比例定理,从而引入新课。

活动2 示演操作,形成假设1.平行线分线段成比例定理(教材P40页探究1)如图27.2-1,任意画两条直线l1 , l2,再画三条与l1 , l2相交的平行线l3 , l4,l5.分别量度l3 , l4,l5.在l1上截得的两条线段AB, BC和在l2上截得的两条线段DE, EF 的长度, AB︰BC 与DE︰EF相等吗?任意平移l5, 再量度AB, BC, DE, EF的长度, AB ︰BC 与DE︰EF相等吗?2.平行线分线段成比例定理的推论思考:(1)如果图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2所得的对应线段的比会相等吗?依据是什么?教师出示探究,提出问题.学生操作画图,度量AB, BC, DE, EF的长度并计算比值,小组讨论,共同交流,回答结果.提出问题:AB︰AC=DE︰(),BC︰AC=()︰DF,师生共同交流.强调“对应线段的比是否相等”教师引导归纳,并板书:平行线分线段成比例定理三条平行线截两条直线,所得的对应线段的比相等。

教师引导学生继续探究把图1中的直线l1 , l2变到相交,交点A刚好落到l3或l4上,所得的对应线段的比会相等吗?学生观察思考,小组讨论回答,同伴交流,归纳总结。

教师引导归纳并板书平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段的比相等。

教师在学生理解平行线分线段成比例定理的基础上,出示问题3,引导学生猜想出结果。

在本次活动中, 教师应重点关注:【媒体应用】出示相关问题【设计意图】学生在教师的指导下通过实践操作,探索和他人合作交流各自的所得结论等活动,积累数学活动经验。

学生通过亲自动手度量,操作,计算的活动经历,感受探索的过程。

数学九年级下册《相似三角形的性质(1)》教案

数学九年级下册《相似三角形的性质(1)》教案

的关系.
一、复习回顾 相似三角形的判定方法有哪些?相似三角形有哪些性质? 三角形有哪些相关的线段? 二、共同探究,获取新知 已知:如图,△ABC ∽△A ′B ′C ′,它们的相似比为k ,AD ,A ′D ′是对应高.求证:AD A ′D ′=AB A ′B ′=k. 师:这个题目中已知了哪些条件? 生:△ABC 和△A ′B ′C ′相似,这两个三角形的相似比是k ,AD ,A ′D ′分别是它们的高.学生思考后回答:因为△ABC 和△A ′B ′C ′相似,由相似三角形的对应角相等,所以∠B =∠B ′,∠ADB =∠A ′D ′B ′=90°.根据两角对应相等的两个三角形相似得到△ABD 和△A ′B ′D ′相似.
学生写出证明过程.
如图,△ABC ∽△A ′B ′C ′,它们的相似比为k ,AD ,A ′D ′是对应的中线
求证:AD A ′D ′=AB
A ′
B ′=k. 活动2.已知:如图,△AB
C ∽△A ′B ′C ′,它们的相似比为k ,A
D ,A ′D ′分别是∠BAC 和∠B ′A ′C ′的平分线. 求证:AD A ′D ′=AB A ′B ′=k. 于是我们就得到了相似三角形的一个性质定理. 定理1 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 例 如图,AD 是△ABC 的高,AD =h ,点R 在AC 边上,点S 在AB 边上,SR ⊥AD ,垂足为E.
当SR =12BC 时,求DE 的长.如果SR =13
BC 呢? 作业:教科书P39, 2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课教学
一、例题讲解
例1(补充)如图△ABC∽△DCA,
AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;
(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
分析:可类比全等三角形对应边、对应角的关系来寻找相似三
角形中的对应元素.对于(3)可由相似三角形对应边的比相等求
出AD与DC的长.
解:略(AD=3,DC=5)
例2(补充)如图,在△ABC中,DE
∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,
求DE的长.
分析:由DE∥BC,可得△ADE∽△ABC,
再由相似三角形的性质,有
AC
AE
AB
AD
=,又由AD=EC可求出AD
的长,再根据
AB
AD
BC
DE
=求出DE的长.
解:略(
3
10
DE=).
二、课堂练习
(1).(选择)下列各组三角形一定相似的是()
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
(2).(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有
()
A.1对 B.2对 C.3对 D.4对
3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD=
10)
学生先
自由阅
读教材,
并可以
独立完
成相应
的问题;作业布置
必做题:课本P31:练习1、2
选做题:课本P42,习题27.2第1、2题
板书设计1、复习
2、新授课:板书例题
教学反思。

相关文档
最新文档