TCPIP协议格式

合集下载

TCPIP的知识梳理(按四层结构体系描述)

TCPIP的知识梳理(按四层结构体系描述)

TCPIP的知识梳理(按四层结构体系描述)TCP/IP协议TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/⽹际协议)是指能够在多个不同⽹络间实现信息传输的协议簇。

TCP/IP协议不仅仅指的是TCP 和IP两个协议,⽽是指⼀个由FTP、SMTP、TCP、UDP、IP等协议构成的协议簇,只是因为在TCP/IP协议中TCP协议和IP协议最具代表性,所以被称为TCP/IP协议。

TCP/IP传输协议是严格来说是⼀个四层的体系结构,应⽤层、传输层、⽹络层和数据链路层都包含其中。

OSI参考模型与TCP/IP四层模型对⽐ ⼀、应⽤层协议该层存在的协议:HTTP,DNS,FTP,Telnet,SMTP,RIP,NFSHTTP协议:(后⾯专门⽤⼀篇⽂章详解HTTP和HTTPS)HTTP (HyperText Transfer Protocol 超⽂本传输协议) 基于 TCP,使⽤端⼝号 80 或 8080。

每当你在浏览器⾥输⼊⼀个⽹址或点击⼀个链接时,浏览器就通过 HTTP 协议将⽹页信息从服务器提取再显⽰出来,这是现在使⽤频率最⼤的应⽤层协议。

这个原理很简单:点击⼀个链接后,浏览器向服务器发起 TCP 连接;连接建⽴后浏览器发送 HTTP 请求报⽂,然后服务器回复响应报⽂;浏览器将收到的响应报⽂内容显⽰在⽹页上;报⽂收发结束,关闭 TCP 连接。

HTTP 报⽂会被传输层封装为 TCP 报⽂段,然后再被 IP 层封装为 IP 数据报。

HTTP 报⽂的结构:可见报⽂分为 3 部分:(1)开始⾏:⽤于区分是请求报⽂还是响应报⽂,请求报⽂中开始⾏叫做请求⾏,⽽响应报⽂中,开始⾏叫做状态⾏。

在开始⾏的三个字段之间都⽤空格分开,结尾处 CRLF 表⽰回车和换⾏。

(2)⾸部⾏:⽤于说明浏览器、服务器或报⽂主体的⼀些信息。

(3)实体主体:请求报⽂中通常不⽤实体主体。

《TCPIP协议》课件

《TCPIP协议》课件
数字签名应用
数字签名可以应用于数据的完整性验证和身份认证过程,如数字证书用于验证网站的身份 ,数字签名用于验证软件和文件的来源和完整性等。
06
TCP/IP协议的发展趋势
IPv6的发展与推广
IPv6是下一代互联网协议,具有更大的地址空间和更高的安全性,能够解决IPv4 地址耗尽的问题。IPv6的推广和应用已经成为全球互联网发展的重要趋势。
发给收件人的邮件服务器,收件人通过邮件客户端应用程序下载和阅读邮件。
文件传输协议(FTP)
总结词
文件传输协议是TCP/IP协议中用于文 件传输的标准协议,它使用FTP命令 来传输文件。
详细描述
FTP允许用户在本地计算机和远程服 务器之间上传、下载和管理文件。 FTP服务器通常需要用户名和密码进 行身份验证,以确保文件的安全性。
IP数据报的路由选择
路由选择的概念
路由选择的原则
路由选择是指数据报在网络中的传输 路径选择,由路由器根据路由表进行 决策。
路由选择的原则包括最短路径、最少 跳数、最低成本等,路由器根据这些 原则选择最佳路径进行数据报的转发 。
路由表的构建
路由表是路由器中存储的路径信息表 ,根据路由协议(如RIP、OSPF等) 动态构建。路由器根据路由表选择最 佳路径转发数据报。
网络安全技术的进一步发展
随着互联网的普及和发展,网络安全问题越来越突出。网 络安全技术的进一步发展已经成为互联网技术的重要方向 之一。
网络安全技术的发展包括防火墙、入侵检测、加密技术等 。这些技术的发展和应用可以有效提高网络的安全性和可 靠性,保护用户的信息安全和隐私。
THANKS
TCP的流量控制与拥塞控制
TCP流量控制
流量控制是为了防止发送方把接收方的接收能力浪费掉而设置的机制。TCP使用滑动窗口机制进行流量控制。当 接收窗口为0时,发送方停止发送数据;当接收窗口大于0时,发送方继续发送数据。

