九年级数学第一单元测试题

合集下载

(好题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)(1)

(好题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)(1)

一、选择题1.如图,在四边形ABCD 中,BD 平分ABC ∠,//AD BC ,90C ∠=︒,5AB =,4CD =,则四边形ABCD 的周长是( ).A .18B .20C .22D .242.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BE CE 的值为( )A .512B .725C .718D .5243.如图所示,在菱形ABCD 中,5AC =,120BCD ∠=︒,则菱形ABC 的周长是( ).A .20B .15C .10D .54.如图,在长方形ABCD 中,AF BD ⊥,垂足为E ,AF 交BC 于点F ,连接DF ,且DF 平分BDC ∠.下列结论中:①ABD CDB ≅;②ADE BDF S S =△△;③90ABD CDF ∠+∠=︒;④AD DF =.其中正确的个数有( )A .4个B .3个C .2个D .1个5.如图,在正方形ABCD 中,E F 、分别在CD AD 、边上,且CE DF =,连接BE CF 、相交于G 点.则下列结论:①BE CF =;②BCG DFGE S S ∆=四边形;③2CG BG GE =⋅;④当E 为CD 中点时,连接DG ,则45FGD ∠=︒;正确结论的个数是( )A .1B .2C .3D .46.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ︒∠=,则AED =∠A .60°B .65°C .70°D .75°7.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.58.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,延长CB 至E 使BE=CB ,连续AE .下列结论①AE=2OE ;②90EAC ∠=︒;③四边形ADBE 为平行四边形;④34AEBO ABCD S S =四边形菱形中,正确的个数有( )A .1个B .2个C .3个D .4个9.如图,E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折B 叠,使点恰好落在ED 上的点F 处,若5,3CD BC ==,则BE 的长为( )A .0.5B .1C .1.5D .210.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A .3214+B .628+C .324+D .32211.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 是AB 的中点,E 是BC 的中点,EF ⊥CD 于点F ,则EF 的长是( )A .3B .4C .5D .12512.如图,矩形ABCD 的两条对角线的一个交角为60︒,两条对角线的长度之和为24cm ,则这个矩形的一条短边的长为( )A .6cmB .12cmC .24cmD .48cm二、填空题13.如图,以AB 为边作边长为8的正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ =8,若点P 从点A 出发,沿A →B →C →D 的线路,向D 点运动,点Q 只能在线段AD 上运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所经过的路径的长为_____.14.已知,在△ABC 中,∠BAC =45°,AB =1,AC =8,以AC 为一边作等腰直角△ACD ,使∠CAD =90°,连接BD ,则线段BD 的长度为________.15.如图,Rt∆ABC 中,90ABC ∠=︒,30A ∠=︒,点D ,E ,F 分别是线段AC ,AB ,DC 的中点,下列结论:①EFB ∆为等边三角形;②12ACB DFBE S S ∆=四边形; ③3AE DF =;④8AC DG =;其中正确的是_______.16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.17.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.18.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,点E 在DA 的延长线上,BE BF ⊥交CD 于点F ,连接EF .DEF ∠的角平分线与BD 交于点H ,连接FH .过点D 分别作DQ EH ⊥于点Q 、DP FH ⊥于点P ,连接PQ PQ .若1PQ CF ==,则DF =______.19.如图,平面内直线1234//////l l l l ,且相邻两条平行线间隔均为1,正方形ABCD 四个顶点分别在四条平行线上,则正方形的面积为________.20.已知四边形ABCD 中,AC BD ⊥,且8AC =,10BD =,E 、F 、M 、N 分别为AB 、BC 、CD 、DA 的中点,那么四边形EFMN 的面积等于______.三、解答题21.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF AF =;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰直角三角形. 22.(1)将一张长方形纸片按如图1所示的方式折叠,BC 、BD 为折痕,求CBD ∠的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC 、BD 为折痕,若115CBD ∠=︒,求A BE ∠'的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC 、BD 为折痕,若CBD α∠=,求A BE '∠'的度数(用含α的式子表示)23.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 上的点,且DE BF =,AC EF ⊥.求证:四边形AECF 是菱形.24.有两棵树,一棵高9米,另一棵高4米,两树相距12米. 一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?25.在四边形ABCD 中,AD//BC .∠B =90°,AB =8cm ,AD =24cm .BC =26cm .点P 从点A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.求:从运动开始,使PQ =CD ,需要经过的时间是多少?26.如图,在长方形ABCD 中,4AB =,5AD =,点E 为BC 上一点,将ABE △沿AE 折叠,使点B 落在长方形内点F 处,连接DF ,且3DF =,求AFD ∠的度数和BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过点A 做AE BC ⊥交BC 于点E ,根据角平分线和平行线性质,推导得5AD AB ==;通过判定四边形AECD 为矩形,得5EC AD ==,4AE CD ==;再根据勾股定理计算,得BE ,从而得到四边形ABCD 的周长.【详解】如图,过点A 做AE BC ⊥交BC 于点E∵BD 平分ABC ∠∴ABD CBD ∠=∠∵//AD BC∴ADB CBD ∠=∠∴ABD ADB ∠=∠∴5AD AB ==∵AE BC ⊥,90C ∠=︒∴//AE DC∴四边形AECD 为矩形∴5EC AD ==,4AE CD ==又∵AE BC ⊥,即90AEB =︒∠∴3BE ==∴四边形ABCD 的周长22AB BE EC CD AD =++++=故选:C .【点睛】本题考查了平行线、角平分线、等腰三角形、矩形、勾股定理的知识;解题的关键是熟练掌握平行线、角平分线、矩形、勾股定理、等腰三角形的性质,从而完成求解. 2.C解析:C【分析】利用菱形的性质即可计算得出BC 的长,再根据面积法即可得到AE 的长,最后根据勾股定理进行计算,即可得到BE 的长,进而得出结论.【详解】解:∵四边形ABCD 是菱形,∴CO =12AC =3,BO =12BD =4,AO ⊥BO , ∴BC5,∵S 菱形ABCD =12AC•BD =BC×AE , ∴AE =16825⨯⨯=245. 在Rt △ABE 中,BE75 , ∴CE =BC ﹣BE =5﹣75=185, ∴775==18185BE CE 的值为718,故选:C .