(完整word版)上海七年级数学下期末试卷

合集下载

上海七年级第二学期数学期末数学考试试卷(答案)

上海七年级第二学期数学期末数学考试试卷(答案)

第二学期初中七年级数学期末质量调研1参考答案与评分意见一、填空题(本大题共有14题,每题2分,满分28分)1.4±;2.34;3.0.79;4.>;5.20;6.235-;7.50 ;8.70 ;9.()5,3-;10.10>c >6;11.54 ;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ;13.130 ;14.60 或120 ;二、单项选择题(本大题共有4题,每题3分,满分共12分)15.B;16.D;17.B;18.A.三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式(25255⎡=-⎢⎣……………………………………………………1分2555⎡⎤=-⨯⎢⎥⎣⎦…………………………………………………1分25555=……………………………………………1分52=-…………………………………………………………………2分【说明】没有过程,直接得结论扣2分.20.解法一:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分4562⎛⎫= ⎪⎝⎭……………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分3102不扣分.解法二:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分42322=⨯…………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分;(2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分(2)()5,3-,等腰直角三角形;…………………………………………(1+1)分(3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠、B ∠、C ∠的度数分别为3x 、4x 、5x .……1分因为A ∠、B ∠、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠= (三角形的内角和等于180 ),……………1分即345180x x x ++=.…………………………………………………1分解得15x =.……………………………………………………………2分所以45A ∠= ,60B ∠= ,75C ∠= .………………………………1分24.解:(1)因为AB AC =(已知),所以△ABC 是等腰三角形.由AD BC ⊥(已知),得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分由110BAC ∠= (已知),得11110552∠=⨯= .……………………………………………………2分(2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解:两直线平行,内错角相等…………………………………………………1分EBA FCD ∠=∠…………………………………………………………1分等角的补角相等……………………………………………………………1分AB CD =.………………………………………………………………1分在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等), (1)分所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠= (等边三角形的每个内角等于60 ).因为FDE B ∠=∠(已知),所以60FDE ∠= (等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60 的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1P AB 的面积为a;()22,0P a -,△2P AB 的面积为a ;()32,0P ,△3P AB 的面积为4;()40,0P ,△4P AB 的面积为2.(每个结论各1分)。

