简谐运动的描述课件

合集下载

简谐运动及其描述(精品课件)

简谐运动及其描述(精品课件)

刻,质点位移大小相等、方向
相同
运动学表达式:x=Asin(ωt+φ)
3.基本特征 回复力F与位移x大小成正比,回复力的方向与位移方 向相反.此式一方面向我们描述了简谐运动的动力学特征, 另一方面也向我们提供了判断物体是否做简谐运动的依 据.
►疑难详析◄ 1.当物体振动经过平衡位置时,物体受到的合外力
不一定等于零,物体不一定处于平衡状态.例如单摆经过
个运动周期的时间内通过的路程是振幅的4倍,在半个周期 的时间内通过的路程是振幅的2倍,但是在四分之一周期时
间内通过的路程就不一定等于振幅.当物体从平衡位置和
最大位移之间的某一位置开始运动四分之一周期时间通过 的路程就不等于振幅了.
2.判断各时刻振子的速度方向 在简谐运动图象中,用做曲线上某点切线(斜率)的
出的①②③④四条振动图线,可用于表示振动的图象是 (
时t=0,则图象为①
)
A.若规定状态a B.若规定状态b
时t=0,则图象为②
C.若规定状态c 时t=0,则图象为③
D.若规定状态d
时t=0,则图象为④
图3
[答案] AD
一质点做简谐运 动的图象如图4所示,下列说法正确的 是 速度为负 ( ) A.在0.035 s时,速度为正,加
注意: A.简谐运动的图象不是振动质点的轨迹.
B.简谐运动的周期性,体现在振动图象上是曲线的
重复性.简谐运动是一种复杂的非匀变速运动.但运动的 物点具有简单的周期性、重复性、对称性.所以用图象研
究要比用方程要直观、简便.
►疑难详析◄ 1.振幅与位移、路程的关系
位移的大小总小于等于振幅,做简谐运动的物体在一
发现树枝在10 s内上下振动了12次,将50 g的砝码换成500 g 砝码后,他发现树枝在15 s内上下振动了6次,你估计鸟的

简谐运动的描述(高中物理教学课件)完整版

简谐运动的描述(高中物理教学课件)完整版

四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。

物理人教版(2019)选择性必修第一册2.2简谐运动的描述(共33张ppt)

物理人教版(2019)选择性必修第一册2.2简谐运动的描述(共33张ppt)
x Asint
月相:不同的月相可以 表示月亮处于不同的状 态,可以反映出月亮处 于不同的位置,月相随 时间的变化规律可以反 映处月亮位置随时间变 化的规律
把简谐运动等效为一个圆周 运动,物体在不同位置所对 应的相位实际上是圆周运动 的“相位角”
月相变 化本质 上也是 角度的 变化
如图所示,并列悬挂两个相同的弹簧振子,分别将小球A、小球B向下 拉至P、Q位置,此时两球离开平衡位置的距离分别为x和1.5x(均在 弹簧弹性限度范围内)。先把小球A由静止释放,当A第一次到达平衡 位置时,由静止释放小球B,则( ) A.小球A到达最高点时,小球B还没有到达平衡位置 B.在平衡位置时,小球A与小球B的动能相等 C.运动过程中,小球A和小球B的速度不可能相等 D.小球B比小球A总是滞后四分之一个周期
某同学看到一只鸟落在树上树枝上的P处,树枝
在10s内上下振动了6次,鸟飞走后他把50g的砝码
挂在P处,发现树枝上下振动了12次,换成500g
的砝码后,他发现树枝在15s内上下振动了6次,
你估计鸟的质量最接近于(B )
A.50g B.200g C.500g
D.600g
3.相位
描述周期性运动的物体在各个时刻所处 状态的物理量.
T
x Asin 2 t
T
弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,
BC相距20cm,某时刻振子处于B点,经过0.5s,首次到达
C,则下列说法正正确的是( C)
A.振幅为20cm B.振子的周期为2s C.振子5s内的路程为200cm D.振子在3s内的位移为120cm
一个质点做简谐振动的图像如图所示,下列判断中正确 的是( ) A.在t=4×10-2s时,质点速度达到最大值 B.振幅为2×10-3m,频率为50Hz C.质点在0到1×10-2s的时间内,其速度和加速度方向 相同 D.该简谐振动的方程为x=0.2cos(50πt)cm