TCPIP协议协议端口

TCPIP协议协议端口

TCPIP协议协议端口协议名称:TCP/IP协议协议端口一、引言TCP/IP协议是互联网中最常用的协议之一,它负责实现数据在网络中的传输。

协议端口是TCP/IP协议中的一个重要概念,它用于标识不同的网络应用程序或服务。

本协议旨在规定TCP/IP协议中常用的协议端口的标准格式和使用规范。

二、协议端口的定义协议端口是一个16位的整数,范围从0到65535。

其中,0到1023的端口号为"系统端口",用于标识一些常用的网络服务,如HTTP(端口号80)、FTP(端口号21)等。

1024到49151的端口号为"注册端口",用于标识一些非系统级别的网络应用程序。

49152到65535的端口号为"动态端口",用于临时分配给客户端应用程序。

三、协议端口的标准格式协议端口的标准格式为一个16位的整数,采用十进制表示。

例如,HTTP的端口号80可以表示为"80"。

对于一些常用的协议端口,可以使用其标准名称来代替端口号,如HTTP可以用"HTTP"代替"80"。

四、协议端口的使用规范1. 系统端口的使用规范系统端口是预先定义的端口号,用于标识一些常用的网络服务。

在使用系统端口时,应遵循以下规范:- 不得随意更改系统端口的用途,以免影响网络中已有的应用程序。

- 不得将系统端口用于非系统级别的应用程序。

- 在开发新的网络服务时,应优先考虑使用注册端口或动态端口。

2. 注册端口的使用规范注册端口是用于标识一些非系统级别的网络应用程序。

在使用注册端口时,应遵循以下规范:- 在开发新的网络应用程序时,应先查询已有的注册端口列表,避免与已有的应用程序冲突。

- 在申请注册端口时,应提供详细的应用程序信息,包括应用程序的名称、功能、所需端口号等。

- 注册端口的分配由互联网号码分配机构(IANA)负责,申请者应按照其规定的流程进行申请。

《TCPIP协议详解》课件

《TCPIP协议详解》课件

04
05
链路层负责处理网络接口和 硬件细节,如以太网协议。
02
网络接口层
物理层
物理层功能
物理层负责传输原始比特流,实现比特流的 传输与接收。
物理层设备
物理层设备包括各种传输媒介,如双绞线、 同轴电缆、光纤等。
物理层协议
物理层协议定义了比特流传输的电气特性、 机械特性、功能特性等。
物理层与数据链路层的关系
层次,每个层次都有明确的任务和功能。
TCP/IP协议的层次结构
应用层负责处理特定的应用 程序细节,如HTTP、FTP等
协议。
TCP/IP协议分为四个层次: 应用层、传输层、网络层和
链路层。
01
02
03
传输层负责提供端到端的数 据传输服务,如TCP和UDP
协议。
网络层负责数据包的路由和 寻址,如IP协议。
《TCPIP协议详 解》PPT课件
目录
• TCP/IP协议概述 • 网络接口层 • 网际层 • 传输层 • 应用层 • TCP/IP协议的应用与发展
01
TCP/IP协议概述
TCP/IP协议的起源
TCP/IP协议起源于上世纪70年 代,最初是为了满足
ARPANET网络的需求而开发 的。
随着互联网的不断发展, TCP/IP协议逐渐成为全球范 围内广泛使用的通信协议标
POP协议用于从邮件服务器接收电子 邮件,允许用户下载邮件到本地计算 机上。
POP命令
POP协议定义了一组命令,用于在邮 件客户端和服务器之间进行通信和控 制邮件下载和管理。
06
TCP/IP协议的应用与发 展
TCP/IP协议的应用场景
互联网通信
TCP/IP协议是互联网的基础, 用于实现全球范围内的数据传

TCPIP协议族的体系结构数据格式及传输过程

TCPIP协议族的体系结构数据格式及传输过程

TCPIP协议族的体系结构数据格式及传输过程TCP/IP协议族描述了网络通信的基本原理和标准化规范,是互联网的核心协议。

它由两个重要的协议组成:TCP(Transmission Control Protocol,传输控制协议)和IP(Internet Protocol,互联网协议)。

TCP/IP协议族的体系结构:TCP/IP协议族采用分层的体系结构,分为四个层次:网络接口层(Network Interface Layer)、互联网层(Internet Layer)、传输层(Transport Layer)和应用层(Application Layer)。

1. 网络接口层(Network Interface Layer):负责在网络传输介质上发送和接收数据包。

它包含了物理连接的相关规范和数据链路层协议。

2. 互联网层(Internet Layer):负责在网络中寻址和路由数据包。

它的核心协议是IP(Internet Protocol),IP协议定义了数据包在网络中的传输规则和地址分配规则。

3. 传输层(Transport Layer):负责将数据可靠地传输到每个应用程序。

其中最重要的协议是TCP(Transmission Control Protocol),TCP提供了面向连接的、可靠的数据传输服务。

此外,还有UDP(User Datagram Protocol,用户数据报协议),它提供了无连接的、不可靠的数据传输服务。

4. 应用层(Application Layer):提供了各种常见的应用程序协议,如HTTP(Hypertext Transfer Protocol,超文本传输协议)、FTP(File Transfer Protocol,文件传输协议)、SMTP(Simple Mail Transfer Protocol,简单邮件传输协议)等。

应用层协议通过TCP或UDP与传输层进行通信。

TCP/IP协议族的数据格式:TCP/IP协议族中的数据包称为"分组",即数据包被分割为多个较小的部分进行传输。

第3章 TCPIP协议

第3章 TCPIP协议

3.2 TCP/IP参考模型

超文本传输协议HTTP

用于Internet中的客户机与WWW服务器之间的数据传输;

文件传输协议FTP

实现主机之间的文件传送;