沪科版七年级下册数学期末考试试题及答案精选全文完整版

沪科版七年级下册数学期末考试试题及答案精选全文完整版

可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。

2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市普陀区七年级(下)期末数学试卷一、单项选择题(本大题共有6题,满分12分)1.(2分)下列实数中,无理数是()A.B.3.1415C.D.﹣12.(2分)下列运算一定正确的是()A.=±7B.(﹣)2=7C.﹣=7D.=73.(2分)如图,与∠A位置关系为同旁内角的角是()A.∠1B.∠2C.∠3D.∠C4.(2分)在直角坐标平面内,如果点P(m,n)在第四象限,那么点Q(n,m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)如图,在△ABC中,已知AB=AC,AD是△ABC的中线,如果∠B=70°,那么以下结论中,错误的是()A.∠CAD=20°B.AD⊥BCC.△ABD的面积是△ABC面积的一半D.△ABD的周长是△ABC周长的一半6.(2分)如图,已知AB∥DE,AD∥EC,那么与△BDE的面积一定相等的三角形是()A.△ADE,△ADC B.△CDE,△ADC C.△AEC,△ADC D.△ADE,△CDE二、填空题(本大题共有12题,满分36分)7.(3分)81的平方根是.8.(3分)把方根化为幂的形式:=.9.(3分)比较大小:﹣3﹣7.(填“>”,“=”或“<”)10.(3分)用科学记数法表示0.00369,结果保留两个有效数字约为.11.(3分)直角坐标系内点P(﹣2,3)关于x轴的对称点Q的坐标为.12.(3分)请写出一个在直角坐标平面内不属于任何象限的点的坐标:.13.(3分)在直角坐标平面内,点向平移m(m>0)个单位后,落在第三象限.(填“上”,“下”,“左”,“右”)14.(3分)在直角坐标平面内,经过点M(5,﹣6)且垂直于y轴的直线可以表示为直线.15.(3分)如图,把一直尺放置在一个三角形纸片上,如果∠1=70°,那么∠2=°.16.(3分)如果等腰三角形的周长等于16厘米,一条边长等于6厘米,那么这个等腰三角形的底边与其一腰的长度的比值等于.17.(3分)如图,已知点P在∠AOB的内部,点P关于OA、OB的对称点分别为P1、P2,如果∠AOB=30°,OP=6厘米,那么△P1OP2的周长等于厘米.18.(3分)如图,在直角坐标平面内,点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(c,0)(c<0),在坐标平面内存在点D,使以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,那么点D的坐标为.(用含c的代数式表示)三、筒答题(本大题共有5题,满分25分)19.(5分)计算:.20.(5分)计算:.21.(5分)如图,在△ABC中,已知点G、F分别在边BC、AC上,AE∥BC交GF的延长线于点E,且∠B=∠E.试说明∠B+∠BGF=180°的理由.解:因为AE∥BC(已知),所以∠E=∠EGC().因为∠B=∠E(已知),所以∠B=(等量代换).所以∥().所以∠B+∠BGF=180°().22.(5分)如图,已知AB⊥BD,AC⊥CD,∠1=∠2.试说明AD⊥BC的理由.解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD().得(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC().23.(5分)根据下列要求作图并回答问题:(1)用直尺和圆规作图(保留作图痕迹,不要求写作法和结论):①作△ABC,使AB=AC=a,BC=b;②作边AB的垂直平分线,分别交AB、BC于点M、N;(2)在(1)的图形中,联结AN,那么△ACN的周长等于.(用含a、b的代数式表示)四、解答题(本大题共有4题,满分27分)24.(6分)如图,在直角坐标平面内,已知点A(3,﹣1),点B在y轴的正半轴上且到x轴的距离为1个单位,将点B向右平移2个单位,再向上平移3个单位到达点C,点D与点A关于原点对称.(1)在直角坐标平面内分别描出点B、C、D;(2)写出图中点B、C、D的坐标是:B,C,D;(3)按A﹣B﹣C﹣D﹣A顺次联结起来所得的图形的面积是.25.(7分)如图,在△ABC中,已知∠BAC=90°,AB=AC,点D在边AB上,联结CD,过点B作BE ⊥CD交CD的延长线于点E,联结AE,过点A作AF⊥AE交CD于点F.试说明AE=AF的理由.解:因为∠DBE+∠BEC+∠EDB=180°().同理:∠DCA+∠BAC+∠ADC=180°.因为BE⊥CD,所以∠BEC=90°.又因为∠BAC=90°,所以∠BEC=∠BAC.因为∠EDB=∠ADC(),所以∠=∠.(完成以下说理过程)26.(7分)如图,在等边三角形ABC的边AC上任取一点D,以CD为边向外作等边三角形CDE,联结BD、AE.(1)试说明△BCD与△ACE全等的理由;(2)试说明∠ABD和∠AED相等理由.27.(7分)小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,那么点P称为△ABC的“布洛卡点”,其中∠PAB、∠PBC、∠PCA被称为“布洛卡角”.如图2,当∠QAC=∠QCB=∠QBA时,点Q也是△ABC的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有个,“布洛卡角”的度数为度;问题2:在等腰三角形ABC中,已知AB=AC,点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”.(1)∠AMB与△ABC的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当∠BAC=90°(如图4所示),BM=5时,求点C到直线AM的距离.2023-2024学年上海市普陀区七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(本大题共有6题,满分12分)1.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A、,是整数,属于有理数,不符合题意;B、3.1415是有限小数,属于有理数,不符合题意;C、是无理数,符合题意;D、﹣1是整数,属于有理数,不符合题意;故选:C.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.2.【分析】根据平方根、立方根的定义判断即可.【解答】解:A.=7,此选项错误,不符合题意;B.(﹣)2=7,此选项正确,符合题意;C.﹣=﹣7,此选项错误,不符合题意;D.=﹣7,此选项错误,不符合题意;故选:B.【点评】本题考查算术平方根、立方根的定义,解题的关键是熟练掌握基本概念,属于中考基础题.3.【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;B、∠2和∠A都是四边形ABED的内角,不是同旁内角,故本选项错误,不符合题意;C、∠3和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;D、∠C和∠A是同旁内角,故本选项正确,符合题意;故选:D.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.4.【分析】根据第四象限点的坐标特征可得m>0,n<0,然后根据第二象限点的坐标特征,即可解答.【解答】解:∵点P(m,n)在第四象限,∴m>0,n<0,∴点Q(n,m)所在的象限是第二象限,故选:B.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.5.【分析】由三角形内角和定理求出∠BAC=180°=70°﹣70°=40°,由等腰三角形三线合一的性质得到∠CAD=∠BAC=20°,AD⊥BC,由三角形面积公式得到△ABD的面积是△ABC面积的一半,△ABC周长的一半=AB+BD,△ABD的周长=AB+BD+AD,得到△ABD的周长不是△ABC周长的一半,【解答】解:∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°=70°﹣70°=40°,∵AD是△ABC的中线,∴AD平分∠BAC,∴∠CAD=∠BAC=20°,故A不符合题意;∵AB=AC,AD是△ABC的中线,∴AD⊥BC,故B不符合题意;∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积是△ABC面积的一半,故C不符合题意;∵AB=AC,BD=CD,∴AB+BD=AC+CD=△ABC周长的一半,∵△ABD的周长=AB+BD+AD,∴△ABD的周长不是△ABC周长的一半,故D符合题意.故选:D.【点评】本题考查等腰三角形的性质,关键是掌握等腰三角形的性质:等腰三角形的两个底角相等,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.6.【分析】两条直线平行,则两直线之间的距离处处相等,从而根据三角形面积公式,找出同底等高的三角形,本题即可得求.【解答】解:本题可通过三角形面积公式求解,观察三角形BDE和三角形ADE,两个三角形共用一个底DE,因为AB∥DE,所以三角形BDE和三角形ADE的高相等,即AB与DE的距离d1.=S△ADE=DE×d1.故S△BDE观察三角形EDA和三角形CDA,两个三角形共用一个底DA,因为AD∥EC,所以三角形EDA和三角形CDA的高相等,即AD与EC的距离d2.=S△ADE=AD×d2.故S△ADC=S△ADC=S△ADE.所以S△BDE故选:A.【点评】本题巧妙地将三角形的面积和平行线的性质相结合,创新性地考查了学生对三角形面积的理解.二、填空题(本大题共有12题,满分36分)7.【分析】直接根据平方根的定义填空即可.【解答】解:∵(±9)2=81,∴81的平方根是±9.故答案为:±9;【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】根据分数指数幂,可化成分数指数形式,根据负分数幂的性质,可得负分数指数幂.【解答】解:原式==.【点评】本题考查了分数指数幂,先求分数指数幂,再求负分数指数幂.9.【分析】两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣3|=3=,|﹣7|=7,∵45<49,∴<7,∴﹣>﹣7,即﹣3>﹣7.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:用科学记数法表示0.00369,结果保留两个有效数字约为:3.7×10﹣3,故答案为:3.7×10﹣3.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此即可解答.【解答】解:点P(﹣2,3)关于x轴的对称点Q的坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了关于x轴、y轴的对称点的坐标,关于x轴对称的两个点横坐标相同,纵坐标互为相反数.12.【分析】根据x轴或y轴上的点不属于任何象限解答即可.【解答】解:在直角坐标平面内不属于任何象限的点的坐标可以是(0,﹣1)等.故答案为:(0,﹣1)(答案不唯一).【点评】本题考查了点的坐标:平面直角坐标系中,点与有序实数对一一对应.也考查了各象限内的点的坐标特点.13.【分析】根据点P的位置判断即可.【解答】解:∵P(﹣,0)在x轴的负半轴上,∴点P向下平移落在第三象限,故答案为:下.【点评】本题考查坐标与图形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.【分析】垂直于y轴的直线,纵坐标相等,都为﹣6,所以为直线:y=﹣6.【解答】解:由题意得:经过点A(5,﹣6)且垂直于y轴的直线可以表示为直线为:y=﹣6,故答案为:y=﹣6.【点评】此题考查了坐标与图形的性质,解题的关键是抓住过某点的坐标且垂直于y轴的直线的特点:纵坐标相等.15.【分析】由邻补角的性质得到∠3=180°﹣70°=110°,由平行线的性质推出∠2=∠3=110°.【解答】解:∵∠1=70°,∴∠3=180°﹣70°=110°,∵AB∥CD,∴∠2=∠3=110°.故答案为:110.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠2=∠3.16.【分析】分两种情况:当等腰三角形的腰长为6厘米时;当等腰三角形的底边长为6厘米时;然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为6厘米时,∵等腰三角形的周长等于16厘米,∴底边长=16﹣2×6=4(厘米),此时等腰三角形的底边与其一腰的长度的比值==;当等腰三角形的底边长为6厘米时,∵等腰三角形的周长等于16厘米,∴腰长==5(厘米),此时等腰三角形的底边与其一腰的长度的比值=;综上所述:这个等腰三角形的底边与其一腰的长度的比值等于或,故答案为:或.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.17.【分析】根据轴对称的性质,∠AOB=30°,P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∠AOP=∠AOP1,∠BOP=∠BOP2,可求出∠P1OP2的度数,确定三角形的形状,再由等边三角形的性质即可得出结论.【解答】解:连接OP,∵P1与P关于OA对称,∴OP=OP1,∵P2与P关于OB对称,∴OP=OP2,∴OP1=OP2,∵P1与P关于OA对称,∴∠POA=∠AOP1,∵P2与P关于OB对称,∴∠BOP=∠BOP2,又∵∠P1OP2=∠AOP1+∠AOP+∠BOP+∠BOP2,∵∠P1OP2=∠BOP+∠BOP+∠AOP+∠AOP,=2(∠BOP+∠APO),=2∠AOB,∵∠AOB=30°,∵∠P1OP2=2×30°=60°,∴△OP1P2为等边三角形,∴△P1OP2的周长=3OP=18(厘米).故答案为:18.【点评】本题考查轴对称的性质,等边三角形的判定与性质,熟知关于轴对称的两个图形对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键.18.【分析】依题意有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,则点D即为所求的点,由BD∥AC,AD∥BC得∠BAD=∠ABC,∠ABD=∠BAC,则△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据BD=AC,BD//AC可得点D的坐标;②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,则点D即为所求的点,先证明△OAD和△OBC全等得AD=BC,∠OAD=∠OBA,再根据OA=OB=3得∠OAB=∠OBA,进而得∠BAD =∠ABC,由此可证明△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据OD=OC,点D 在y轴上可得点D的坐标,综上所述即可得出答案.【解答】解:∵以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,∴有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,如图1所示:则点D即为所求的点,理由如下:∵BD∥AC,AD∥BC,∴∠BAD=∠ABC,∠ABD=∠BAC,在△BAD和△ABC中,,∴△BAD≌△ABC(ASA),且∠BAD与∠ABC是对应角,∴BD=AC,∵BD//AC,∴点D的纵坐标与点B的纵坐标相等,∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴BD=AC=3﹣c,∴点D的坐标为(3﹣c,3);②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,如图2所示:∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴OA=OB=3,则点D即为所求的点,理由如下:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS),∴AD=BC,∠OAD=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠OAB+∠OAD=∠OBA+∠OBC即∠BAD=∠ABC,在△BAD和△ABC中,,∴△BAD≌△ABC,且∠BAD与∠ABC是对应角,∵OD=OC,点D在y轴上,∴点D的坐标为(0,c),综上所述:点D的坐标为(3﹣c,3)或(0,c).故答案为:(3﹣c,3)或(0,c).【点评】此题主要考查了全等三角形的判定,坐标与图形性质,熟练掌握全等三角形的判定,坐标与图形性质是解决问题的关键,分类讨论是解决问题的难点,也是易错点.三、筒答题(本大题共有5题,满分25分)19.【分析】根据实数的运算法则及零指数幂进行计算即可得出答案.【解答】解:原式=﹣5++1﹣9=﹣13+=﹣12.【点评】本题主要考查实数的运算,熟练掌握实数的运算法则是解题的关键.20.【分析】根据分数指数幂和实数的运算法则计算即可.【解答】解:原式=×===2.【点评】本题考查的是分数指数幂和实数的运算,熟练掌握其运算法则是解题的关键.21.【分析】根据平行线的性质可得∠E=∠EGC,再利用等量代换可得∠B=∠EGC,然后利用同位角相等,两直线平行可得AB∥EG,从而利用平行线的性质可得∠B+∠BGF=180°,即可解答.【解答】解:因为AE∥BC(已知),所以∠E=∠EGC(两直线平行,内错角相等).因为∠B=∠E(已知),所以∠B=∠EGC(等量代换).所以AB∥EG(同位角相等,两直线平行).所以∠B+∠BGF=180°(两直线平行,同旁内角互补),故答案为:两直线平行,内错角相等;∠EGC;AB;EG;同位角相等,两直线平行;两直线平行,同旁内角互补.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.22.【分析】根据题意和题目中的解答过程,将空缺部分补充完整即可.【解答】解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理∠ACD=90°.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD(AAS).得AB=AC(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC(三线合一).故答案为:∠ACD=90°;AAS;AB=AC;三线合一.【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)①任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC即可.②根据线段垂直平分线的作图方法作图即可.(2)根据线段垂直平分线的可得AN=BN,则△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.【解答】解:(1)①如图,任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC,则△ABC即为所求.②如图,直线MN即为所求.(2)∵直线MN为线段AB的垂直平分线,∴AN=BN,∵AC=a,BC=b,∴△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.故答案为:a+b.【点评】本题考查作图—复杂作图、线段垂直平分线的性质,熟练掌握基本尺规作图的方法、线段垂直平分线的性质是解答本题的关键.四、解答题(本大题共有4题,满分27分)24.【分析】(1)根据题意在平面直角坐标系中描出点B、C、D三点即可;(2)根据图中点B、C、D的位置写出点B,C,D的坐标;(3)根据【解答】解:(1)如图所示;(2)B(0,1),C(2,4),D(﹣3,1);故答案为:(0,1),(2,4),(﹣3,1);(3)图形的面积=△BCD的面积+△BDA的面积=×3×3+×3×2=,故答案为:.【点评】本题考查了作图﹣平移变换,正确地作出图形是解题的关键.25.【分析】由三角形内角和定理得∠DBE+∠BEC+∠EDB=180°,∠DCA+∠BAC+∠ADC=180°,∠BEC=∠BAC=90°,因为∠EDB与∠ADC是对顶角,所以∠EDB=∠ADC,可推导出∠DBE=∠DCA,而AB=AC,∠BAE=∠CAF=90°﹣∠BAF,即可证明△BAE≌△CAF,得AE=AF,于是得到问题的答案.【解答】解:因为∠DBE+∠BEC+∠EDB=180°(三角形的内角和等于180°),同理:∠DCA+∠BAC+∠ADC=180°,因为BE⊥CD,所以∠BEC=90°,又因为∠BAC=90°,所以∠BEC=∠BAC,因为∠EDB=∠ADC(对顶角相等),所以∠DBE=∠DCA,因为AF⊥AE,所以∠EAF=90°,所以∠BAE=∠CAF=90°﹣∠BAF,在△BAE和△CAF中,,所以△BAE≌△CAF(ASA),所以AE=AF.故答案为:三角形的内角和等于180°,对顶角相等,DBE,DCA.【点评】此题重点考查三角形内角和定理、对顶角相等、同角的余角相等、全等三角形的判定与性质等知识,证明△BAE≌△CAF是解题的关键.26.【分析】(1)根据等边三角形的性质和全等三角形的判定方法可以证明结论成立;(2)根据(1)中的结论、外角和内角的关系可以得到∠ABD和∠AED相等.【解答】解:(1)∵△ABC是等边三角形,∴BC=AC,∠BCD=60°,∵△CDE是等边三角形,∴CD=CE,∠ACE=60°,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS);(2)由(1)知,△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBD+∠ABD=∠ABC=60°,∠AED+∠CAE=∠CDE=60°,∴∠ABD=∠AED.【点评】本题考查全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件.27.【分析】问题1:根据等边三角形的性质证明△ACP≌△BAP(ASA),得PA=PB=PC,进而可以解决问题;问题2:(1)根据题意画出图形,利用等腰三角形的性质和“布洛卡点”定义,即可解决问题;(2)由△ABC是等腰直角三角形,证明△ABM≌△ACN(AAS),即可解决问题.【解答】解:问题1:如图1﹣1:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB=60°,∵∠PAB=∠PBC=∠PCA,∴∠PAC=∠PBA=∠PCB,∴△ACP≌△BAP(ASA),∴CP=AP,同法可证CP=BP,∴PA=PB=PC,∴∠PAB=∠PBA=∠PBC=∠PCB=∠PCA=∠PAC=30°,∴等边三角形的“布洛卡点”有1个,“布洛卡角”的度数为30度;故答案为:1,30°;问题2:(1)∠AMB=2△ABC,如图3即为所求,∵AB=AC,∴∠ABC=∠ACB,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MCB=∠MBA,∴∠MBC=∠MCA,设∠MAC=∠MCB=∠MBA=α,∠MBC=∠MCA=β,∴∠MAB=180°﹣3α﹣2β,∴∠AMB=180°﹣(180°﹣3α﹣2β)﹣α=2(α+β)=∠ABC,∴∠AMB=2∠ABC;(2)如图4,过点C作CN⊥AM的延长线于点N,∵△ABC是等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠ABC=∠ACB=45°,由(1)知:∠AMB=2∠ABC=90°,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MBA=∠BCM,∴△ABM≌△ACN(AAS),∴BM=AN=5,AM=CN,∵∠AMB=∠CNM=90°,∴BM∥CN,∴∠MBC=∠NCB,∵∠MBA=∠BCM,∴∠MCN=∠ABC=45°,∴CN=MN,∴AM=CN=MN=AN=2.5,∴点C到直线AM的距离为2.5.【点评】本题是三角形综合题,考查全等三角形的判定与性质、等边三角形的性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形。