人教版(2024)高中物理选择性必修一2.2 简谐运动的描述(共20张PPT)

人教版(2024)高中物理选择性必修一2.2 简谐运动的描述(共20张PPT)
2.2 简谐运动的描述
人教版(2019)普通高中物理选择性必修第一册
问题
有些物体的振动可以近似为简谐运动,做简谐运动的物体在一个位置附 近不断地重复同样的运动。如何描述简谐运动的这种独特性呢?
简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动 图象(x—t图象)是一条正弦曲线,这样的振动叫做简谐运动。
关于相位差Δφ=φ2-φ1的说明:
①同相:相位差为零,一般地为=2n (n=0,1,2,……) ②反相:相位差为 ,一般地为=(2n+1) (n=0,1,2,……) (2)>0,表示振动2比振动1超前.
<0,表示振动2比振动1滞后.
下图为甲、乙(实线为甲,虚线为乙)两个弹簧振子的振动图像。
思考1:这两个弹簧振子的振幅是多 少?周期是多少?频率是多少?请写 出它们的位移随时间变化的关系式。
思考2:两个振动的相位、初相和相位 差各是多少?
甲的相位:πt 甲的初相位:0 相位差:π/6
乙的相位:πt+π/6 乙的初相位:π/6
学习任务三:相位
振幅
相位
角速度 (圆频率)
初相位
(平衡位置处开始计时) (最大位移处开始计时)
描述简谐运 动的物理量
振幅(A) 周期(T) 频率(f) 相位、相位差
学习任务二:周期和频率
学习任务二:周期和频率
实验结果 (1)振动周期与振幅大小无关。 (2)振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小。 (3)振动周期与振子的质量有关,质量较小时,周期较小。
结论:弹簧振子的周期由振动系统本身的质量 和劲度系数决定,而与振幅无关,所以常把周 期和频率叫做固有周期和固有频率。
学习任务三:相位 从x=Asin(ωt+φ)可以发现: 当(ωt+φ)确定时,sin(ωt+φ)的值也就确定了,所以(ωt+φ) 代表了做简谐运动的物体此时正处于一个运动周期中的哪个状态。

简谐运动的描述课件

简谐运动的描述课件

详细描述
能量图是用来描述简谐运动时振子的能量随时间变化的 图像。这个图像通常以时间为横坐标,以振子的能量为 纵坐标。在能量图中,我们可以看到振子的能量是如何 随时间变化的,以及在运动过程中能量的转换和损耗。
05
简谐运动的实例分析
单摆的简谐运动
定义
单摆是一种理想的物理模型,由一根固定在一端的轻杆或 细线,另一端悬挂质量块组成。
《简谐运动的描述课件》
2023-10-30
目录
• 简谐运动概述 • 简谐运动的基本概念 • 简谐运动的公式与计算 • 简谐运动的图像描述 • 简谐运动的实例分析 • 简谐运动的总结与展望
01
简谐运动概述
简谐运动的定义
简谐运动的定义
简谐运动是指物体在一定范围内周期性地来回运动,其运动轨迹呈现为正弦 或余弦函数的形状。这种运动是自然界中最简单、最基本的周期性运动之一 。
高阶效应
对于一些高阶的振动系统,除了振幅和频率的变化外,还需要考虑高阶效应的影响。高阶 效应会导致系统的响应呈现出更为复杂的特性。
未来对简谐运动的研究方向与价值
研究方向
未来对简谐运动的研究方向主要包括:研究更为复杂 的振动系统,例如多自由度振动系统和耦合振动系统 ;研究更为精细的振动模型,例如包含更多影响因素 和非线性效应的模型;研究更为高效的求解方法,例 如能够处理大规模数据和复杂情况的数值方法。
加速度与速度
加速度
在简谐运动中,振子的速度会不断变化,因此加速度也会不断变化。加速度是描述速度变化快慢的物 理量。
速度
在简谐运动中,振子的位置不断变化,因此速度也会不断变化。速度是描述物体运动快慢的物理量。
位移与回复力
位移
在简谐运动中,振子的位置会不断变化, 这种变化称为位移。位移是描述物体位置 变化的物理量。