远程终端协议TELNET

本地主机作为仿真终端,登录到远程主机上运行应用程序;

动态主机配置协议DHCP

实现对主机的地址分配和配置工作。
给主机使用。
地址类型 网络地址 广播地址 网络号 主机号 网络号 全0 全1 全1 用途 标识一个网络 举例 202.117.179.0
在本地网络广播 255.255.255.255 在特定网络广播 202.117.179.255
直接广播地址 网络号 全1
本地网络地址 全0
环回地址 127
全0
任意
系统启动时使用 0.0.0.0
3.2 TCP/IP参考模型

2.网络互连层

网际协议IP (Internet Protocol)

对数据包进行相应的寻址和路由,并从一个网络转发到另一 个网络。 向上一层提供统一的IP数据报,屏蔽低层各物理数据帧的差 异性。


网际控制报文协议ICMP (Internet Control Message Protocol)
分配给一台主机可使用的有效C类IP地址范围
11000000 00000000 00000001 00000001 ~ 11011111 11111111 11111111 11111110 192. 0. 1. 1 223. 255. 255. 254
3.3 IP地址

二、 IP地址类型

IP地址的分类图

TCPIP协议三次握手与四次握手流程解析

TCPIP协议三次握手与四次握手流程解析

TCPIP协议三次握⼿与四次握⼿流程解析⼀、TCP报⽂格式TCP/IP协议的详细信息参看《TCP/IP协议详解》三卷本。

下⾯是TCP报⽂格式图:图1 TCP报⽂格式上图中有⼏个字段需要重点介绍下:(1)序号:Seq序号,占32位,⽤来标识从TCP源端向⽬的端发送的字节流,发起⽅发送数据时对此进⾏标记。

(2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。

(3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:(A)URG:紧急指针(urgent pointer)有效。

(B)ACK:确认序号有效。

(C)PSH:接收⽅应该尽快将这个报⽂交给应⽤层。

(D)RST:重置连接。

(E)SYN:发起⼀个新连接。

(F)FIN:释放⼀个连接。

RST信息,则是client向server发送数据请求,但是server并没有运⾏.则client会收到来⾃对⽅主机发送的RST信息.11个状态中,除了ESTABLISHED外,还有2个⽐较重要的状态:CLOSED_WAIT和TIME_WAIT.CLOSE_WAIT状态时有对⽅主动调⽤close,向本地(这⾥本地,并不⼀定说的是client)发送FIN,本地接收到FIN,并向对⽅发送ACK之后,本地状态会变成CLOSE_WAIT状态.那么,本地如果需要从CLOSE_WAIT状态变成CLOSED状态,需要本地向对⽅发送FIN,也就是需要本地主动调⽤close,本地进⼊LAST_ACK,在本地接收到ACK之后,就进⼊CLOSED状态.需要注意的是:(A)不要将确认序号Ack与标志位中的ACK搞混了。

(B)确认⽅Ack=发起⽅Req+1,两端配对。

⼆、三次握⼿所谓三次握⼿(Three-Way Handshake)即建⽴TCP连接,就是指建⽴⼀个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建⽴。

tcpip协议

tcpip协议

二、 IP协议基础与定址

路由表




路由表其实是一个小型的数据库,其中每一条路由记录 记载了通往每个节点或网络的路径。路由表的字段一般 有:目的网络地址(Network Destination)、子网掩码 ( Netmask )、网关( Gateway )、接口( Interface ) 和跃点数(Metric)等。 网关:指定 IP数据报发送到路由器的相应接口的 IP地址。 接口:表示本路由器与目的网络连接的网络接口的 IP地 址。 跃点数:用来表示将IP数据报送达目的网络所须经过的 路由器个数。 显示本机的路由表 Route print

若IP数据报的目的地址为私人IP地址,路由器将不 会处理此种数据报,因此无法在互联网上流通。
二、 IP协议基础与定址

子网


子网是指在一个IP地址上生成的逻辑网络。 分割子网的重点是让每个子网拥有一个独一 无二的子网地址,以识别各个子网。 原来的网络地址加上子网地址便可识别特定 的子网,原主机地址的后几位用于标识子网 中的主机。

网际控制报文协议


ICMP(Internet Control Message Protocol) 是面向连接的协议,用于向源节点发送“错 误报告”信息。 常用的工具有PING.EXE和TRACERT.EXE。
差错与控制报文

IP互联网利用ICMP传输控制报文和差错报文
ICMP报文的封装:封装在IP数据报中

应用层

二、 IP协议基础与定址

IP协议基础



Internet Protocol ( IP ,互联网协议)是整 个TCP/IP协议集的核心,也是构成互联网的 基础。 IP协议根据其版本分为IPv4和IPv6协议。目 前使用的主要是IPv4。 IP所提供的服务大致可分为两项:IP数据报 的传送和IP数据报的分段与重装。

TCPIP以太网数据包格式解析及LWIP架构图解

TCPIP以太网数据包格式解析及LWIP架构图解

以太网数据包分类及格式解析1、以太网数据链路层帧格式(MAC 帧)——即CPU 通过MII/RMII 接口发给PHY 芯片的数据2、ARP (Address Resolution Protocol ——地址解析协议)协议数据包格式硬件类型:一般为0x0001:表示MAC 帧中“目的地址”的类型为以太网MAC地址。