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

七年级期末数学试卷题号一二三总分得分姓名一选择题 (每小题 3 分)1. 已知,如右图 AB∥CD,可以得到A()A. ∠1=∠ 2B. ∠2=∠ 3 2 D14C. ∠1=∠ 4D.∠3=∠ 4B3C2.223, 16, 这五个数中,无理数的个数是()在 3.14, ,7A. 1 个B. 2 个C. 3 个D. 4 个3. 已知 a b 则下列各式正确的是()A. a bB. a 3 b 3C. a 2 b2D. 3a 3b班 4. 下列计算中,正确的个数是()级① x3 x4 x7 ② y 2 y 3 y ③ a2 3 a5 ④ (ab) 2 a2 b2A. 1 个B.2 个C.3 个D. 4 个5. 2 3与 23 的关系是()A. 互为倒数B. 绝对值相等C. 互为相反数D. 和为零考6. 下列各式中,正确的是()号 2 2 2 2A. a b a bB. a b 1C. a b 1D. a b a ba b a b a b a b7. 下列多项式能用完全平方公式分解因式的有()A.x2 2x y2 B. 4x2 9 C. x2 y2 D. a2 2ab b28.如图,下列不能判定 a ∥ b 条件是()1 2aA. ∠1=∠3B.∠ 2+∠3=180°C. ∠ 2=∠ 3D.∠2=∠ 4 4 b39.为了考察某班学生的身高情况,从中抽出 20 名学生进行身高测量,下列说法中正确的是()1A. 这个班级的学生是总体B. 抽取的 20 名学生是样本C. 抽取的每一名学生是个体D.样本容量是 2010. 下列图形中,是由①仅通过平移得到的是 ( )①A. B. C. D.二 填空题(每题 3 分,共 27 分)11.16 的平方根是.12. 一种病毒的直径是 0.00 12m , 用科学计数法表示为 m.13. 比较大小: 12 0 .14. 关于 x 的某个不等式组的解集在数轴上表示为: (如下图)则原不等式组的解集是.-2-1 01234x 1 0.15. 不等式组2 的整数解是x 316. 若∠ 1 和∠ 2 是对顶角,∠ 1=25°, 则∠ 2 是 ° .17. 分解因式: 4m 3 m =.18. 如右下图,直线 a 、b 被直线 c 所截,且 a ∥ b ,若∠ 2=38°,则∠ 1的度数是°.c1xa19. 当 x时,分式有意义 .24x 2b三 解答题( 43 分)20. 计算2x 1 (6 分)x 12x 2221.先化解,再求值( 8 分)( 1 x 3 ) 1 ,其中 x 1x 1 x2 1 x 122.已知,AB//CD, B 360 , D 240 , 求BED.(8分)23. 推理填空:(8分)如图, EF∥AD,∠ 1=∠ 2, ∠BAC=70° . 将求∠ AGD的过程填写完整 .因为 EF∥ AD,C 所以∠ 2=____(____________________________)又因为∠ 1=∠ 2D 1所以∠ 1=∠ 3(______________) G 所以 AB∥ _____(_____________________________) F所以∠ BAC+______=180° 2 3 (___________________________) B E A 因为∠ BAC=70°所以∠ AGD=_______。

沪教版七年级第二学期数学期末试题精选全文完整版

沪教版七年级第二学期数学期末试题精选全文完整版

可编辑修改精选全文完整版七年级 其次学期 期末检测一、 填空题1. 计算:=⋅a a 2 .2. 计算:=-23 .3. 计算:()=-÷xy y x 15332 .4. 分解因式: =-222x .5. 假如二次三项式1522-+kx x 〔k 是整数〕能在整数范围内因式分解,请写出k 可能的取值是 _〔只要写出一个即可〕. 6. 要使分式115-+x x 有意义,那么x 的取值范围是 . 7.xy 34和221xy 的最简公分母是 . 8. 一个最简分式减去a 1的差是abb a -,那么这个最简分式是: . 9. 计算:()=-⋅-y y x y x xy 242. 10. l 、确定∠a 的对顶角是58°,那么∠a=______。