2.2 简谐运动的描述 课件

2.2 简谐运动的描述 课件

πt+π 22
cm,
振动的初相位是π。 2
(2)振子的振动方程为
x=10sin
πt+π 22
cm
则 t1=0.5 s 时,振子相对平衡位置的位移
x1=10sin π2t1+π2 cm=5 2 cm
则 t2=1.5 s 时,振子相对平衡位置的位移
x2=10sin π2t2+π2 cm=-5 2 cm。
如图,A=0.08m,ω=0.5πrad/s
3、相位:位移—时间函数中的(ωt+φ)叫做相位,当t=0时的相位φ叫作初相位。 相位是一个表示振子处在振动周期中的哪个位置的物理量。
一、简谐运动的函数描述
4.周期(T)和频率( f )
内容
定义 单位 物理含义
周期
频率
做简谐运动的物体完成一次全振动所用 单位时间内完成全振动的
例 1 如图所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振 子在 A、B 间做简谐运动,且 AB=20 cm,振子首次由 A 到 B 的时间为 0.1 s,求:
(1)振子振动的振幅、周期和频率; (2)振子由 A 到 O 的时间; (3)振子在 5 s 内通过的路程及 5 s 末相对平衡位置的位移大小。
二、简谐运动的图像描述
观察以下图像,列举你所观察到的两个图像的异同。
振幅A不同
周期相同
初始起点不同(步调不同) 如何用函数描述这两个图像的不同之处呢?
二、简谐运动的图像描述
(1)两个函数的相位是不同的,对于频率相同、相位不同的振子,我们通过对比 它们的相位差来比较它们的振动先后的关系。若相位差用Δφ表示,则
例 4 弹簧振子以 O 点为平衡位置在 B、C 两点间做简谐运动,BC 相距 20 cm,某时刻振子处于 B 点,经过 0.5 s,振子首次到达 C 点.求:

简谐运动ppt课件

简谐运动ppt课件
相同 D、振子在2s内完成一次往复性运动
x/cm
10
5
0
1 2 3 4 5 6 t/s
-5
-10
17
课堂训练
2、某弹簧振子的振动图象如图所示,根据图象判断。
下列说法正确的是( D )
A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相 同,瞬时速度方向相反。
27
3、周期:做简谐运动的物体完成一次全振动 所需要的时间,叫做振动的周期用T表示,单 位为时间单位,在国际单位制中为秒(s)。
振动周期是描述振动快慢的物理量,周期越 长表示振动越慢,周期越小表示振动越快。
4、频率:单位时间内完成全振动的次数,叫 做振动的频率。用f表示,在国际单位制中, 频率的单位是赫兹(Hz),
3、一次全振动通过的路程是几个振幅? 半个周期内通过几个振幅? 四分之一周期内通过几个振幅?
振动物体在一个全振动过程中通过的路程等于4个振幅,在 半个周期内通过的路程等于两个振幅,但在四分之一周期 内通过的路程不一定等于一个振幅,与振动的起始时刻有 关。1T通过路程S=4A,1/2T路程S=2A
29
5
二、弹簧振子——理想化模型
1、概念: 小球和弹簧所组成的系统称作弹簧振子,
有时也把这样的小球称做弹簧振子或简称 振子。 2、理性化模型: (1)不计阻力 (2)弹簧的质量与小球相比可以忽略。
6
三、弹簧振子的位移—时间图象
1、振子的位移x:都是相对于平衡位置的位 移。 位移起点为平衡位置
7
三、弹簧振子的位移——时间图象