【点睛】本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形性质:四条边都相等、对角线互相垂直平分.3.A解析:A【分析】根据题意可得出∠B=60︒,结合菱形的性质可得BA=BC ,判断出△ABC 是等边三角形即可得出菱形的周长.【详解】解:∵四边形ABCD 是菱形,∴//BA CD ,又∵∠BCD=120︒,∴∠B=180︒-∠BCD= 60︒,又∵四边形ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,∴BA=BC=AC=5,故可得菱形的周长=4AB=20.故选:A .【点睛】本题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC 是等边三角形是解答本题的关键,难度一般.4.C解析:C【分析】由长方形的性质可得:,,90,AB CD AD BC BAD BCD ==∠=∠=︒从而可判断①;由面积公式可得,ADF BDC S S =再利用角平分线的性质证明,Rt DFE Rt DFC ≌再利用面积差可判断②;由90ABD DBC ∠+∠=︒,结合90ABD CDF ∠+∠=︒,证明,DBC CDF ∠=∠ 再证明30,DBC EDF CDF ∠=∠=∠=︒ 可得AF 是BD 的垂直平分线,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断③;由,AF BD ⊥ 结合AD DF =,可证明BD 是AF 的垂直平分线,可得,BA BF = 从而可证明45ABE ADB ∠=∠=︒,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断④.【详解】 解: 长方形ABCD ,,,90,AB CD AD BC BAD BCD ∴==∠=∠=︒(),ABD CDB SAS ∴≌ 故①符合题意; 11,,22ADF BDC SAD CD S BC CD == ,ADF BDC S S ∴= ,,ADE ADF DEF BDF BCD DCFS S S S S S =-=- DF 平分BDC ∠,,90,AF BD BCD ⊥∠=︒,FE FC ∴= ,DF DF =(),Rt DFE Rt DFC HL ∴≌,DEF DCF SS ∴= ,ADE BDF S S ∴= 故②符合题意;长方形ABCD ,90ABD DBC ∴∠+∠=︒,若90ABD CDF ∠+∠=︒,,DBC CDF ∴∠=∠,Rt DFE Rt DFC ≌,EDF CDF ∴∠=∠ ,DE DC =30,DBC EDF CDF ∴∠=∠=∠=︒2,BD DC ∴=E ∴是BD 的中点,AF ∴是BD 的垂直平分线,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故③不符合题意; ,AF BD ⊥若AD DF =,,AE EF ∴=BD ∴是AF 的垂直平分线,,BA BF ∴=90ABC ∠=°,45BAF BFA ∴∠=∠=︒,45ABE ADB ∴∠=∠=︒,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故④不符合题意; 故选:.C【点睛】本题考查全等三角形的判定与性质,矩形的性质,正方形的判定,角平分线的性质,垂直平分线的定义与判定,等腰三角形的判定与性质,含30的直角三角形的性质,掌握以上知识是解题的关键.5.D解析:D【分析】证明△BCE ≌△CDF 可判断①;利用△BCE ≌△CDF 可得S △BCE =S △CDF ,从而可判断②;证明△BCG ∽△CEG 得CG GE BG CG=,可判断③;过D 作DM ⊥FG 于M ,证明MD=MG 即可判断④,从而可得结论.【详解】解:∵四边形ABCD 是正方形∴BC=CD ,∠BCE=∠CDF又CE=DF∴△BCE ≌△CDF∴BE CF =,故①正确;②∵△BCE ≌△CDF∴S △BCE =S △CDF ,∴S △BCE -S △CGE =S △CDF -S △CG , ∴BCG DFGE S S ∆=四边形;③∵△BCE ≌△CDF∴∠CBE=∠FCD∵∠BCG+90GCE ∠=︒,∴∠90BCG CBG +∠=︒∴∠90BGC =︒又∵∠BGC=∠CGE=90°,∠GBC=∠GCE∴△BCG ∽△CEG∴CG GE BG CG=, ∴2CG BG GE =⋅,故③正确;④过D 作DM ⊥FG 于M ,如图所示,设DF=a ,则AD=2a∵CE=DF ∴BE == 利用面积法可得1122BC CE BE CG =∴CG =同理可得,DM =∴FM ==∴ ∴MD=MG∵∠DMG=90° ∴45FGD ∠=︒,故④正确∴正确的结论有4个,故选:D .【点睛】此题主要考查了运用正方形的有关性质进行讲明和求解,熟练掌握正方形的性质是解答此题的关键.6.C解析:C【分析】先证明△ABE ≌△ADE ,得到∠ADE =∠ABE =90°﹣25°=65°,在△ADE 中利用三角形内角和180°可求∠AED 度数.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,BA =DA ,∠BAE =∠DAE =45°.又AE =AE ,∴△ABE ≌△ADE (SAS ).∴∠ADE =∠ABE =90°﹣25°=65°.∴∠AED =180°﹣45°﹣65°=70°.故选C .【点睛】本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.7.A解析:A【分析】根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒, ∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∵OG AC ⊥,OA OC =,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.8.D解析:D【分析】先判定四边形AEBD 是平行四边形,再根据平行四边形的性质以及菱形的性质,即可得出结论.【详解】 解:四边形ABCD 是菱形,AD BC ∴=,//AD BC ,2BD DO =,又BC BE =,AD BE ∴=,∴四边形AEBD 是平行四边形,故③正确,AE BD ∴=,2AE DO ,故①正确;四边形AEBD 是平行四边形,四边形ABCD 是菱形,//AE BD ∴,AC BD ⊥,AE AC ∴⊥,即90CAE ∠=︒,故②正确;四边形AEBD 是平行四边形, 12ABE ABD ABCD S S S 菱形, 四边形ABCD 是菱形,14ABO ABCDS S 菱形, 34ABE ABO AEBO ABCDS S S S 四边形菱形,故④正确; 故选:D .【点睛】本题主要考查了菱形的性质以及平行四边形的判定与性质,熟悉相关性质是解题的关键. 9.B解析:B【分析】求出4DF =,设BE x =,则5AE x =-,根据勾股定理列方程可得BE 的长.【详解】解:设BE x =,则5AE x =-,由折叠得:3CF BC ==,90B CFE ∠=∠=︒,90CFD ∴∠=︒,2222534DF CD CF ∴=--,四边形ABCD 是矩形,3AD BC ∴==,90A ∠=︒,Rt AED ∆中,222AE AD ED +=,222(5)3(4)x x ∴-+=+,1x ∴=,1BE ∴=,故选:B .【点睛】本题考查了翻折变换的性质、矩形的性质、勾股定理;熟练掌握矩形的性质、折叠的性质,并能进行推理计算是解决问题的关键.10.A解析:A【分析】由折叠可得1EF BE ==,90CFE ABC ∠=∠=︒,且 45FAE ∠=︒,可得1AF =, 2AE =,即可求对角线BD 的长,则可求 CDF 的面积.【详解】如图连结BD 交AC 于点O ,∵ABCD 为正方形,∴90ABC ∠=︒,AB=BC ,AC BD ⊥, DO BO =,45BAC ∠=︒,∵BCE 沿CE 翻折, ∴1BE EF ==,BC CF =, 90EFC ∠=︒, ∵45BAC ∠=︒,90EFC ∠=︒, ∴45EAF AEF ∠=∠=︒, ∴1AF EF ==,∴2AE =∴21AB BC CF ===, ∴222BD AB == ∴222OD +=, ∴12CDF SCF DO =⨯⨯, ∴()(2122432321444CDF S ++===+.故选:A .【点睛】本题考查翻折变换、正方形的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题.11.D解析:D【分析】根据勾股定理得出AB ,进而利用直角三角形的性质得出:BD=DC=AD=5,利用三角形面积公式解答即可.