协议类型:表示要映射的协议地址类型。

0x0800表示映射为IP 地址。

硬件地址长度:表示“目的地址”的长度,MAC 地址为0x06。

协议地址长度:表示IP 地址长度,为0x04。

OP :表示操作类型。

ARP 请求:0x01;ARP 应答:0x02;RARP 请求:0x03;RARP应答:0x04。

发送端以太网地址:同“源地址”。

发送端IP 地址:即“源地址”对应的IP 地址。

目的以太网地址:同“目的地址”,对ARP 请求来说,为0。

目的IP 地址:ARP 包要发往的对象IP 地址。

3、IP 数据包格式4位版本:对于IPv4,该值为4;对于IPv6,该值为6。

4位首部长度:记录首部长度,以字为单位。

对于不含选项的IP报头,该值为5。

8位服务类型:用来描述IP数据包急需的服务类型,如最小延时、最大吞吐量等。

本字段在LWIP中没用。

16位总长度:描述了整个IP数据报包括IP报头的总字节数。

16位标识:用来标识IP层发送出去的每一份IP数据报,每发送一份报文,该值加1。

3位标志和13位偏移:用于IP数据包分片时使用。

8位生存时间(TTL):描述了该IP数据包最多能被转发的次数,每经过一次转发,该值减1,当该值为0时,一个ICMP报文会被返回至源主机。

8位协议:用来描述该IP数据包是来自于上层的哪个协议。

1:ICMP;2:IGMP;6:TCP;17:UDP。

16位首部校验和:针对IP首部的校验和,并不包括数据部分。

数据部分的校验是由上层协议负责的。

32位源IP地址:发送该IP包的主机IP地址。

TCPIP协议知识科普

TCPIP协议知识科普

TCPIP协议知识科普简介本⽂主要介绍了⼯作中常⽤的TCP/IP对应协议栈相关基础知识,科普⽂。

本博客所有⽂章:TCP/IP⽹络协议栈TCP/IP⽹络协议栈分为四层, 从下⾄上依次是:1. 链路层其实在链路层下⾯还有物理层, 指的是电信号的传输⽅式, ⽐如常见的双绞线⽹线, 光纤, 以及早期的同轴电缆等, 物理层的设计决定了电信号传输的带宽, 速率, 传输距离, 抗⼲扰性等等。

在链路层本⾝, 主要负责将数据跟物理层交互, 常见⼯作包括⽹卡设备的驱动, 帧同步(检测什么信号算是⼀个新帧), 冲突检测(如果有冲突就⾃动重发), 数据差错校验等⼯作。

链路层常见的有以太⽹, 令牌环⽹的标准。

2. ⽹络层⽹络层的IP协议是构成Internet的基础。

该层次负责将数据发送到对应的⽬标地址, ⽹络中有⼤量的路由器来负责做这个事情, 路由器往往会拆掉链路层和⽹络层对应的数据头部并重新封装。

IP层不负责数据传输的可靠性, 传输的过程中数据可能会丢失, 需要由上层协议来保证这个事情。

3. 传输层⽹络层负责的是点到点的协议, 即只到某台主机, 传输层要负责端到端的协议, 即要到达某个进程。

典型的协议有TCP/UDP两种协议, 其中TCP协议是⼀种⾯向连接的, 稳定可靠的协议, 会负责做数据的检测, 分拆和重新按照顺序组装,⾃动重发等。

⽽UDP就只负责将数据送到对应进程, ⼏乎没有任何逻辑, 也就是说需要应⽤层⾃⼰来保证数据传输的可靠性。

4. 应⽤层即我们常见的HTTP, FTP协议等。

这四层协议对应的数据包封装如下图:四层协议对应的通信过程如下图:链路层以太⽹数据帧以太⽹数据帧格式如下:说明如下:1. ⽬的地址和源地址是指⽹卡的硬件地址(即MAC地址), 长度是48位, 出⼚的时候固化的。

2. 类型字段即上层协议类型, ⽬前有三种值: IP, ARP, RARP。

3. 数据对应了上层协议传输的数据, 以太⽹规定数据⼤⼩是46~1500字节, 最⼤值1500即以太⽹的最⼤传输单元(MTU), 不同⽹络类型有不同MTU, 如果需要跨不同类型链路传输的话, 就需要对数据进⾏重新分⽚。

MODBUSTCPIP协议规范详细介绍

MODBUSTCPIP协议规范详细介绍

MODBUSTCPIP协议规范详细介绍Modbus是一种通信协议,广泛应用于工业自动化领域。

它定义了一种用于从控制器通信的通讯协议,包括了一系列规范与标准,其中Modbus TCP/IP是Modbus协议在以太网上的实现。

Modbus TCP/IP协议是基于TCP/IP协议的应用层协议。

它允许设备使用以太网通过Modbus协议进行通信。

Modbus TCP/IP协议通常用于连接远程设备、传感器和执行器等设备,通过网络进行数据交换与控制。

Modbus TCP/IP协议使用了客户端-服务器(C/S)的架构。

客户端是发出请求的设备,而服务器是提供数据和响应请求的设备。

客户端可以请求服务器读取或写入特定的数据寄存器。

请求消息和响应消息都是基于Modbus协议格式的数据报文。

Modbus TCP/IP协议规范定义了以下几个关键的方面:1. 消息格式:Modbus TCP/IP协议使用面向字节的通讯方式,每个字节都是8位的二进制数。

每个消息都包括了一些固定的字段,如事务标识符(transaction identifier)、协议标识符(protocol identifier)、消息长度(length)等。