简谐运动的描述课件

简谐运动的描述课件

3
能量-时间图像
简谐运动的动能和势能都随时间周期性变化,能量图像呈余弦曲线。
简谐运动的实例
1
弹簧简谐振动
拉长或压缩一根弹簧,当松手时它就能够做简谐振动。
2
摆锤简谐运动
精密的摆锤可以做甚至可以完全描述地球自转等自然现象的简谐运动。
3
机械波简谐运动
机械波,如声波、水波等,可以在介质内传递能量,表现出简谐运动。
实际应用
简谐运动是很多实际问题的基础,例如:
1 交流电
在电路中,简谐振荡产生的正弦电流和正弦电压,让电力输送变得更加高效。
2 地震波
地震波产生的振动是整体的简谐运动。
3 其他物理现象中的简谐运动
包括建筑物、天体、量子场等物理现象。
总结
定义、特点、公式
数学图像与实例
实际应用
简谐运动作为物理学中的重要概念,有着广泛的应用。进一步地研究简谐运动有助于更好地理解能量、波、声 学、光学、电学和量子物理学等重要学科。
简谐运动的描述课件
本课程旨在介绍简谐运动的定义、特点、公式、数学图像、实例和实际应用, 并探讨其在物理学中的重要性和展望。
什么是简谐运动?
定义
一种周期性运动,物体以定常振幅、定常频率沿着一条直线或平面来回振动。
特点
周期性、振幅相等、相位相同。
简谐运动的公式
位移公式
x=Acos(ωt+φ)
速度公式
v=-Aωsin(ωt+φ)
加速度公式
a=-Aω²cos(ωt+φ)
质点简谐动的微分方程
d²x/dt²+ω²x=0
数学图像
1
正弦曲线与余弦曲线
简谐运动的位移公式可以用正弦或余弦函数表示。两者的图像均为周期性波浪线。

简谐运动的描述PPT教学课件

简谐运动的描述PPT教学课件
求它们的振幅之比,各自的频率,以及
它们的相位差.
A1 4a 2 A2 2a
4b 2f f 2b
4bt
3 2
4bt
1 2
小结
一、描述简谐运动的物理量
1、振幅A:振动物体离开平衡位置的最大距离 2、周期T:完成一次全振动所需要的时间
频率f:单位时间内完成全振动的次数 关系T=1/f
3、相位:周期性运动的物体在各个时刻所处的 不同的状态
3、遥感技术的优点
活动:比较人工实地调查与利用遥感技术调查, 哪一种获取资料和信息的方法更好?
人工实地调查
花费时间
Hale Waihona Puke 多时效性差(慢)
连续性 差,不能全天候观测
调查人员

调查成本

调查范围 小,有些地方不能人工调查
利用遥感技术调查
少 好(快) 好,能全天侯观测
少 低 广,连续性好,能获得人眼看不到的信息
3、有一个在光滑水平面内的弹簧振子, 第一次用力把弹簧压缩x后释放,第二 次把弹簧压缩2x后释放,则先后两次 振动的周期和振幅之比分别为多少?
1:1
1:2
4、弹簧振子以O点为平衡位置,在B、C两点之 间做简谐振动,B、C相距20cm,某时刻振子 处于B点,经过0.5s,振子首次到达C点,求:
(1)振子的周期和频率 T=1.0s f=1Hz (2)振子在5s末的位移的大小 10cm (3)振子5s内通过的路程 200cm
振幅 圆频率
初相位 相位
2 2f
T
x Asin( 2 t ) Asin(2ft )
T
振幅
周期
初相位 相位
频率
实际上经常用到的是两个 相同频率的简谐运动的相位差, 简称相差

简谐运动课件ppt

简谐运动课件ppt

单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。

简谐运动的描述课件

简谐运动的描述课件

思路分析:正确理解简谐运动的表达式中各个字母所代表的物
理意义是解题的关键。由简谐运动的表达式我们可以直接读出振动
的振幅 A、圆频率 ω(或周期 T 和频率 f)及初相 φ0。
解析:振幅是标量,A、B 的振幅分别是 3 m、5 m,选项 A 错误;A、

B 的周期均为 T=100 s=6.28×10-2 s,选项 B 错误;因为 TA=TB,所以
看,为什么?


1
2


答案:当 为整数或 的奇数倍时,t 时间内通过的路程仍为 ×4A,


1
2


但如果 不是整数,且余数不为 时,则路程不一定等于 ×4A。譬如,余
1
1
数为 ,则 T
4
4
内通过的路程,运动起点不同,路程就会不同,只有起点在
平衡位置或最大位移处时其通过的路程才等于一个振幅(A)。
此时对框架进行受力分析,可知弹簧向上的弹力恰等于框架的重力,
由此可得弹簧的压缩量。根据振幅的定义,找出平衡位置,则振幅可
求。
解析:框架的重力为 Mg,只有当铁球处在最高位置、弹簧被压缩、
框架受到竖直向上的弹力等于 Mg 时,框架对桌面的压力才恰好减
小为零。根据胡克定律,此时弹簧被压缩