11. 2、在同一平面内,假设直线a∥c,b∥c,那么a_____b 。

12. 3、经过一点________一条直线垂直于确定直线。

13. 4、平移不变更图形的_______ 和______ ,只变更图形的_______。

14. 5、把命题“等角的补角相等”改写成“假如…,那么…”的形式是: 15. ______________________________________二、选择题〔每题只有一个选项正确〕16. 用分组分解法分解多项式1222-+-y y x 时,以下分组方法正确的选项是……………〔 〕〔A 〕()()y y x 2122---; 〔B 〕()()1222-+-y y x ; 〔C 〕()1222+--y y x ; 〔D 〕()()1222+-+y y x .17. 假设将分式yx y x +-22中的x 和y 都扩大到原来的2倍,那么分式的值…………………〔 〕〔A 〕扩大到原来的2倍;〔B 〕扩大到原来的4倍;〔C 〕缩小到原来的12;〔D 〕不变. .三、计算题18. 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-22212221x y y x19. 分解因式:()()1272+---b a b a .20. 约分:22222n m n m mn ---.21. 计算:xx x x -÷⎪⎭⎫ ⎝⎛++-121111.22. 先化简,再求值:44212122---++-a aa a a ,其中3-=a .23、(6分)如图(1),在以下括号中填写推理理由 ∵∠l=135°(确定)∴∠3=∠135°( ) 又∵∠2=45°(确定) ∴∠2+∠3=45°+135°=180°∴a∥b( )。

上海市七年级下册数学期末试卷(含答案)

上海市七年级下册数学期末试卷(含答案)

下海市七年级下册数学期末试卷(含答案)一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 3.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 34.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣a D .﹣a ﹣b6.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xyB .- 4xyC .8xyD .-8xy 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩ 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .610.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.多项式2412xy xyz +的公因式是______.12.一个五边形所有内角都相等,它的每一个内角等于_______.13.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.14.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 17.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.如图,根据长方形中的数据,计算阴影部分的面积为______ .20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .三、解答题21.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).22.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.24.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定; (4)请对你在第(3)小题中所作的判断说明理由.25.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .26.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.27.如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.28.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。