这些字段用于标识和验证消息的完整性。

2. 寄存器地址:Modbus TCP/IP协议使用16位的地址来访问设备的寄存器。

可以通过请求消息的字段来指定要读取或写入的寄存器地址。

寄存器可以是输入寄存器、输出寄存器、保持寄存器和线圈。

输入寄存器是只读的,输出寄存器和保持寄存器是可读写的,而线圈是可读写的布尔值。

3. 功能码:Modbus TCP/IP协议使用功能码来标识要执行的操作类型。

常见的功能码包括读取输入寄存器(0x04)、读取保持寄存器(0x03)、写单个线圈(0x05)等。

不同的功能码对应不同的操作,客户端可以通过发送请求消息来执行相应的功能。

4.响应和错误处理:当服务器接收到客户端的请求消息后,会进行相应的处理并返回响应消息。

TCPIP协议详解

TCPIP协议详解

TCPIP协议详解一、引言TCPIP协议是互联网通信的重要协议之一,它是一种基于分层架构的网络协议,用于在计算机网络中进行数据传输和通信。

本文将详细解释TCPIP协议的工作原理、协议分层结构、数据包格式和相关应用。

二、工作原理1. 数据传输过程在TCPIP协议中,数据传输过程分为发送端和接收端两个阶段。

发送端将数据分割成小的数据包,并通过网络传输给接收端。

接收端根据数据包的序号和校验和进行数据的重组和校验,确保数据的完整性和准确性。

2. IP地址和端口号IP地址是用于标识网络中的设备的唯一地址,它由32位二进制数表示。

端口号是用于标识设备上的应用程序的地址,它由16位二进制数表示。

在数据传输过程中,发送端和接收端通过IP地址和端口号进行通信。

三、协议分层结构TCPIP协议采用分层结构,分为应用层、传输层、网络层和数据链路层。

每一层都有特定的功能和任务。

1. 应用层应用层提供了用户与网络之间的接口,它负责处理应用程序的数据传输。

常见的应用层协议包括HTTP、FTP和SMTP等。

2. 传输层传输层负责在网络中的两个主机之间建立可靠的数据传输连接。

它提供了两种协议:TCP和UDP。

TCP协议提供可靠的数据传输,确保数据的完整性和顺序性;UDP协议提供不可靠的数据传输,适用于实时性要求较高的应用。

3. 网络层网络层负责将数据包从源主机传输到目标主机。

它使用IP协议进行数据包的路由和寻址。

4. 数据链路层数据链路层负责将数据包从网络层传输到物理层。

它将数据包封装成帧,并通过物理介质进行传输。

四、数据包格式TCPIP协议的数据包格式如下:1. 数据包头部数据包头部包含了源IP地址、目标IP地址、源端口号、目标端口号等信息。

它的长度为固定的20字节。

2. 数据包数据部分数据包的数据部分用于存储实际的数据信息。

它的长度可以根据需要进行调整。

3. 数据包校验和数据包校验和用于验证数据的完整性。

发送端在发送数据包时计算校验和,并将其附加在数据包中。

TCPIP几种协议数据报格式简介

TCPIP几种协议数据报格式简介
z TCP 报文格式如下图:
TCP 是面向连接的可靠数据传输协议,因此比较复杂,在此仅作简单介绍。“序号”指数据在发送端数据流中 的位置。“确认号”指出本机希望下一个接收的字节的序号。与 IP 校验不同的是 TCP,UDP 校验采用伪头标加整个 报文一同校验的方法。TCP 协议工作原理另行介绍。
TCP 数据报中依次包括以下信息:
协议采用分层结构,因此,数据报文也采用分层封装的方法。下面以应用最广泛的以太网为例说明其数据报 文分层封装,如下图所示:
任何通讯协议都有独特的报文格式,TCP/IP 协议也不例外。对于通讯协议编程,我们首先要清楚其报文格式。 由于 TCP/IP 协议采用分层模型,各层都有专用的报头,以下就简单介绍以太网下 TCP/IP 各层报文格式。
1、 16 位源端口 Source Port。该部分占 16 个 BIT。通过此值,可以看出发起连接的计算机源端口号。
2、 16 位目的端口 Destination Port。该部分占 16 个 BIT。通过此值,可以看出要登录的目的端口号。
3、 32 位序列号 Initial Sequence Number。表示初始连接的请求号,即 SEQ 值。该部分占 32 个 BIT。
4、 32 位确认号 Next Expected SEQ Numbe。对方返回的 ACK 值。该部分占 32 个 BIT。
5、 4 位数据偏移 Data Offset。表示数据偏移的大小。该部分占 4 个 BIT。
6、 6 位保留位 Reserved Bites:保留位,此处不用。该部分占 6 个 BIT。
的 16 次方减 1,即:65535 个字节。因此,在以太网中能够传输的最大 IP 数据包为 65535 个字节。
5、 16 位标识号 Identification。该部分占 16 个 BIT,以十进制数表示。