【详解】∵在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴226810AB =+=,∵D 是AB 的中点,∴BD=DC=AD=5,1116812222BDC BAC SS ==⨯⨯⨯=, 连接DE , ∵E 是BC 的中点, ∴162DEC BDC SS ==, ∵115622DEC S DC EF EF ==⨯⨯= ∴125EF = 故选:D .【点睛】本题主要考查的是勾股定理,直角三角形斜边上的中线,关键是根据勾股定理解出AB ,进而利用直角三角形的性质解答.12.A解析:A【分析】根据矩形的性质求出OA=OB ,AC=BD ,求出AC 的长,求出OA 和OB 的长,推出等边三角形OAB ,求出AB=OA ,代入求出即可.【详解】解:∵四边形ABCD 是矩形,∴OA=OC=12AC ,OD=OB=12BD ,AC=BD , ∴OA=OB ,∵AC+BD=24,∴AC=BD=12cm ,∴OA=OB=6cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=6cm,故选:A.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出等边三角形OAB和求出OA的长.二、填空题13.4π+8【分析】根据题意将问题分类讨论三种情况依次讨论:一个是依据斜边上的中线+圆的定义得到弧的轨迹一个可以用中垂线来理解【详解】解:(1)当P在AB上Q在AD上时AO=由圆的定义可以知O的轨迹为E解析:4π+8【分析】根据题意将问题分类讨论,三种情况依次讨论:一个是依据斜边上的中线+圆的定义得到弧的轨迹,一个可以用中垂线来理解【详解】解:(1)当P在AB上,Q在AD上时,AO=142PQ=,由圆的定义可以知O的轨迹为EF这段14圆弧(2)同理当P在CD上,Q在AD上时,DO=142PQ=,由圆的定义可以知O的轨迹为EG这段14圆弧(3)Q在AD上,P在BC上,可知PQ∥AB,O的运动轨迹为FG这条线段综上分析:O的运动路径长为:4π+8.故答案:4π+8【点睛】本题考查了轨迹以及正方形的性质,解题的关键是学会用分类讨论的思想思考问题.14.或【分析】AC作为直角边有两种情况需要分情况讨论画出图后进行计算【详解】解:情况一:延长AB 交CD 于E ∠BAC =45°∠CAD =90°所以AE 是等腰直角△ACD 的高线中线所以CE=DE 因为∠BAC = 解析:5或13【分析】AC 作为直角边,有两种情况,需要分情况讨论,画出图后进行计算.【详解】解:情况一:延长AB 交CD 于E∠BAC =45°,∠CAD =90°所以AE 是等腰直角△ACD 的高线,中线所以,AE CD ⊥,CE=DE因为8AC =,AE CD ⊥,∠BAC =45°所以△ACE 也是等腰直角三角形,根据勾股定理,AE=CE=2所以BE=AE-AB=2-1=1又因为DE=CE=2,AE CD ⊥所以,BD=22145BE DE +=+=情况二:延长直线AB ,分别过C 、D 作垂线,交直线AB 于F 、E .与情况一类似,可以证出CF=AF=2,BF=AF-AB=2-1=1所以,BE=EF-BF ;因为∠BAC =45°,CF AB ⊥所以,∠ACF =180°-∠BAC-∠F=45°因为△ACD 是等腰直角三角形,∠CAD =90°所以∠ACD =45°所以 ,∠FCD =∠ACD+∠ACF=45°+45°=90°又因为,DE AB CF AB ⊥⊥所以四边形DEFC 是矩形所以DE=CF=2,EF=DC ;因为在等腰直角△ACD 中,∠CAD =90°,AC所以,根据勾股定理,CD=4所以,BE=EF-BF=DC-BF=4-1=3因此,BD ===【点睛】这道题考察的是等腰直角三角形的性质,勾股定理,矩形的判定和性质.熟练掌握这些知识点,画出辅助线,是解题的关键.15.①②③④【分析】根据直角三角形中斜边上的中线等于斜边的一半结合等边三角形的判定定理即可判断①;根据三角形的中线等分三角形的面积即可判断②;先推出BF=AE 结合含30°角的直角三角形的性质即可判断③; 解析:①②③④【分析】根据直角三角形中,斜边上的中线等于斜边的一半,结合等边三角形的判定定理,即可判断①;根据三角形的中线等分三角形的面积,即可判断②;先推出BF=AE ,结合含30°角的直角三角形的性质,即可判断③;根据30°角所对的直角边等于斜边的一半,即可判断④.【详解】①在Rt ABC ∆中,D 是AC 中点,∴DB=DC=AD ,∵DB=AD ,∴30A DBA ∠=∠=︒,∴60CDB ∠=︒,∴CDB ∆为等边三角形,∵F 是DC 中点,∴BF 是CBD ∠角平分线,BF 是DC 的垂线,∴30DBF FBC ∠=∠=︒,∴60FBE FBG DBA ∠=∠+∠=︒,∴∠AFB=180°-60°-30°=90°,在Rt AFB ∆中,E 是AB 中点,∴EF=AE=BE ,又∵60FBE ∠=︒∴FBE ∆为等边三角形,故①正确;②E 是AB 中点 ∴12DEB ABD S S ∆∆=F 是DC 中点 ∴12DFB BDC S S ∆∆= ∴()1122DEB DFB ABD BDC ABC DFBF S S S S S S ∆∆∆∆∆=+=+=四边形,故②正确; ∵30A ∠=︒,90DEA ∠=︒, ∴12BF AB AE ==, 又∵30DBF ∠=︒,90BFA ∠=︒, ∴BF =,即AE =,故③正确;④∵90DEA ∠=︒,60FEB =︒∠,∴30DEG ∠=︒,又60∠=︒EDB ,∴2DG=DE ,在Rt DEA ∆中,30A ∠=︒,2DE=ADAC=2AD=4DE=8DG ,故④正确.故答案是:①②③④.【点睛】本题主要考查直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半,是解题的关键.16.5【分析】先根据菱形的性质得到AC ⊥BDOB =OD =BD =4OC =OA =AC =3再利用勾股定理计算出BC 然后根据直角三角形斜边上的中线性质得到OH 的长【详解】∵四边形ABCD 为菱形AC =6BD =8∴解析:5【分析】先根据菱形的性质得到AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,再利用勾股定理计算出BC ,然后根据直角三角形斜边上的中线性质得到OH 的长.【详解】∵四边形ABCD 为菱形,AC =6,BD =8,∴AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,在Rt △BOC 中,BC 5,∵H 为BC 中点,∴OH =12BC =2.5.故答案为:2.5.【点睛】本题考查菱形的性质、勾股定理及直角三角形斜边中线的性质,菱形的对角线互相垂直且平分;直角三角形斜边的中线等于斜边的一半;熟练掌握相关性质是解题关键.17.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=12AC=6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.18.1+【分析】延长DQ交EF于M延长DP交EF于N先证∆ABE≌∆CBF∆FPN≌∆FPD∆EQD≌∆EQM设CD=x则DF=x-1EF=BF=列方程求解即可【详解】解:延长DQ交EF于M延长DP交E解析:【分析】延长DQ交EF于M,延长DP交EF于N,先证∆ABE≌∆CBF,∆FPN≌∆FPD,∆EQD≌∆EQM,设CD=x,则DF=x-1,【详解】解:延长DQ交EF于M,延长DP交EF于N,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=∠BCF=90°,BD平分∠ADC,∵BE ⊥BF ,∴∠EBF=90°,∴∠EBF=∠ABC ,∴∠EBF-∠ABF=∠ABC-∠ABF ,∴∠ABE=∠CBF ,在∆ABE 和∆CBF 中,BAE BCF AB CBABE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆ABE ≌∆CBF ,∴AE=CF ,BE=BF ,∵EQ 平分∠DEF ,OD 平分∠EDF ,EQ 与OD 交于H ,∴FH 平分∠EFD ,∴EP ⊥DP ,∴∠FPN=∠FPD ,在∆FPN 和∆FPD 中,NFP DFP PF PFFPN FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆FPN ≌∆FPD ,∴PN=PD ,NF=DF ,∵EQ 平分∠DEF ,∴∠DEQ=∠MEQ ,∵EQ ⊥DQ ,∴∠EQD=∠EQM=90°,在∆EQD 和∆EQM 中,DEQ EQ EQ MQEQD EQM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆EQD ≌∆EQM ,∴DQ=MQ ,EM=ED ,∴PQ 是∆DMN 的中位线,∴PQ=12MN=1, ∴MN=2,∴EF+MN=EM+FN=DE+DF=AD+AE+CD-CF=2CD ,设CD=x ,则DF=x-1,∴∴22(1)x ++2=2x ,∴2x²+2=4x²-8x+4,∴2x²-8x+2=0,∴x²-4x+1=0,∴(x-2) ²=3,∴1232,32x x =+=-+(舍),∵CD=2+3,∴DF=1+3,故答案为:1+3【点睛】本题考查了正方形的性质,全等三角形的判定与性质及三角形的中位线定理,解题的关键是熟练掌握有关性质及正确添加辅助线.19.5【分析】过C 点作直线EF 与平行线垂直与l 交于点E 与l 交于点F 易证△CDE ≌△CBF 得CF=1BF=2根据勾股定理可求BC 得正方形的面积【详解】解:过C 点作EF ⊥l 交l 于E 点交l 于F 点∵l ∥l ∥l ∥解析:5【分析】过C 点作直线EF 与平行线垂直,与l 1交于点E ,与l 4交于点F .