2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市长宁区七年级(下)期末数学试卷一、选择题(本大题共6小题,每题2分,满分12分)1.(2分)下列各数中,是无理数的是()A.B.C.D.2.(2分)下列运算正确的是()A.B.C.D.3.(2分)下列图中,∠1、∠2是对顶角的是()A.B.C.D.4.(2分)已知a为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是()A.(4,﹣a2)B.(a+1,﹣4)C.(a2+1,﹣4)D.(a2,﹣4)5.(2分)已知等腰三角形的周长为16,其底边长为a,那么a的取值范围是()A.a>0B.0<a<8C.0<a<16D.a<166.(2分)如图,直线a⊥b,在平面直角坐标系中,x轴∥a,y轴∥b,已知点A(﹣1,4)、点B(2,﹣1),那么坐标原点是点()A.O1B.O2C.O3D.O4二、填空题(本大题共12小题,每空3分,满分36分)7.(3分)49的平方根是.8.(3分)比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).9.(3分)计算:=.10.(3分)近似数﹣0.040有个有效数字.11.(3分)把表示成幂的形式是.12.(3分)在△ABC中,已知∠A:∠B:∠C=1:2:1,那么△ABC是三角形.13.(3分)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=34°,则∠A的度数是.14.(3分)在梯形ABCD中,AD∥BC,联结AC、BD,已知梯形ABCD的面积为16,△BDC的面积为12,那么△ADC的面积.15.(3分)一个三角形的三边长为x,5,7,另一个与它全等的三角形的三边长为3,y,5,那么以x、y 为腰长和底边长的等腰三角形的周长等于.16.(3分)平面直角坐标系中有点P、Q(2,﹣3)、M(﹣1,2).如果PQ∥x轴,PM∥y轴,那么点P 关于原点O对称的点的坐标是.17.(3分)如图,E、B、C三点在一条直线上,AD∥BC,AD=BC,点F是AE的中点,如果BD=EC,那么∠BFD=度.18.(3分)如图,在长方形ABCD中,AB=12厘米,AD=16厘米,点E为AD中点,已知点P在线段AB上以2厘米/秒的速度由点A向点B运动,同时点Q在线段BC上由点C向点B运动,如果△AEP 与△BPQ恰好全等,那么点Q的运动速度是厘米/秒.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.(6分)计算:.20.(6分)利用幂的运算性质计算:.21.(7分)如图,已知AB∥CD,BE∥DF,∠B=30°,试求∠CDH的度数.22.(7分)如图,已知AC∥DE,AC=DE,BD=FC,说明△ABC≌△EFD.请填写说理过程或理由.解:因为AC∥DE(已知),所以∠ACB=∠EDF().因为BD=FC(已知),所以﹣BD=﹣FC(),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD().四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.(6分)如图,直角坐标平面上有边长为1的正方形网格,已知点A的坐标为(3,4),点B的坐标为(4,1),点C的坐标为(﹣2,4).(1)平移线段AB得到线段CD,此时点A与点C重合,点B与点D重合,直接写出点D的坐标是;(2)顺次连接点A、B、D、C,那么四边形ABDC的面积是;(3)再次平移线段CD,使得其两个端点都落在坐标轴上,此时点C与点P重合,那么点P与坐标原点O的距离=.24.(10分)如图,△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,点D在AB上,点M(1)联结DM,延长DM与AC相交于点F,请根据要求画出图形,并说明AE=CF.(2)再联结BF,已知BF=12,求CM的长.25.(10分)在锐角三角形ABC中,点D、E分别在边AB、AC上,联结DE,将△ADE沿DE翻折后,点A落在BC边上的点P,当△BDP和△CEP都为等腰三角形时,我们把线段DE称为△ABC的完美翻折线,P为完美点.(1)如图1,在等边三角形ABC中,边BC的中点P是它的完美点,已知其完美翻折线DE的长为4,那么等边三角形ABC的周长=.(2)如图2,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠C恰为等腰三角形的顶角时,求此时∠A的度数.(3)如图3,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠EPC恰为等腰三角形的顶角时,请判断点P到边AB、AC的距离是否相等?并说明你的判断理由.2023-2024学年上海市长宁区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题2分,满分12分)1.【分析】无理数即无限不循环小数,据此即可求得答案.【解答】解:是无限不循环小数,它是无理数;=4,﹣=﹣3是整数,是分数,它们不是无理数;故选:A.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.【分析】根据算术平方根的定义依次计算即可求解.【解答】解:A、无意义,故错误,不符合题意;B、﹣=﹣5,故错误,不符合题意;C、=9,故错误,不符合题意;D、=3,故正确,符合题意.故选:D.【点评】本题考查了算术平方根,解题的关键是熟练运用算术平方根的定义,本题属于基础题型.3.【分析】根据对顶角的定义逐项判断即可.【解答】解:由一个公共端点,并且一个角的两边分别与另一个角的两边互为反向延长线,具有这种位置关系的两个角即为对顶角,则A,B,C中的图形不符合此定义;D中的图形符合此定义;故选:D.【点评】本题考查对顶角的识别,熟练掌握其定义是解题的关键.4.【分析】A.先判断a2的大小,从而判断﹣a2的大小,最后根据点的坐标判断其所在位置即可;B.先根据a的大小,从而判断a+1的大小,最后根据点的坐标判断其所在位置即可;C.先判断a2的大小,从而判断a2+1大小,后根据点的坐标判断其所在位置即可;D.先判断a2的大小,然后根据点的坐标判断其所在位置即可.【解答】解:A.∵a2≥0,∴﹣a2≤0,∴(4,﹣a2)在第四象限或x轴的正半轴上,故此选项不符合题意;B.∵a为实数,∴a+1>0或a+1≤0,∴(a+1,﹣4)可能在第四象限,也可能在第三象限,也可能在y轴的负半轴上,故此选项不符合题意;C.∵a2≥0,∴a2+1>0,∴(a2+1,﹣4)一定在第四象限.故此选项符合题意;D.a2≥0,∴(a2,﹣4)在第四象限或y轴的负半轴上,故此选项不符合题意,故选:C.【点评】本题主要考查了点的坐标,解题关键是熟练掌握各个象限和坐标轴上点的坐标特征.5.【分析】根据已知易得:腰长为,然后根据三角形的三边关系可得,从而进行计算即可解答.【解答】解:∵等腰三角形的周长为16,其底边长为a,∴腰长为,由题意得:,解得:0<a<8,故选:B.【点评】本题考查了等腰三角形的性质,解一元一次不等式组,三角形的三边关系,准确熟练地进行计算是解题的关键.6.【分析】根据题意和点A和点B的坐标,可以画出相应的坐标系,然后即可得哪个点为原点.【解答】解:由题意可得,平面直角坐标系如图所示,故坐标原点是点O2,故选:B.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,画出相应的平面直角坐标系.二、填空题(本大题共12小题,每空3分,满分36分)7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.9.【分析】根据分数指数幂的定义和运算性质计算即可.【解答】解:原式====8,故答案为:8.【点评】本题考查的是分数指数幂,熟练掌握分数指数幂的定义和运算性质是解题的关键.10.【分析】根据有效数字的定义即一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字,即可得出答案.【解答】解:近似数﹣0.040有4,0两个有效数字.故答案为:2.【点评】此题考查近似数和有效数字,注意有效数字即从左边不是0的数字起所有的数字.中间的0和末尾的0都是有效数字.11.【分析】根据分数指数幂的定义即可求出答案.【解答】解:=.故答案为:.【点评】本题考查分数指数幂的公式,=.12.【分析】根据三角形内角和、三个内角比计算出每个内角度数即可判断.【解答】解:设∠A=x,则∠B=2x,∠C=x,∵∠A+∠B+∠C=180°,∴x+2x+x=180°,∴x=45°,∴∠A=45°,∠B=90°,∠C=45°,所以△ABC是等腰直角三角形.故答案为:等腰直角.【点评】本题考查了三角形内角和定理,运用方程思想是解本题的关键.13.【分析】先根据垂直的定义得到∠AEF=90°,进而求出∠AEC=56°,再由两直线平行,内错角相等可得∠A=∠AEC=56°.【解答】解:∵AE⊥BF,∴∠AEF=90°,∵∠CEF=34°,∴∠AEC=∠AEF﹣∠CEF=56°,∵AB∥CD,∴∠A=∠AEC=56°,故答案为:56°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.14.【分析】根据题意求出△BDA的面积,再根据三角形的面积公式求出△ADC的面积.【解答】解:∵梯形ABCD的面积为16,△BDC的面积为12,∴△BDA的面积为:16﹣12=4,∵AD∥BC,∴△ADC的面积=△BDA的面积=4,故答案为:4.【点评】本题考查的是梯形的性质、三角形的面积计算,掌握三角形的面积公式是解题的关键.15.【分析】根据全等三角形的对应边相等可得x=3,y=7,根据三角形的三边关系求出等腰三角形的三边,即可求得答案.【解答】解:∵三角形的三边长为x,5,7的三角形,与另一个三边长为3,y,5的三角形全等,∴x=3,y=7,当以x为腰时,∴三角形的三边为3,3,7,∵3+3<7,∴不能够组成三角形,当以y为腰时,∴三角形的三边为7,7,3,∵3+7>7,∴能组成三角形,∴三角形的周长=3+7+7=17,故答案为:17.【点评】此题考查全等三角形的性质、等腰三角形的性质,三角形的三边关系,熟记性质准确找出对应边得到x、y的值是解题的关键.16.【分析】根据关于原点对称的点的坐标:横纵坐标互为相反数解答即可.【解答】解:由题意得:Q(2,﹣3)、M(﹣1,2),PQ∥x轴,PM∥y轴,∴P(﹣1,﹣3),∴点P关于原点O对称的点的坐标是(1,3).故答案为:(1,3).【点评】本题主要考查了关于原点对称的点的坐标特点,熟练掌握关于原点对称的点的坐标:横纵坐标互为相反数是解题关键.17.【分析】延长BF、DA交于点G,可证明△AFG≌△EFB,得AG=EB,GF=BF,而AD=BC,可推导出GD=EC,因为BD=EC,所以GD=BD,即可根据等腰三角形的“三线合一”证明DF⊥BG,则∠BFD=90°,于是得到问题的答案.【解答】解:延长BF、DA交于点G,∵AD∥BC,∴∠G=∠EBF,∵点F是AE的中点,∴AF=EF,在△AFG和△EFB中,,∴AG=EB,GF=BF,∵AD=BC,∴AG+AD=EB+BC,∴GD=EC,∵BD=EC,∴GD=BD,∴DF⊥BG,∴∠BFD=90°,故答案为:90.【点评】此题重点考查平行线的性质、线段的中点的定义、全等三角形的判定与性质、等腰三角形的“三线合一”等知识,正确地作出辅助线是解题的关键.18.【分析】根据△AEP与△BPQ全等,得到AE=PB,可计算出运动时间,再根据BQ=AP,即可计算出点Q的运动速度.【解答】解:设运动时间为t s,Q的运动速度x cm/s,由题意得AP=2t cm,QC=xt cm,∴BQ=(16﹣xt)cm,PB=(12﹣2t)cm,∵△AEP与△BPQ全等,∴BQ=AP,AE=PB或BP=AP,AE=BQ,当BQ=AP,AE=PB时,∵AE=8cm,∴12﹣2t=8cm,∴t=2,∴AP=2t=4cm,∴16﹣xt=4,∴x=6;当BP=AP,AE=BQ时,,解方程组得t=3,x=,故点Q的运动速度是6cm/s或cm/s.故答案为:6或.【点评】本题考查矩形的性质和全等三角形的性质,根据三角形全等对应的边相等建立等式是解本题的关键.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.【分析】根据立方根、平方根以及零次幂、负整数指数幂的意义计算.【解答】解:原式=+2﹣1+=3.【点评】本题考查了二次根式的混合运算及立方根、平方根以及零次幂、负整数指数幂的运算,正确理解平方根与立方根的意义是解题的关键.20.【分析】直接利用分数指数幂的性质分别化简得出答案.【解答】解:原式====22=4.【点评】本题考查分数指数幂、实数的运算,熟练掌握运算法则是解题的关键.21.【分析】先根据BE∥DF,∠B=30°得出∠FMA=∠B=30°,再由AB∥CD即可得出∠CDM的度数,再由平角的定义即可得出结论.【解答】解:∵BE∥DF,∠B=30°,∴∠FMA=∠B=30°,∵AB∥CD,∴∠CDM=∠FMA=30°,∴∠CDH=180°﹣∠CDM=180°﹣30°=150°.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.22.【分析】根据平行线的性质及线段的和差求出∠ACB=∠EDF,BC=FD,利用SAS证明△ABC≌△EFD 即可.【解答】解:因为AC∥DE(已知),所以∠ACB=∠EDF(两直线平行,内错角相等),因为BD=FC(已知),所以BF﹣BD=BF﹣FC(等式性质),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD(SAS).故答案为:两直线平行,内错角相等;BF;BF;等式性质;SAS.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.【分析】(1)根据点A和点C的坐标得出平移的方向和距离,再结合点B的坐标即可解决问题.(2)画出示意图,结合所画图形即可解决问题.(3)根据题意,画出示意图,结合图形平移的性质即可解决问题.【解答】解:(1)因为点A坐标为(3,4),点C坐标为(﹣2,4),且平移后点A与点C重合,所以3﹣(﹣2)=5,4﹣4=0,又因为点B的坐标为(4,1),所以4﹣5=﹣1,1﹣0=1,则点D的坐标为(﹣1,1).故答案为:(﹣1,1).(2)如图所示,连接AD,则,同理可得,,∴.故答案为:15.(3)如图所示,当点C在x轴上,点D在y轴上时,点P的坐标为(﹣1,0),所以点P与坐标原点的距离为1.当点C在y轴上,点D在x轴上时,点P′的坐标为(0,3),所以点P′与坐标原点的距离为3.故答案为:1或3.【点评】本题主要考查了坐标与图形变化﹣平移及三角形的面积,熟知图形平移的性质及三角形的面积公式是解题的关键.24.【分析】(1)由△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,得AC=CB,AE=ED,则∠CAB=∠EDA=45°,所以AC∥DE,则∠FCM=∠DEM,而∠FMC=∠DME,CM=EM,即可证明△FCM≌△DEM,得CF=ED,则AE=CF;(2)由∠CAB=∠EAD=45°,得∠EAC=90°,则∠EAC=∠FCB,即可证明△EAC≌△FCB,得CE=BF=12,则CM=CE=6.【解答】解:(1)联结DM,延长DM与AC相交于点F,∵△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,∴AC=CB,AE=ED,∴∠CAB=∠CBA=45°,∠EDA=∠EAD=45°,∴∠CAB=∠EDA,∴AC∥DE,∴∠FCM=∠DEM,∵点M为CE的中点,∴CM=EM,在△FCM和△DEM中,,∴△FCM≌△DEM(AAS),∴CF=ED,∴AE=CF.(2)联结BF,∵∠CAB=∠EAD=45°,∴∠EAC=2×45°=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,,∴△EAC≌△FCB(SAS),∴CE=BF=12,∴CM=EM=CE=×12=6,∴CM的长为6.【点评】此题重点考查等腰直角三角形的判定与性质、平行线的判定与性质、线段的中点的定义、全等三角形的判定与性质等知识,证明△FCM≌△DEM是解题的关键.25.【分析】(1)根据翻折的性质可得△ADE≌△PDE,根据等边三角形的性质可得∠B=∠C=60°,则△BDP和△PEC是等边三角形,最后证明△ADE是等边三角形即可求解;(2)连接AP,设∠DAP=α,∠EAP=β,根据三角形的外角定理和等腰三角形的性质可得∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,最后根据∠BPD+∠DPE+∠CPE=180°即可求解;(3)连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,设∠DAP=α,∠EAP=β,根据∠BPD+∠DPE+∠CPE=180°可得α=β,则AP为∠BAC的平分线,PH=PN,即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC,∵P为△ABC的完美点,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,∵∠B=∠C=60°,∴△BDP和△PEC是等边三角形,∴BD=DP,PE=CE,又∵AD=DP,AE=PE,∴,,∴AD=AE,∴△ADE是等边三角形,∵DE=4,∴AD=AE=4,∴AB=AC=BC=8,∴等边三角形ABC的周长=8+8+8=24,故答案为:24;(2)连接AP,如图2,设∠DAP=α,∠EAP=β,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,∴AD=DP,AE=PE,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵△BDP和△PEC是等腰三角形,且∠B,∠C都为顶角,∴BD=BP,CP=CE,∴∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,∵∠BPD+∠DPE+∠CPE=180°,∴3α+3β=180°,∴α+β=60°,即∠BAC=60°;(3)点P到边AB、AC的距离相等;理由如下:连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,如图3,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,设∠DAP=α,∠EAP=β,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵∠B,∠EPC为顶角,∴BD=BP,PE=PC,∴∠BPD=∠BDP=2α,∠PEC=∠PCE=2β,∴∠EPC=180°﹣4β,∵∠BPD+∠DPE+∠EPC=180°,∴2α+α+β+180°﹣4β=180°,∴α=β,AP为∠BAC的平分线,∴PH=PN,.【点评】本题主要考查了三角形的折叠问题,等腰三角形的性质,等边三角形的性质,角平分线的性质定理,解题的关键是掌握相关内容,根据三角形的内角和定理和外角定理构造等量关系求解。