第5章TCPIP协议

第5章TCPIP协议
不可流控业务:大多数是对时间敏感的业务,如多 媒体实时通信,当网络发生拥挤时,则按照数据报 优先级对数据报进行丢弃处理来疏导网络交通,其 优先级值从8到15。
26.01.2021
第5章 TCP/IP协议 计算机网络
19
ARP协议和RARP协议
在网际层,提供从IP地址到物理地址映像服务 的协议是地址解析协议(Address Resolution Protocol,ARP),提供从物理地址到IP地址 映射服务的协议是逆向地址解析协议 (Reverse Address Resolution Protocol, RARP),IP地址与物理地址之间的映射称为 地址解析。
31
A类 0
网络号
主机号
B类 1 0
网络号
主机号
C类 1 1 0
网络号
主机号
D类 1 1 1 0
多目广播ห้องสมุดไป่ตู้址
E类 1 1 1 1 0
暂时保留
26.01.2021
第5章 TCP/IP协议 计算机网络
10
IP地址
在IP地址中,有一些特殊的规定: ①当32位的IP地址为全0时,表示该主机,但只允许在
主机启动时使用,以后不允许再使用。 ②当32位的IP地址为全1时,表示在该网的广播地址,
5
TCP/IP协议族
TCP协议从上层实体接收任意长度的报文,并为上层用户提供面 向连接的、可靠的全双工数据传输服务。
IP协议是一种无连接的采用分组交换方式的网络层协议,它既可 作为单独通信子网中的网络层协议,也可作为由多个通信子网互 连组成的网际网的网络层协议。
地址解析协议。此协议将网络地址映射到硬件地址,属于网络层 协议;
26.01.2021

tcpip协议报文格式

tcpip协议报文格式

1、IP报文格式IP协议是TCP/IP协议族中最为核心的协议。

它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。

在局域网环境,IP协议往往被封装在以太网帧(见本章1.3节)中传送。

而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。

如图2-3所示:图2-3TCP/IP报文封装图2-4是IP头部(报头)格式:(RFC 791)。

图2-4IP头部格式其中:●版本(Version)字段:占4比特。

用来表明IP协议实现的版本号,当前一般为IPv4,即0100。

●报头长度(Internet Header Length,IHL)字段:占4比特。

是头部占32比特的数字,包括可选项。

普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。

此字段最大值为60字节。

●服务类型(Type of Service ,TOS)字段:占8比特。

其中前3比特为优先权子字段(Precedence,现已被忽略)。

第8比特保留未用。

第4至第7比特分别代表延迟、吞吐量、可靠性和花费。

当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。

这4比特的服务类型中只能置其中1比特为1。

可以全为0,若全为0则表示一般服务。

服务类型字段声明了数据报被网络系统传输时可以被怎样处理。

例如:TELNET 协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。

实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS (Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。

计算机网络概论第七章TCPIP协议

计算机网络概论第七章TCPIP协议

3、IPv6地址的零压缩 某些类型的地址中可能包含很长的零序列,为进一步简化表示法,IPv6
还可以将冒号十六进制格式中相邻的连续零位进行零压缩,用双冒号“::” 表示。
例如链路本地地址FE80:0:0:0:2AA:FF:FE9A:4CA2可压缩成 FE80::2AA:FF:FE9A:4CA2;多点传送地址FF02:0:0:0:0:0:0:2压缩后,可表 示为FF02::2。
六、网络地址翻译(NAT)
CIDR技术的应用使现有的IP地址得到了更有效的使用,而NAT(Network Address Translation,网络地址翻译)技术可以将网络内部的私有地址翻译成 Internet上使用的合法公有IP地址,这样便可以解决内部网络大量主机访问 Internet的需求问题,可以有效地减少对公有IP地址的注册需求。
四、可变长子网掩码(VLSM)
子网掩码(Subnet Mask)技术可以实现将一个大的网络划分成若于子网, 且各子网大小相同,也就是各子网所能容纳的主机数相同。而VLSM(Variable Length Subnet Mask, 可变长子网掩码)技术可以实现将一个大的网络分成多个不 同大小的子网,也就是说各子网所能容纳的主机可以不同。VLSM技术对IP地址的高 效分配及减少路由表大小都非常重要,但必须路由协议支持VLSM技术才能发挥作用。 能够支持VLSM技术的路由协议主要有RIP2,OSPF,EIGRP和BGP。
子网编址技术中不可缺少的就是子网掩码(Subnet Mask),子网掩码与IP 地址一样,其长度也是32位(4个字节),可以用二进制形式,也可以使用十进制 的形式。例如:255.255.252.0就是一个有效的十进制子网掩码,其对应的二进制 形式的子网掩码为11111111.11111111.11111100.00000000。子网掩码中用1代表网 络部分,0代表主机部分。通常A类地址的默认子网掩码为255.0.0.0,B类地址的默 认子网掩码为255.255.0.0,C类地址的默认子网掩码为255.255.255.0。利用子网 掩码可以确定IP地址的网络号和主机号,并可以判定网络中的主机是否属于同一子 网。若将IP地址与子网掩码进行按位与,便可以得出网络号;若将IP地址与子网掩 码的反码(即将子网掩码按位取反所得的二进制数)进行按位与,便可以得出主机 号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过连接实例解读TCP/IP协议最近狂补基础,猛看TCP/IP协议。