易证△CDE ≌△CBF ,得CF =1,BF =2.根据勾股定理可求BC 2得正方形的面积.【详解】解:过C 点作EF ⊥l 1,交l 1于E 点,交l 4于F 点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,90CED BFCCDE BCFBC CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.20.20【分析】根据三角形的中位线定理证明四边形EFGH是平行四边形再证明EF⊥EH证得四边形EFGH是矩形即可根据矩形的面积公式计算得出答案【详解】∵点EF分别是边ABBC的中点∴EF∥ACEF=AC解析:20【分析】根据三角形的中位线定理,证明四边形EFGH是平行四边形,再证明EF⊥EH,证得四边形EFGH是矩形,即可根据矩形的面积公式计算得出答案.【详解】∵点E、F分别是边AB、BC的中点,∴EF∥AC,EF=12AC=4,同理,HG ∥AC ,HG=12AC=4,EH ∥BD ,EH=12BD=5, ∴EF=HG ,EF ∥HG , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,EF ∥AC ,∴EF ⊥BD ,∵EH ∥BD ,∴EF ⊥EH ,∴∠HEF=90°,∴四边形EFGH 是矩形,∴四边形EFGH 的面积=4520EF EH ⋅=⨯=,故答案为:20.【点睛】此题考查三角形的中位线性质定理,矩形的判定定理,能证得四边形是矩形是解题的关键 .三、解答题21.(1)见解析;(2)△ABC , △ADE ,△ADF ,△AFE【分析】(1)根据90BAC DAE ∠=∠=︒得到BAD CAE ∠=∠再根据已知条件求证ABD ACE ABD ACE ∠=∠≌,再根据题意得∠ABD=∠ACE=45°,进而得到△DCE 为直角三角形,再由点F 是DE 的中点得到CF=AF ;(2)根据等腰直角三角形的性质和定义结合第一问即可得到结果.【详解】(1)证明:∵90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠-∠=∠-∠即BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ACE △≌△,∴ABD ACE ∠=∠∵AB AC =,∴A ABC CB =∠∠∵90BAC ∠=︒∴90ABC ACB ∠+∠=︒,∴45ABC ACB ∠=∠=︒∴45ABD ACE ∠=∠=︒∴90DCE ACB ACE ∠︒=∠+∠=∵点F 是DE 的中点,90DAE DCE ∠=∠=︒ ∴12AF DE =,12CF DE = ∴CF AF =(2)图中所有的等腰直角三角形是:ABC ,ADE ,ADF ,AFE △;【点睛】此题属于三角形旋转类综合性问题,涉及知识点为三角形全等,直角三角形斜边上的中线为斜边的一半.22.(1)90°;(2)50°;(3)1802α︒-【分析】(1)由折叠的性质知ABC A BC ∠∠'=,EBD E BD '∠=∠,即可得到1902CBD ABE ∠=∠=︒; (2)由115CBD ∠=︒计算出18011565ABC EBD ∠+∠=︒-︒=︒,根据ABC A BC ∠∠'=,EBD E BD '∠=∠,即可求出答案;(3)由CBD α∠=求出180ABC EBD α∠+∠=︒-,根据ABC A BC ∠=∠',EBD E BD '∠=∠计算得出180(2302)6ABA EBE αα''∠+∠=︒-⨯=︒-,再计算36021801802A BE αα''∠=︒--︒=︒-得出答案.【详解】(1)由折叠的性质知ABC A BC ∠∠'=,EBD E BD '∠=∠,∴12A BC ABA '∠'=∠,12E BD E BE '∠'=∠, ∴1902CBD ABE ∠=∠=︒. (2)∵115CBD ∠=︒∴18011565ABC EBD ∠+∠=︒-︒=︒,∵ABC A BC ∠∠'=,EBD E BD '∠=∠,∴652130ABA EBE ''∠+∠=︒⨯=︒,∴18013050A BE ''∠=︒-︒=︒.(3)∵CBD α∠=∴180ABC EBD α∠+∠=︒-∵ABC A BC ∠=∠',EBD E BD '∠=∠∴180(2302)6ABA EBE αα''∠+∠=︒-⨯=︒-∴36021801802A BE αα''∠=︒--︒=︒-.【点睛】此题考查折叠的性质:折叠前后的对应角相等,角度的和差计算,掌握图形中各角度之间的位置及和差关系是解题的关键.23.见详解【分析】先证明四边形AECF 是平行四边形,再结合AC EF ⊥,即可得到结论成立.【详解】证明:在平行四边形ABCD 中,有AD ∥BC ,AD=BC ,∵DE BF =,∴AD DE BC BF -=-,∴AE CF =,∵AD ∥BC ,∴四边形AECF 是平行四边形,∵AC EF ⊥,∴四边形AECF 是菱形.【点睛】本题考查了菱形的判定和性质、平行四边形的判定与性质等知识;本题综合性强,熟练掌握平行四边形的判定与性质是解决问题的关键.24.小鸟至少飞行13米.【分析】先画出图形,再根据矩形的判定与性质、勾股定理可求出AC 的长,然后根据两点之间线段最短可得最短飞行距离等于AC 的长,由此即可得.【详解】画出图形如下所示:由题意得:,,4AB BD CD BD AB ⊥⊥=米,9CD =米,12BD =米,过点A 作AE CD ⊥于点E ,则四边形ABDE 是矩形,12AE BD ∴==米,4DE AB ==米,5CE CD DE ∴=-=米,在Rt ACE △中,222212513AC AE CE +=+=(米),由两点之间线段最短得:小鸟飞行的最短距离等于AC 的长,即为13米,答:小鸟至少飞行13米.【点睛】本题考查了矩形的判定与性质、勾股定理、两点之间线段最短等知识点,依据题意,正确画出图形是解题关键.25.8s 或283s 【分析】设运动时间为t 秒,则有AP =t ,CQ =2t ,分PQ//CD 和PQ 与CD 不平行两种情况进行讨论,再根据平行四边形或梯形的性质建立方程即可求解.【详解】解:(1)当PQ//CD 时,∵AD//BC ,∴四边形PDCQ 是平行四边形,∴PD =CQ ,而AP =t ,CQ =2t ,PD =AD -AP =24-t ,即:2t =24-t解得: t =8.(2)当PQ 与CD 不平行时,而AD//BC ,PQ =CD ,∴四边形PDCQ 是等腰梯形,作PM ⊥BC 于M ,DN ⊥BC 于N ,则四边形ABND 、PMND 均是矩形,∴AD =BN =24,CN =BC -BN =2,QM =CN =2,PD =MN ,而CQ =QM +MN +NC ,∴ 2t =24-t +2+2,解得: t =283.【点睛】此题考查了平行四边形的性质及等腰梯形的判定与性质,属于动点型问题,关键是分类讨论点P 及点Q 位置,然后利用方程思想求解t 的值.26.902AFD BE ∠=︒=,【分析】根据勾股定理的逆定理即可得证;说明点D 、E 、F 三点共线,再根据勾股定理即可求解.【详解】根据折叠可知:AB=AF=4,∵AD=5,DF=3,32+42=52,即FD 2+AF 2=AD 2,根据勾股定理的逆定理,得△ADF 是直角三角形,∴∠AFD=90°,设BE=x ,则EF=x ,∵根据折叠可知:∠AFE=∠B=90°,∵∠AFD=90°,∴∠DFE=180°,∴D 、F 、E 三点在同一条直线上,∴DE=3+x ,CE=5-x ,DC=AB=4,在Rt △DCE 中,根据勾股定理,得DE 2=DC 2+EC 2,即(3+x)2=42+(5-x)2,解得x=2.答:BE 的长为2.【点睛】本题考查了折叠问题、勾股定理及其逆定理、矩形的性质,解决本题的关键是勾股定理及其逆定理的运用.。