七年级下册上海数学期末试卷测试卷(解析版)

七年级下册上海数学期末试卷测试卷(解析版)

七年级下册上海数学期末试卷测试卷(解析版)一、选择题1.下列图形中,有关角的说法正确的是( )A .∠1与∠2是同位角B .∠3与∠4是内错角C .∠3与∠5是对顶角D .∠4与∠5相等 2.下列现象中是平移的是( )A .翻开书中的每一页纸张B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动 3.在平面直角坐标系中,点(﹣3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .两直线平行,同位角互补C .在同一平面内,经过一点有且只有一条直线与已知直线垂直D .平行于同一直线的两条直线平行5.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 6.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38- 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 4的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( ) A .(-3,3) B .(-2,2) C .(3,-1) D .(2,4)二、填空题9.若x =x ,则x 的值为______.10.若点A(5,b)与点B(a+1,3)关于x 轴对称,则(a+b )2017=______11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.如图,在平面直角坐标系中:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →……的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是________.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021; (2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=.19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD .解:∵EF //AD∴∠2= ( )又∵∠1=∠2( )∴∠1=∠3( )∴AB // ( )∴∠BAC + =180°( )∵∠BAC =70°∴∠AGD = .20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC;A B C,画出(2)将ABC向下平移2个单位长度,再向左平移2个单位长度得到三角形111平移后的图形并写出1A、1B、1C的坐标.21.阅读下面的文字,解答问题:2是一个无理数,而无理数是无限不循环小数,因此<<即2的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为124<<,所以2的整数部分为1,将2减去其整数部分后,得到的差就是小数部分,122于是2的小数部分为21-(1)求出6的整数部分和小数部分;(2)求出13+的整数部分和小数部分;a b的值.(3)如果25+的整数部分是a,小数部分是b,求出-二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm,宽为2dm,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm和23dm,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸≈3 1.732)2 1.414二十三、解答题PQ MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.23.如图,直线//(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .25.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.C解析:C【分析】根据同位角、内错角、对顶角的定义判断即可求解.【详解】A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D、∠4与∠5不相等,原说法错误,故此选项不符合题意;故选:C.【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(3,2)P -在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可.【详解】解:A 、对顶角相等,是真命题;B 、两直线平行,同位角相等,故原命题是假命题;C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D 、平行于同一直线的两条直线互相平行,是真命题,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D2,2=--故选:C.【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒60OAB AOC∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A2021的坐标与A1的坐标相同,为(2,4).故选:D.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.【详解】解:∵点A(5,b)与点B(a+1,3)关于x轴对称,∴5=a+1,b=-3,∴a=4,∴(a+b解析:1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.【详解】解:∵点A(5,b)与点B(a+1,3)关于x轴对称,∴5=a+1,b=-3,∴a=4,∴(a+b)2017=(4-3)2017=1.故答案为:1.本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数.11.【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.∠=︒⊥30B DE AB12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.101【分析】根据“”的定义进行运算即可求解.【详解】解:=== =101.故答案为:101.本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“⊗”的定义进行运算即可求解.【详解】解:(3)m m ⊗⊗=2(31)m ⊗+=10m ⊗=2101+ =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】 解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)-- 故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.19.∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB //DG ,根据平行线的性质推出∠BAC +∠AGD =180°,代入求出即可求得∠AGD .【详解】解:∵EF //AD ,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB //DG ,(内错角相等,两直线平行)∴∠BAC +∠AGD =180°,(两直线平行,同旁内角互补)∵∠BAC =70°,∴∠AGD =110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG ,内错角相等,两直线平行,∠AGD ,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a 、b ,解析:(1)262;(2)231;(3)65【分析】(16的整数部分和小数部分;(2313+13数部分;(3)根据题例,先确定a 、b ,再计算a-b 即可.【详解】解:(1)∵23<. ∴22;(2)∵ ,即 12<<, ∴1,∴12,∴1121=.(3)∵,即23<<, ∴2,24,即a =4,所以2242=,即2,∴)a b 426-=-= 【点睛】本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =.(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.二十三、解答题23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.25.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥ 90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P 作PH ∥DF∵DF ∥CE ,∴∠PCE =∠1=α, ∠PDF =∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

沪教版七年级下册数学期末测试卷(完整版)

沪教版七年级下册数学期末测试卷(完整版)

沪教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A.6cmB.4cmC.7cmD.不能确定2、如图是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形的性质3、如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2)B.(3,-2)C.(-2,-3)D.(2,-3)4、如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A'BC’,连接A'C,则A'C的长为()A.6B.4+2C.4+3D.2+35、点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6、下列运算正确的是()A. =2B. =-3C.2 ﹣3=8D.2 0=07、如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1: 4B.1:5C.1:6D.1: 78、在实数,3,0,0.5中,最小的数是()A. B.3 C.0 D.0.59、如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°10、的平方根是()A.4B.±8C.2D.±211、的平方根是().A.4B.2C.D.12、若a+b<0,ab<0,则下列判断正确的是( )A.a、b都是正数B.a、b都是负数C.a、b异号且负数的绝对值大 D.a、b异号且正数的绝对值大13、等腰三角形周长为20cm,底边长ycm与腰长xcm之间的函数关系是)A. B. C. D.14、点P,Q都是直线l外的点,下列说法正确的是()A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行 C.连接PQ,则PQ一定与直线l相交 D.过点P只能画一条直线与直线l平行15、如图,已知直线a∥b,直线c与a,b分别交于A,B,且∠1=110°,则∠2=()A.70°B.110°C.30°D.150°二、填空题(共10题,共计30分)16、如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B 的度数为________.17、如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的面积是________.18、已知:,则________.19、如图,ABCD中,AC=AD,BE⊥AC于E,若∠D=70°,则∠ABE=________.20、如图,在四边形ABCD中,∠A+∠D=220°,∠ABC的平分线与∠BCD的平分线交于点P,则∠P的度数为________.21、如图,在和中,已知,,要使,还需添加一个条件,那么这个条件可以是________(填出一个即可).22、如图,直线与轴、轴分别相交于点A、B,点M在x轴上且不同于点A,点N是平面直角坐标系中的第一象限内任意一点.如果以A,B,M,N为顶点的四边形是菱形,那么满足条件的点M的坐标是________.23、补全解题过程.如图,在△ABC中∠ABC平分线BP和外角平分线CP交于点P,试猜想∠A与∠P 之间的关系,并说明理由.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=________∠1,∠ACD=2∠2 (________)∵∠ACD为△ABC的外角∴∠ACD=∠A+∠________=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1同理:∠2=∠P+________∴∠A=2∠P.24、如图,,,,则的度数为________.25、如图, AB = 4cm ,AC = BD = 3cm . ∠CAB = ∠DBA ,点 P 在线段 AB 上以1cm / s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B向点 D 运动.设运动时间为t(s) ,则当点Q 的运动速度为________cm / s 时, DACP 与DBPQ 全等.三、解答题(共5题,共计25分)26、计算:.27、已知:如图,OD⊥AD,OH⊥AE,DE交GH于O,,求证:OG=OE28、如图,已知:点B、F、C、E在一条直线上,∠B=∠E,BF=CE,AC∥DF.求证:△ABC≌△DEF.29、如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.30、如图,AB∥CD,∠ACB=90°,∠ACD=55°,求∠B的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、C5、D6、A7、B8、A9、A10、D11、D12、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷评卷人得分一、单选题1.已知a b >,则下列不等式一定成立的是()A .23a b +>+B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=()A .55°B .60°C .65°D .75°3.下列从左到右的运算,哪一个是正确的分解因式()A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是()A .2B .-2C .4D .±25.下列各式中,哪项可以使用平方差公式分解因式()A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义()A .214x -B .1x x +C .2224x x ++D .24x x -+7.下列现象中不属于平移的是()A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933xx x x =--+-的解的是()A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是()A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117数中,有理数的个数是()A .4B .5C .3D .2评卷人得分二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________.13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较722-__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40 ,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60 ,则∠2=__________.20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.评卷人得分三、解答题21.先化简,再求值。