不过,书上的东西太抽象了,没有什么数据实例,看了不久就忘了。

于是,搬来一个sniffer,抓了数据包来看,呵呵,结合书里面得讲解,理解得比较快。

我就来灌点基础知识。

开始吧,先介绍IP协议。

IP协议(Internet Protocol)是网络层协议,用在因特网上,TCP,UDP,ICMP,IGMP数据都是按照IP数据格式发送得。

IP协议提供的是不可靠无连接得服务。

IP数据包由一个头部和一个正文部分构成。

正文主要是传输的数据,我们主要来理解头部数据,可以从其理解到IP协议。

IP数据包头部格式(RFC791)Example Internet Datagram Header上面的就是IP数据的头部格式,这里大概地介绍一下。

IP头部由20字节的固定长度和一个可选任意长度部分构成,以大段点机次序传送,从左到右。

TCP协议TCP协议(TRANSMISSION CONTROL PROTOCOL)是传输层协议,为应用层提供服务,和UDP不同的是,TCP协议提供的可靠的面向连接的服务。

在RFC793中是基本的TCP描述。

关于TCP协议的头部格式内容的说明:TCP Header FORMatTCP Header FORMat跟IP头部差不多,基本的长度也是20字节。

TCP数据包是包含在一个IP数据报文中的。

好了,简单介绍到此为止。

来看看我捕获的例子吧。

这是一次FTP的连接,呵呵,是cuteftp默认的cuteftp的FTP站点,IP地址是:216.3.226.21。

我的IP地址假设为:192.168.1.1。

下面的数据就是TCO/IP连接过程中的数据传输。

我们可以分析TCP/IP协议数据格式以及TCP/IP连接的三次握手(ThreeWay-Handshake)情况。

下面的这些十六进制数据只是TCP/IP协议的数据,不是完整的网络通讯数据。

第一次,我向FTP站点发送连接请求(我把TCP数据的可选部分去掉了)192.168.1.1->216.3.226.21IP头部: 45 00 00 30 52 52 40 00 80 06 2c 23 c0 a8 01 01 d8 03 e2 15TCP头部:0d 28 00 15 50 5f a9 06 00 00 00 00 70 02 40 00 c0 29 00 00来看看IP头部的数据是些什么。

第一字节,“45”,其中“4”是IP协议的版本(Version),说明是IP4。

“5”是IHL位,表示IP头部的长度,是一个4bit字段,最大就是1111了,值为12,IP头部的最大长度就是60字节。

而这里为“5”,说明是20字节,这是标准的IP头部长度,头部报文中没有发送可选部分数据。

接下来的一个字节“00”是服务类型(Type of Service)。

这个8bit字段由3bit的优先权子字段(现在已经被忽略),4 bit的TOS子字段以及1 bit的未用字段(现在为0)构成.4 bit的TOS子字段包含:最小延时、最大吞吐量、最高可靠性以及最小费用构成,这四个1bit位最多只能有一个为1,本例中都为0,表示是一般服务。

接着的两个字节“00 30”是IP数据报文总长,包含头部以及数据,这里表示48字节。

这48字节由20字节的IP头部以及28字节的TCP头构成(本来截取的TCP头应该是28字节的,其中8字节为可选部分,被我省去了)。

因此目前最大的IP数据包长度是65535字节。

再是两个字节的标志位(Identification):“5252”,转换为十进制就是21074。

这个是让目的主机来判断新来的分段属于哪个分组。

下一个字节“40”,转换为二进制就是“0100 0000”,其中第一位是IP协议目前没有用上的,为0。

接着的是两个标志DF和MF。

DF为1表示不要分段,MF为1表示还有进一步的分段(本例为0)。

然后的“0 0000”是分段便移(Fragment Offset)。

“80”这个字节就是TTL(Time To Live)了,表示一个IP数据流的生命周期,用Ping显示的结果,能得到TTL的值,很多文章就说通过TTL位来判别主机类型。

因为一般主机都有默认的TTL值,不同系统的默认值不一样。

比如WINDOWS 为128。

不过,一般Ping得到的都不是默认值,这是因为每次IP数据包经过一个路由器的时候TTL就减一,当减到0时,这个数据包就消亡了。

这也时Tracert 的原理。

本例中为“80”,转换为十进制就是128了,我用的WIN2000。

继续下来的是“06”,这个字节表示传输层的协议类型(Protocol)。

在RFC790中有定义,6表示传输层是TCP协议。

“2c 23”这个16bit是头校验和(Header Checksum)。

接下来“c0 a8 01 01”,这个就是源地址(Source Address)了,也就是我的IP地址。

转换为十进制的IP地址就是:192.168.1.1,同样,继续下来的32位“d8 03 e2 15”是目标地址,216.3.226.21好了,真累啊,终于看完基本的20字节的IP数据报头了。