人教版九年级上册数学第一单元一元二次方程测试卷

人教版九年级上册数学第一单元一元二次方程测试卷

九年级上册第一单元一元二次方程测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.42.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20C. =20 D.n(n+1)=203.方程x(x﹣2)+x﹣2=0的解为( )A.x=2 B.x1=2,x2=1 C.x=﹣1 D.x1=2,x2=﹣14.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.85.一元二次方程x 2﹣8x ﹣1=0配方后可变形为( ) A .(x+4)2=17B .(x+4)2=15C .(x ﹣4)2=17D .(x ﹣4)2=156.若25x 2=16,则x 的值为() A .45±B .54±C .1625±D .2516±7.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( ) A .B .C .D .8.x=1是关于x 的一元二次方程x 2+mx ﹣5=0的一个根,则此方程的另一个根是() A . 5B . ﹣5C . 4D . ﹣49.如图,点E 在正方形ABCD 的边AD 上,已知AE=7,CE=13,则阴影部分的面积是( )A .114B .124C .134D .14410.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ) A .x (x ﹣1)=10B .=10 C .x (x+1)=10 D .=1011.有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是…….( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根;D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y 的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是( ) A .0个B .1个C .2个D .3个二 、填空题(本大题共6小题,每小题4分,共24分)13.已知(m ﹣1)x |m|+1﹣3x+1=0是关于x 的一元二次方程,则m= . 14.设x 1,x 2是方程2x 2+4x ﹣3=0的两个根,则x 12+x 22= . 15.不解方程,判断方程2x 2+3x ﹣2=0的根的情况是__________.16.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是 17.若x=1是一元二次方程x 2+x+c=0的一个解,则c 2= . 18.读诗词解题(通过列方程,算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流人物. 而立之年督东吴,早逝英才两位数.十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜.周瑜去世时 ________岁.三、解答题(本大题共8小题,共78分)19.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.20.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?21.关于x 的一元二次方程(k ﹣2)x 2﹣2(k ﹣1)x+k+1=0有两个不同的实数根是x l 和x 2. (1)求k 的取值范围;(2)当k=﹣2时,求4x 12+6x 2的值.22.已知关于x 的一元二次方程x 2+2x+2k ﹣2=0有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,求该方程的根.23.李先生乘出租车去某公司办事,下车时,打出的电子收费单为“里程错误!未找到引用源。