沪科版七年级下册数学期末试题试卷含答案精选全文

沪科版七年级下册数学期末试题试卷含答案精选全文

可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。

A。

1 B。

2 C。

3 D。

42.估计√2+1的值在()之间。

A。

2到3之间 B。

3到4之间 C。

4到5之间 D。

5到6之间3.若a<b,则下列各式中,错误的是()。

A。

a-3<b-3 B。

-a<-b C。

-2a>-2b D。

a<b4.计算(-3a^2)^2的结果是()。

A。

3a^4 B。

-3a^4 C。

9a^4 D。

-9a^45.下列多项式在实数范围内不能因式分解的是()。

A。

x^3+2x B。

a^2+b^2 C。

D。

m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。

A。

1个 B。

2个 C。

3个 D。

无数个7.若a^2=9,则a的值为()。

A。

-5 B。

-11 C。

-3或3 D。

±3或±58.把分式中的x和y都扩大3倍,分式的值()。

A。

不变 B。

扩大3倍 C。

缩小3倍 D。

扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。

A。

4ab^2 B。

4abc C。

2ab^2 D。

4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。

A。

p=2q B。

q=2p C。

p+2q=0 D。

q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。

12.分式的值为1/3,那么x的值为()。

13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。

14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。

三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。

【完整版】沪教版七年级下册数学期末测试卷

【完整版】沪教版七年级下册数学期末测试卷

沪教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,中, BP平分∠ABC,AP⊥BP于P,连接PC,若的面积为3.5cm2,的面积为4.5cm2,则的面积为( ).A.0.25cm 2B.0.5 cm 2C.1cm 2D.1.5cm 22、点M(3,﹣4)关于x轴的对称点M′的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)3、如图,AB∥CD,EF分别交AB,CD于点E,F,∠1=50°,则∠2的度数为()A.50°B.120°C.130°D.150°4、如图,在△ABC中,AB=10,AC=6,过点A的直线DE∥CB,∠ABC与∠ACB的平分线分别交DE于E,D,则DE的长为()A.14B.16C.10D.125、下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限 D.若关于x的一元一次不等式组无解,则m的取值范围是6、如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)7、下列说法不正确的是( )A.8的立方根是2B.-8的立方根是-2C.0的立方根是0 D.125的立方根是±58、如图,△APB与△CDP均为等边三角形,且PA⊥PD,PA=PD.有下列三个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有( )A.0个B.1个C.2个D.3个9、如图,直线a,b被直线c所截,a∥b,∠1=40°,则∠2等于()A.30°B.40°C.50°D.60°10、如图,下列说法正确的是()A.若AB//CD,则∠1=∠2B.若AD//BC,则∠B+∠BCD=180ºC.若∠1=∠2,则AD//BC D.若∠3=∠4,则AD//BC11、如图,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是()A.SASB.ASAC.SSSD.HL12、如图,阴影部分组成的图案既是关于轴成轴对称的图形,又是关于坐标原点成中心对称的图形.若点的坐标是,则点和点的坐标分别为( )A. B. C.D.13、如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC 于E,则DE的长为()A.随F点运动,其值不变B.随F点运动而变化,最大值为C.随F点运动而变化,最小值为D.随F点运动而变化,最小值为14、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5B.4.8C.4.6D.4.415、若a2=(-5)2, b3=(-5)3,则a+b的值是()A.0或-10或10B.0或-10C.-10D.0二、填空题(共10题,共计30分)16、如图,已知l1//l2,直线l与l1, l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.17、如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是________.18、如图,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE与DE相交于点E,求证∠E=90°证明:∵AB∥CD(________)∴∠ABD+∠BDC=180°(________)∵BE平分∠ABD(________)∴∠EBD= ________(________)又∵DE平分∠BDC∴∠BDE= ________(________)∴∠EBD+∠EDB= ∠ABD+ ∠BDC(________)= (∠ABD+∠BDC)=90°∴∠E=90°.19、如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是________.20、已知点P的坐标为(-3,4),作出点P关于x轴对称的点P1,称为第1次变换;再作出点P1关于y轴对称的点P2,称为第2次变换;再作点P2关于x轴对称的点P3,称为第3次变换,…,依次类推,则第2019次变换得到的点P2019的坐标为 ________.21、如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1= ________.22、如图,OP平分∠M ON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________ 对全等三角形.23、取=1.4142135623731…的近似值,若要求精确到0.01,则=________.24、如图,在□ABCD中,∠BAD的平分线AE交边DC于E,若∠DAE=30°,则∠B =________°.25、比较大小:﹣________﹣(填“>”“<”或“=”).三、解答题(共5题,共计25分)26、计算:27、如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,判断AC与BD的位置关系,并说明理由.28、如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,求该图形的面积。