Δl= ,铁球静止(处于平衡)
初始状态相同。
②时间特征:历时一个周期。
③路程特征:振幅的 4 倍。
④相位特征:增加 2π。
2.简谐运动中振幅和几个物理量的关系
(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能
量仅由振幅决定。振幅越大,振动系统的能量越大。
(2)振幅与位移:振动中的位移是矢量,振幅是标量。在数值上,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:弹簧振子的周期T由振子的 质量m和弹簧的劲度系数k决定,而 与振幅A无关。
… …
一、描述简谐运动的物理量
3、相位
描述周期性运动在某个时刻的状态. 表示物体振动的步调.
二、简谐运动的表达式
简谐运动的位移-时间关系 振动图象:正弦曲线
振动方程:x Asin(t )
振动方程 x Asin(t )
例题3:一个质点在平衡位置0点附近
做简谐运动,若从0点开始计时,经过3s质
点第一次经过M点;若再继续运动,又经
过2s它第二次经过M点;则质点第三次
经过M点所需要的时间是: CD
A、8s
B、4s
C、14s
D、(10/3)s
作业子完成一次全振动的 路程与振幅之间存在怎样的关系?
一、描述简谐运动的物理量
2、周期T和频率f
全振动:一个完整的振动过程 (振动物体连续 两次以相同速度通过同一点所经历的过程) .
(1)周期T:做简谐运动的物体完成一次 全振动所需要的时间. 单位:s.
(2)频率 f:做简谐运动的物体单位时间 内完成全振动的次数. 单位:Hz.
中各量含义:
1. A叫简谐运动的振幅.表示简谐运动 的强弱.
2. 叫圆频率.表示简谐运动的快慢. 它与频率的关系: =2f
3.“ t+” 叫简谐运动的相位.表示简谐 运动所处的状态. 叫初相,即t=0时的相位.
4. (2- 1)叫相位差(两个具有相同频率的 简谐运动的初相之差).对频率相同的两个 简谐运动有确定的相位差.
(3) 关系:T=1 / f.
弹簧振子的周期由哪些因素决定?
猜想:弹簧振子的振动周期可能由 哪些因素决定?
设计实验:
(1)实验过程中,我们应该选择哪个位 置开始计时?
(2)一次全振动的时间非常短,我们应 该怎样测量弹簧振子的周期?
进行实验: 实验1:探究弹簧振子的T与k的关系. 实验2:探究弹簧振子的T与m的关系. 实验3:探究弹簧振子的T与A的关系.
第十一章 机械振动
一、描述简谐运动的物理量
一、描述简谐运动的物理量
1、振幅A:
(1)定义:振动物体离开平衡位置的最大 距离.
(2)意义:描述振动的强弱.
振幅的2倍表示振动物体运动范围的大小.
(3)单位:米(m)
振幅和位移的区别?
振幅和位移的区别?
(1)振幅等于最大位移的数值. (2)对于一个给定的振动,振子的
位移是时刻变化的,但振幅是 不变的. (3)位移是矢量,振幅是标量.
一、描述简谐运动的物理量
一次全振动:一个完整的振动过程
振子的运动过程就是 这一次全振动的不断重复.
若从振子向右经过某点p起, 经过怎样的运动才叫完成一次全振动?
一次全振动:一个完整的振动过程
振动物体连续两次以相同速度 通过同一点所经历的过程.
(1)同相:相位差为 零,一般地为 =2n (n=0,1,2,……)
(2)反相:相位差为 ,一般地为 =(2n+1) (n=0,1,2,……)
一、描述简谐运动的物理量——振幅、 周期、频率和相位 振幅:描述振动强弱; 周期和频率:描述振动快慢; 相位:描述振动步调. 二、简谐运动的表达式:
x Asin(t )
例题1:一个质点作简谐运动的振动图像
如图.从图中可以看出,该质点的振幅
A= 0_._1 m,周期T=_0_.4s,频率f=2_._5 Hz, 从t=0开始在△t=0.5s内质点的位移0_.1_m,
路程= 0_.5_m_ .
例题2:写出振动方程.
s
s
y=10sin(2π t) cm
相关文档
最新文档