九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)

九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)

【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。

(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)

(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)

一、选择题1.如图,矩形ABCD 被两条对角线分成4个小三角形OAB ∆、OAD ∆、OBC ∆和OCD ∆,若这4个小三角形的周长之和为68,对角线10AC =,则矩形ABCD 的周长是( )A .14B .18C .21D .282.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件 3.下列命题是假命题的是( )A .有一组邻边相等的矩形是正方形B .对角线互相垂直的平行四边形是正方形C .对角线相等的平行四边形是矩形D .有三个角是直角的四边形是矩形 4.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A .4B .6C .8D .105.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .1036.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .47.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .248.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ACD △沿AD 翻折,得到ADC ',DC '与AB 交于点E ,连结BC ',若2BD BC ='=,3AD =,则点D 到AC '的距离为( )A .332B .3217C .7D .139.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②AD=2AE ;③ACD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG :⑥若1OGF S ∆=,则正方形ABCD 的面积是642+,其中正确的结论个数为( )A .2个B .3个C .4个D .5个11.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A 6B 7C .3D .5 12.□ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,可推出□ABCD 是菱形,那么这个条件可以是( )A .AB=CDB .AC=BDC .AC ⊥BD D .AB ⊥BD二、填空题13.如图,把一张长方形的纸沿对角线折叠,若118ABC ∠=︒,则BAC ∠=_______.14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.15.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.16.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB =∠________︒时,四边形ADCF 是长方形.17.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.18.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.19.如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成.若长方形ABCD的面积为6,则三角形ABE的面积为 ______,正方形EFGH的面积为______.20.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图,长方形ABCD中,AD=a cm,AB=b cm,且a、b满足|8-a|+(b-4)2=0.(1)长方形ABCD的面积为;(2)动点P在AD所在直线上,从A出发向左运动,速度为2cm/s,动点Q在DC所在直线上,从D出发向上运动,速度为4cm/s.动点P、Q同时出发,设运动时间为t秒.①当点P在线段AD上运动时,求以D、P、B、Q为顶点的四边形面积;(用含t的式子表示)②求当t为何值时,S△BAP=S△CQB.22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,过点D作AC的垂线,交AC的延长线于点E,连接AD.(1)求证:DE是⊙O的切线;(2)连接CD,若∠CDA=30°,AC=2,求CE的长.23.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.24.长方形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,6OC =.(1)如图,在AB 上取一点M ,使得CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求B ′点的坐标.(2)求折痕CM 所在直线的解析式.(3)在x 轴上是否能找到一点P ,使B CP '△的面积为13?若存在,直接写出点P 的坐标?若不存在,请说明理由.25.如图,长方形ABCD 沿着直线DE 和EF 折叠,使得AB 的对应点A′,B′和点E 在同一条直线上.(1)写出∠AEF 的补角和∠ADE 的余角;(2)求∠DEF .26.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)求点E 的坐标;(2)求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】四个小三角形的周长是两条对角线长的2倍与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD,四个小三角形的周长=2AC+2BD+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为28.故选:D.【点睛】本题考查了矩形的性质和矩形的周长,抓住矩形的对角线相等和四个小三角形的周长=4倍的对角线长+矩形的周长是解决本题的关键.2.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.3.B解析:B【分析】根据特殊平行四边形的判定与性质可以对各选项的正误作出判断.【详解】由平行四边形的性质及特殊平行四边形的判定可以得到:(1)有一组邻边相等的矩形是正方形,故A正确;(2)对角线互相垂直的平行四边形是菱形,故B错误;(3)对角线相等的平行四边形是矩形,故C正确;(4)有三个角是直角的四边形是矩形,故D正确.故选B.【点睛】本题考查特殊平行四边形的应用,熟练掌握特殊平行四边形的判定与性质是解题关键.4.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.5.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,2222=-=-=,BF AF AB1068∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=8,3∴EC=8.3故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.6.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.7.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.8.B解析:B【分析】过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,则四边形ADFG 是矩形,计算AC '的长,后利用三角形ADC 'M 面积 的不同计算方法计算即可.【详解】如图,过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,∵把ACD △沿AD 翻折,得到ADC ',∴DC=DC ',∠ADC=∠A DC ',∵D 是BC 边上的中点,∴DC=BD ,∵2BD BC ='=,∴DC '=2BD BC ='=,∴BDC '是等边三角形,∴∠ADC=∠A DC '=∠B DC '=∠DC 'B=60°,∵DF ⊥BC',AG ⊥BC',∴四边形ADFG 是矩形,∴BF=FC'=1,FG=AD=3,=,∴GC '=2,∴AC '=,设点D 到AC '的距离为h , ∴1122AC h AD DF '=,∴11322h =⨯,∴h=7, 故选B.【点睛】 本题考查了三角形的折叠问题,等边三角形的判定和性质,平行线的判定,矩形的判定,勾股定理,三角形的面积,熟练掌握折叠的性质,矩形的判定,三角形面积不同表示方法是解题的关键.9.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S = 11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符, 故CBE CEFS S =不一定成立,故③错误; ④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.10.B解析:B【分析】由题意易得AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,△ADE ≌△FDE ,则有BE =,进而可得四边形AEFG 是平行四边形,然后根据等腰直角三角形的性质及线段的等量关系可求解.【详解】解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,∵折叠正方形ABCD ,∴△ADE ≌△FDE ,∴∠ADE=∠FDE=22.5°,AD=DF ,AE=FE ,∠EFD=∠DAE=90°,故①正确;∴△EFB 是等腰直角三角形, ∴BE =, ∴AD AB AE ==+,故②错误; 由图可直接判定③错误;∵∠EFB=∠AOB=90°,∴OA ∥EF ,由折叠的性质可得:∠GFO=∠DAO=45°,∴∠GFO=∠ABO=45°,∴GF ∥AE ,∴四边形AEFG 是平行四边形,∵AE=AF ,∴四边形AEFG 是菱形,故④正确;∵∠GFO=45°,∠AOB=90°,∴△GOF 是等腰直角三角形, ∴EF GF ==,∴2BE OG =,故⑤正确; ∵2112OGF S OG ∆==, ∴OG =∴2BE EF AE ===, ∴2AB =, ∴()22212ABCD S AB ===+正方形⑥错误;∴正确的有三个;故选B .【点睛】本题主要考查正方形的性质、菱形的判定及等腰直角三角形的性质与判定,熟练掌握正方形的性质、菱形的判定及等腰直角三角形的性质与判定是解题的关键.11.C解析:C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B , ∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵,EF ⊥AF ,∴==3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD ,无法判断四边形ABCD 是菱形,不合题意;B. AC=BD ,根据对角线相等的平行四边形是矩形可以判断□ABCD 是矩形,不合题意;C. AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD 是菱形,符合题意;D. AB ⊥BD ,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.二、填空题13.【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵四边形ADCF 是矩形三角形ACE 是由三角形ACF 翻折得到的∴∠D=∠解析:31︒【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形,继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵ 四边形ADCF 是矩形,三角形ACE 是由三角形ACF 翻折得到的,∴ ∠D=∠E=90°,AD=CE在△ABD 和△BCE 中:AD CE D EABD CBE =⎧⎪⎨⎪=⎩∠=∠∠∠ ∴△ABD ≌△BCE (AAS )∴AB=BC∵∠ABC=118°,∴∠BAC=∠BCA=()11180118=62=3122︒-︒⨯︒︒ , 故答案为:31°.【点睛】本题考查了矩形的性质,全等三角形的判定,以及等腰三角形的性质,正确理解知识点是解题的关键;14.