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】精锐教育学科教师辅导讲义ABCD的对称中心为坐标原点,建立平面直角坐标系,AD=,求其他各点坐标.6、下列关于平面直角坐标系的说法中,正确的是(A.平面直角坐标系是由两条相互垂直的直线构成;B.平面直角坐标系是由两条数轴任意相交构成的;C.平面直角坐标系中的点的坐标是唯一确定的;D.平面上的一点的坐标在不同的平面直角坐标系内是相同的.x轴上方,距xC.(105)-, D.(105)-,30、下列说法中,错误的是( )A.如果一个点的横,纵坐标都为零,则这个点是原点; B.如果一个点在x 轴上,那它一定不属于任何象限; C.纵轴上的点的横坐标均相等,且都等于零; D.纵坐标相同的点,分布在平行于y 轴的某条直线上.专题:期末考试专题测试一、填空题(本大题共有14题,每题2分,满分28分)1.827-的立方根等于 .2.求值:4625= . 3.7的整数部分是 .4.截至今年3月31日,上海市共有5117000多户居民符合“世博大礼包” 的发放要求,5117000可用科学记数法表示为 (保留两位有效数字).5.如果已知数轴上的两点A 、B 所对应的数分别是10、310,那么A 与B 两点之间的距离是 .6.在△ABC 中,如果30B ∠=︒,45C ∠=︒,那么按角分类,△ABC 是 三角形. 7.点()2,53P -在第 象限.8.经过点(2,1)P 且垂直于x 轴的直线可以表示为直线 .9.如图1,将一直角三角板与两边平行的纸条如图所示放置,请任意选择两角写出一个有关的正确的结论: .10.如图2,两条直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果:AOC COE ∠∠4:3=,那么BOD ∠ = 度.11.将一副三角板如图3所示放置(其中含30角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中1∠= 度.图1 图2 图3 图4 12.如图4,已知△ABC ,ACB ∠的平分线CD 交AB 于点D ,//DE BC ,且DE =5cm ,如果点E 是边AC 的中点,那么AC 的长为 cm . 13.如果等腰三角形的一边长为2cm ,另一边长为23cm ,那么这个三角形的周长为 cm . 14.如图5,在△ABC 中,高AD 与高BE 相交于点H ,且BH =AC ,那么ABC ∠= 度.二、单项选择题(本大题共有4题,每题3分,满分12分)15.下列说法中错误的个数有( ) (1)3415用幂的形式表示的结果是435-; (2)3π是无理数;(3)实数与数轴上的点一一对应; (4)两个无理数的和、差、积、商一定是无理数;(A )1个; (B ) 2个; (C ) 3个; (D )4个. 16. 如果三角形的两边长分别为4厘米、6厘米,那么第三边的长不可能是( )(A )2厘米; (B ) 3厘米; (C )4厘米; (D )9厘OE DC B A 1EC B AD EH CBA D 图5360;角的两个直角三角形全等.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图)丙和乙关于原点对称;)甲通过翻折可以与丙重合;∠;60,30CD;的长度表示点B6分,第题8分,第180,,在四边形CDEF共有多少对面积相等的三角形?请分别写出.(不需说明理由)180(已知),((已知),试说明BD =CE 的理由. 解:25.如图10,等边△ABC 中,点D 在边AC 上,CE ∥AB , 且CE =AD ,(1)△DBE 是什么特殊三角形,请说明理由.(2)如果点D 在边AC 的中点处,那么线段BC 与DE 有怎样的位置关系,请说明理由.解: (1)△DBE 是 三角形.说理如下:记1ABD ∠=∠,2CBE ∠=∠, 3DBC ∠=∠ 因为△ABC 是等边三角形(已知), 所以AB =BC (等边三角形的三边都相等), 60A ABC ∠=∠=( ).因为AB ∥CE (已知),所以ABC BCE ∠=∠(两直线平行,内错角相等). 所以A BCE ∠=∠(等量代换). (完成以下说理过程) 五、(本大题满分12分)26.如图11,在平面直角坐标系中,点A 的坐标为(2a ,-a ) ()0a >(1) 先画出点A 关于x 轴的对称的点B ,再写出点B 的坐标(用字母a 表示);(2) 将点A 向左平移2a 个单位到达点C 的位置,写出点C 的坐标(用字母a 表示); (3) y 轴上有一点D ,且3CD a =,求出点D 的坐标(用字母a 表示);(4) 如果y 轴上有一点D ,且3CD a =,且四边形ABCD 的面积为10,求a 的值并写出这个四边形的顶点D 的坐标. 解 :提高:期末考试提高练习一、选择题(本大题共6题,每题2分,满分12分) 1.下列说法中正确的是(A )无限小数都是无理数; (B )无理数都是无限小数; (C )实数可以分为正实数和负实数; (D )两个无理数的和一定是无理数.2.下列运算一定正确的是 (A )235+=; (B )2232312-=⨯=; (C )2a a =;(D )3223-=-.3.已知面积为10的正方形的边长为x ,那么x 的取值范围是 (A )13x <<; (B )23x <<; (C )34x <<; (D )45x <<.4.如图,下列说法中错误的是(A )∠GBD 和∠HCE 是同位角; (B )∠ABD 和∠ACH 是同位角; (C )∠FBC 和∠ACE 是内错角;(D )∠GBC 和∠BCE 是同旁内角. 321EC B AD图10图11(第27题图)。

沪教版七年级下册数学期末测试卷及含答案完整版

沪教版七年级下册数学期末测试卷及含答案完整版

沪教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果将长度为a-2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是()A.a﹥-1B.a﹥2C.a﹥5D.无法确定2、下面四个图形中,∠1=∠2一定成立的是()A. B. C. D.3、下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,144、一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°5、在△ABC中,∠C=90°,周长为6+2 ,斜边上的中线为2,则△ABC的面积为()A.4B.2C.D.36、在平面直角坐标系.将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)7、下列说法正确的是()A. 的算术平方根是3B.平行于同一条直线的两条直线互相平行 C.带根号的数都是无理数 D.三角形的一个外角大于任意一个内角8、如图,一把直尺的边缘AB 经过一块三角板 DCB 的直角顶点B,交斜边CD 于点A,直尺的边缘EF 分别交CD、BD 于点E、F,若∠D=60°,∠ABC=20°,则∠1 的度数为()A.25°B.40°C.50°D.80°9、如图,直线a∥b,∠1=125°,则∠2的度数为()A.75°B.65°C.55°D.45°10、如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是()A.50°B.45°C.40°D.30°11、如图,在中,是的中点,,则().A.108°B.72°C.54°D.36°12、如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为2 ﹣6;④当OD⊥AD时,BP=2.其中结论正确的有()A.1个B.2个C.3个D.4个13、如图,在平面直角坐标系中,点A,B的坐标分别为,,以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为A. B. C. D.14、△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个B.2个C.3个D.4个15、如图,点E在DA的延长线上,下列条件中能判定AB∥CD的是()A.∠B=∠BAEB.∠BCA=∠CADC.∠BCA+∠CAE=180°D.∠D=∠BAE二、填空题(共10题,共计30分)16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC 边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.17、如图,在中,,,,点D是斜边的中点,则________;18、如图,已知平分则________19、如图,正三角形ABC内接于⊙O,其边长为2 ,则⊙O面积为________.20、等腰三角形的两条边长为2,4,则等腰三角形的周长为________21、在平面直角坐标系中,原点的坐标为________.22、如图,在中,,过点作,,连接,则的周长为________.23、如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为________.24、在△ABC中,∠A=45°,AB=,∠ABC=75°.则BC长为________.25、点A在数轴上所表示的数为﹣1,若AB=,则点B在数轴上所表示的数为________三、解答题(共5题,共计25分)26、计算:+4×+(﹣1).27、如图,在正方形ABCD的外侧,作等边△ADE.求∠AEB的度数.28、已知:△ABC中,AE平分∠BAC。

沪科版七年级下册数学期末考试试卷带答案

沪科版七年级下册数学期末考试试卷带答案

沪科版七年级下册数学期末考试试题一、单选题1.下列实数中,无理数是()A B C .17D .3.141592.若x y >,则下列式子中正确的是()A .33x y->-B .33x y ->-C .33x y ->-D .33x y->-3.下列各式计算的结果为5的是()A .3+2B .10÷2C .⋅4D .−324.下列多项式在实数范围内不能因式分解的是()A .x 3+2xB .a 2+b 2C .y 2+y +14D .m 2-4n 25.若分式23x x -+有意义,则x 的取值范围是()A .x≠﹣3B .x≥﹣3C .x≠﹣3且x≠2D .x≠26.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为()A .8B .10C .12D .167.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠= ,则下列结论正确的是()A .342∠=B .4138∠=C .542∠=D .258∠=8.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是()A .pB .qC .mD .n9.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为()A .3x +5(30﹣x )≤100B .3(30﹣x )+5≤100C .5(30﹣x )≤100+3xD .5x ≤100﹣3(30+x )10.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为A .-4B .16C .4或16D .-4或-16二、填空题11.49的平方根是_____.12.因式分解:23m n n -=__________.13.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)14.式子“1 23 4... 100+++++”表示从1开始的100个连续自然数的和,由于式子比较长,100书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,如422221123430n =+++=∑,通过对以上材料的阅读,计算()2019111n n n ==+∑__________.三、解答题15.若1+1=3,则r2KB+2的值为_____.16.(1)()10312753π-⎛⎫+-+- ⎪⎝⎭;(2)计算:()()()252x x x x -+--;17.(1)先化简:244411x x x x x x --+⎛⎫-÷⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值;(2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;18.如图,已知,A AGE D DGC ∠=∠∠=∠.(1)试说明://AB CD ;(2)若21180∠+∠= ,且230BEC B ∠=∠+ ,求B Ð的度数.19.某商场计划购进A 、B 两种新型节能台灯,已知B 型节能台灯每盏进价比A 型的多40元,且用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同.(1)求每盏A 型节能台灯的进价是多少元?(2)商场将购进A 、B 两型节能台灯100盏进行销售,A 型节能台灯每盏的售价为90元,B 型节能台灯每盏的售价为140元,且B 型节能台灯的进货数量不超过A 型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.数学活动课上,老师准备了若千个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:,方法2:_;(2)观察图2,请你写出代数式:()222,,a b a b ab ++之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,13a b a b +=+=,求ab 的值;②已知()()22201920185a a -+-=,求()()20192018a a --的值.21.淮河汛期即将来临,防汛指挥部在一危险地带两岸各安置了-探照灯,便于夜间查看河面及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a o /秒,灯B 转动的速度是b o /秒,且,a b 满足:a 1的整数部分,b 是不等式()213x +>的最小整数解.假定这--带淮河两岸河堤是平行的,即//PQ MN ,且45BAN ∠= .(1)如图1,a=_____,b=;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光東互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档