继续看TCP的头部吧,这个是作为IP数据包的数据部分传输的。

TCP头部:0d 28 00 15 50 5f a9 06 00 00 00 00 70 02 40 00 c0 29 00 00一来就是一个两字节段“0d 28”,表示本地端口号,转换为十进制就是3368。

第二个两字节段“00 15”表示目标端口,因为我是连接FTP站点,所以,这个就是21啦,十六进制当然就是“00 15”。

接下来的四个字节“50 5f a9 06”是顺序号(Sequence Number),简写为SEQ,SEQ=1348446470下面的四个字节“00 00 00 00”是确认号(Acknowledgment Number),简写为ACKNUM。

继续两个字节,“70 02”,转换为二进制吧,“0111 0000 0000 0010”。

这两个字节,总共16bit,有好多东西呢。

第一个4bit“0111”,是TCP头长,十进制为7,表示28个字节(刚才说了,我省略了8字节的option数据,所以你只看见了20字节)。

接着的6bit现在TCP协议没有用上,都为0。

最后的6bit“00 0010”是六个重要的标志。

这是两个计算机数据交流的信息标志。

接收和发送断根据这些标志来确定信息流的种类。

下面是一些介绍:URG:(Urgent Pointer field significant)紧急指针。

用到的时候值为1,用来处理避免TCP数据流中断ACK:(Acknowledgment fieldsignificant)置1时表示确认号(AcknowledgmentNumber)为合法,为0的时候表示数据段不包含确认信息,确认号被忽略。

PSH:(Push Function),PUSH标志的数据,置1时请求的数据段在接收方得到后就可直接送到应用程序,而不必等到缓冲区满时才传送。

RST:(Reset the connection)用于复位因某种原因引起出现的错误连接,也用来拒绝非法数据和请求。

如果接收到RST位时候,通常发生了某些错误。

SYN:(Synchronize sequence numbers)用来建立连接,在连接请求中,SYN=1,ACK=0,连接响应时,SYN=1,ACK=1。

即,SYN和ACK来区分Connection Request 和Connection Accepted。

FIN:(No more data from sender)用来释放连接,表明发送方已经没有数据发送了。

这6个标志位,你们自己对号入座吧。

本例中SYN=1,ACK=0,当然就是表示连接请求了。

我们可以注意下面两个过程的这两位的变换。

后面的“40 00 c0 29 00 00”不讲了,呵呵,偷懒了。

后面两次通讯的数据,自己分开看吧。

我们看看连接的过程,一些重要地方的变化。

第二次,FTP站点返回一个可以连接的信号。

216.3.226.21->192.168.1.1IP头部: 45 00 00 2c c6 be 40 00 6a 06 cd ba d8 03 e2 15 c0 a8 01 01TCP头部:00 15 0d 28 4b 4f 45 c1 50 5f a9 07 60 12 20 58 64 07 00 00第三次,我确认连接。

TCP连接建立起来。

192.168.1.1->216.3.226.21IP头部: 45 00 00 28 52 53 40 00 80 06 2c 2a c0 a8 01 01 d8 03 e2 15TCP头部:0d 28 00 15 50 5f a9 07 4b 4f 45 c2 50 10 40 b0 5b 1c 00 00好,我们看看整个Threeway_handshake过程。

第一步,我发出连接请求,TCP数据为:SEQ=50 5f a9 06,ACKNUM=00 00 00 00,SYN=1,ACK=0。

第二步,对方确认可以连接,TCP数据为:SEQ=4b 4f 45 c1,ACKNUM=50 5f a9 07,SYN=1,ACK=1。

第三步,我确认建立连接。

SEQ=50 5f a9 07, ACKNUM=4b 4f45c2,SYN=0,ACK=1。

可以看出什么变化么?正式建立连接了呢,这些东西是什么值?我接收从216.3.226.21->192.168.1.1的下一个数据包中:SEQ=4b 4f 45 c2,ACKNUM=50 5f a9 07,SYN=0,ACK=1这些都是很基础的东西,对于编写sniffer这样的东西是必须非常熟悉的。

这里只讲解了TCP/IP协议的一点点东西,主要是头部数据的格式。

一、Ethernet地址为了标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址,即Ethernet地址或称为网卡的物理地址、MAC地址。

IEEE负责为网络适配器制造厂商分配Ethernet地址块,各厂商为自己生产的每块网络适配器分配一个唯一的Ethernet地址。

因为在每块网络适配器出厂时,其Ethernet地址就已被烧录到网络适配器中。

所以,有时我们也将此地址称为烧录地址(Burned-In-Address,BIA)。

Ethernet地址长度为48比特,共6个字节,如图1所示。

其中,前3字节为IEEE分配给厂商的厂商代码,后3字节为网络适配器编号。

图1Ethernet地址二、CSMA/CD在ISO的OSI参考模型中,数据链路层的功能相对简单。

相关文档
最新文档