或1【分析】分两种情况①当∠DEF=90°时由题意得出EF∥BC作FG⊥BC 于G证出△CFG△BDE是等腰直角三角形四边形EFGD是正方形得出BD=DE=EF=DG=FG=CG继而可得结果;②当∠E解析:12或1【分析】分两种情况①当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE 是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,继而可得结果;②当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【详解】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=12CD,∴n=12;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.综上所述:n=12或1,故答案为:12或1【点睛】本题主要考查等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解题的关键.15.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=1AC=6.5,2∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.16.60【分析】由E是AC中点且DE=EF据对角线互相平分的四边形是平行四边形知四边形ADCF是平行四边形因此只需DF和AC相等据对角线相等的平行四边形是矩形就得四边形ADCF是矩形所以只需∠ACB的大解析:60【分析】由E是AC中点且DE=EF,据“对角线互相平分的四边形是平行四边形”知四边形ADCF是平行四边形.因此只需DF和AC相等据“对角线相等的平行四边形是矩形”就得四边形ADCF 是矩形,所以只需∠ACB的大小能使DF=AC就行了.【详解】当∠ACB=60°时,四边形ADCF是矩形.理由如下:∵AB=AC,∠ACB=60°∴△ABC为正三角形∴AC=BC∵D、E是AB、AC的中点∴DE=1BC(三角形中位线定理)2又∵DE=EF∴DF=BC=AC①∵E是AC中点且DE=EF∴四边形ADCF是平行四边形(对角线互相平分的四边形是平行四边形)又由①知DF=AC∴四边形ADCF是矩形即长方形.(对角线相等的平行四边形是矩形)故答案为:60.【点睛】本题综合考查平行四边形、矩形的判定,也运用了三角形中位线定理.其中关键是结合图形和题目所给条件选择合适判定方法.17.1【分析】证明△BCE是等边三角形求出BE=CE=BC=2由D是BC的中点可得结论【详解】解:在中∵是的中线∴∵∴是等边三角形∴∵点是的中点且∴∵是边上的中线∴故答案为:1【点睛】此题主要考查了等边解析:1【分析】证明△BCE是等边三角形,求出BE=CE=BC=2,由D是BC的中点可得结论.【详解】解:在ABC 中,90C ∠=︒,∵CE 是ABC 的中线, ∴12==CE BE AB ∵60B ∠=︒, ∴BCE ∆是等边三角形∴BC CE =∵点M 是CE 的中点,且1CM =,∴22CE CM BC ===∵AD 是BC 边上的中线, ∴112122CD BC ==⨯= 故答案为:1.【点睛】 此题主要考查了等边三角形的判定和三角形中线的性质,证明BCE ∆是等边三角形是解答此题的关键.18.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可;【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒,又∵DE CD =,∴△CDE 为等边三角形,∴CD DE CE ==,60E ∠=︒,设CE x =,则CD DE x ==,∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x , ∴当3x =时,AC 取得最小值为33 此时,3AD CD x ===,∵AB AC ⊥,∴90BAC =︒,又30B ∠=︒,∴12AC BC =,即2BC AC =,AB ===,∴四边形ABCD 周长AD CD AB BC=+++, ()2AD CD AC =+++, ))626215AC =++≥++⨯=+; ∴四边形ABCD 的最小值为15+故答案是15+【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.19.【分析】设EH =x 由等腰直角三角形的性质得AB =AE =BEEH =HDGC =GDFB =CF ∠CGD =∠BFC =90°则HD =xGC =GD =GH +HD =2xFB =CF =3xCD =CG =2xBC =FB =3 解析:12【分析】设EH =x ,由等腰直角三角形的性质得AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°,则HD =x ,GC =GD =GH +HD =2x ,FB =CF =3x ,CD CG =x ,BC FB =x ,由矩形ABCD 的面积得出方程,得出x 2=12,x =2,进而得出答案.【详解】解:设EH =x ,∵四边形EFGH 是正方形,∴EF =FG =GH =EH =x ,∵△ABE 、△EHD 、△CGD 、△BCF 是等腰直角三角形,∴AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°, ∴HD =x ,∴GC =GD =GH +HD =2x ,∴FB =CF =3x ,在等腰Rt △CGD 和等腰Rt △BCF 中,CD CG =x ,BC =x , ∴x =6,则x 2=12,解得:x =±2(负值舍去),∴x =2,∴EF =2,FB =2, ∴BE =FB +EF =,∴AB =2BE =2, ∴△ABE 的面积=12AB×AE =12×2×2=2; 正方形EFGH 的面积=x 2=12; 故答案为:2;12. 【点睛】 本题考查了矩形的性质、正方形的性质、等腰直角三角形的性质、勾股定理等知识;熟练掌握矩形的性质、正方形的性质和勾股定理是解题的关键.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD 是矩形∴AD ∥BC ∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)32cm 2;(2)①四边形的面积为S =12t +16(cm 2);②当t =43或45时,S △BAP =S △CQB .【分析】 (1) 由|8-a|+(b -4)2=0.可求=8=4a b ,,可求长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,可求S 四边形BPDQ =S △BDP +S △BDQ =12t +16(cm 2);②由S △BAP =S △CQB ,可列方程12×2t×4=12×|4t -4|×8,化去绝对值44t t -=±分类解方程即可.【详解】解:(1) a 、b 满足|8-a|+(b -4)2=0.∵()28-0,40a b ≥-≥, ∴8-=04=0a b -,,∴=8=4a b ,,∴AD =8cm ,AB =4cm ,∴长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,S 四边形BPDQ =S △BDP +S △BDQ ,=12(8-2t)×4+12×4t×8, =12t +16(cm 2); ②由S △BAP =S △CQB ,得:12×2t×4=12×|4t -4|×8, 即|4t -4|=t ,44t t -=±,44t t -=或44t t -=-,解得:t =43或45, 当t =43或45时,S △BAP =S △CQB . 【点睛】本题考查非负数和的性质,矩形面积,四边形面积,一元一次方程,掌握非负数的性质,利用非负数求出AD,AB,会求矩形面积,以及四边形面积,会利用三角形面积列方程解决问题是解题关键.22.(1)见解析;(2)1.【分析】(1)连接OD,由D为弧BC的中点,得到CD BD=,求得∠BAD=∠CAD,根据等腰三角形的性质得到∠BAD=∠ADO,推出AC∥OD,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)连接OC,易得△AOC是等边三角形,继而证得四边形ACDO是菱形,根据菱形的性质可得CD=AC=2,∠CDE=30°,继而即可求解.【详解】(1)证明:如下图所示,连接OD,∵D是弧BC的中点,即CD BD=∴∠BAD=∠CAD,∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.;(2)解:如下图所示,连接OC,∵∠CDA=30°,∴∠AOC=2∠CDA=60°,∴△AOC是等边三角形,∴AC=AO=OD由(1)可得,AC∥OD,∴四边形ACDO既是平行四边形,也是菱形,∴CD=AC=2,∠CDO=∠CAO=60°,∠CDE=90°-60°=30°,∵DE⊥AE, ∠CED=90°∴CE=1.【点睛】本题考查了切线的判定和性质,等边对等角、平行线的判定及其性质,等边三角形的判定和性质,菱形的判定及性质,正确的作出辅助线是解题的关键.23.证明见解析【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【详解】证明:,,D E F 分别是,,AB AC BC 的中点,11//,,//,22DE CF DE BC DF CE DF AC ∴==, ∴四边形DECF 是平行四边形.AC BC =,DE DF ∴=,∴四边形DFCE 是菱形.【点睛】本题考查了菱形的判定和性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.24.(1)B ′点的坐标为(8,0);(2)163y x =-+;(3)存在,点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【分析】(1)折叠的性质得到CB′=CB=10,B′M=BM ,在Rt △OCB′中,利用勾股定理易得OB′=8,即可得到B′点的坐标;(2)设AM=t ,则BM=B′M=6-t ,而AB′=OA -OB′=2,在Rt △AB′M 中,利用勾股定理求出t 的值,确定M 点的坐标,然后利用待定系数法求直线CM 的解析式即可;(3)由△B′CP 的面积11|8|61322PB OC x '=⨯=-⨯=,即可求解. 【详解】解:(1)∵四边形ABCO 为矩形,∴10CB OA ==,6AB OC ==, ∵CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,∴10CB CB '==,B M BM '=,在Rt OCB '△中,6OC =,10CB '=,∴8OB '=,∴B ′点的坐标为(8,0);(2)设AM t =,则6BM B M t ='=-,而2AB OA OB '=-'=,在Rt AB M '△中,222B M B A AM '='+,即222(6)2t t -=+, 解得83t =,∴M 点的坐标为810,3⎛⎫ ⎪⎝⎭,设直线CM 的解析式为y kx b =+,把(0,6)C 和810,3M ⎛⎫ ⎪⎝⎭代入得,68103b k b =⎧⎪⎨+=⎪⎩,解得136k b ⎧=-⎪⎨⎪=⎩, ∴直线CM 的解析式为163y x =-+; (3)存在,理由:设点P 的坐标为(,0)x ,则B CP '△的面积11|8|61322PB OC x '=⨯=-⨯=, 解得373x =或113, 故点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【点睛】本题考查的是一次函数和几何的综合运用,涉及到一次函数的性质、图形的翻折、勾股定理的运用、面积的计算等,综合性较强,熟练掌握相关知识是解题的关键.25.(1)∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)∠DEF=90°【分析】(1)根据折叠的性质以及补角的定义和余角的定义即可写出;(2)由折叠的性质得到∠AED=∠A′ED ,∠BEF=∠B′EF ,根据平角的定义即可得到结论;【详解】(1)根据折叠的性质知:∠AED=∠A′ED ,∠BEF=∠B′EF ,∵四边形ABCD 是长方形,∴∠ADC=∠A=90︒,∴∠AEF+∠BEF=180︒,∴∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE+∠CDE=90︒,∠ADE+∠AED =90︒,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)由折叠可知∠AED=∠A′ED ,∠BEF=∠B′EF ,∵∠AED+∠A′ED+∠BEF+∠B′EF=180°,∴∠D EA′+∠B′EF=12⨯180°=90°,∴∠DEF=90°;【点睛】本题考查了折叠的性质,补角和余角的定义,正确的识别图形解题的关键.26.(1)()4,8E ;(2)()0,5D【分析】(1)由折叠的性质得10AO AE ==,利用勾股定理求出BE 长,得到CE 的长,就可以得到点E 的坐标;(2)设OD x =,8CD x =-,由折叠的性质得OD DE x ==,再在Rt CDE △中利用勾股定理列式求出x 的值,就可以得到点D 的坐标.【详解】解:(1)∵折叠,∴10AO AE ==,在Rt ABE △中,6BE ===, ∴1064CE BC BE =-=-=, ∴()4,8E ;(2)设OD x =,则8CD x =-,∵折叠,∴OD DE x ==,在Rt CDE △中,222CD CE DE +=,即()22284x x -+=,解得5x =,∴()0,5D .【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质,并结合勾股定理进行边长的求解.。

(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

一、选择题1.菱形ABCD 中,60D ∠=︒.点E 、F 分别在边BC 、CD 上,且BE CF =.若2EF =,则AEF 的面积为( ).A .43B .33C .23D .32.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上的点G 处,并使折痕经过点A ,已知2BC =,则线段EG 的长度为( )A .1B .3C .5D .23.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE SS 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶24.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .265.如图,已知菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,若菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,菱形的对角线交点D 的坐标为( )A .()3,3-B .()1,3--C .()2,3D .33,22⎛⎫-- ⎪ ⎪⎝⎭6.如图,边长为22+的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )A .0.5B .2C .1D .27.如图,以ABC 的每一条边为边作三个正方形.正方形ABIH 的顶点H 恰好在ED 边上,记DHK △的面积为1S ,AHE 的面积为2S ,ABC 的面积为3S ,四边形CJIK 的面积为4S ,四边形BFGJ 的面积为5S .若12534S S S S S ++=+,则3S 与4S 的大小关系式成立的是( )A .34S S >B .34S S =C .34S S <D .无法判断 8.如图,矩形ABCD 中,22BC =,42AB =,点P 是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A .8105B .855C .25D .210 9.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A .3214+B .628+C .324+D .32210.下列四个命题中真命题是( )A .对角线互相垂直平分的四边形是正方形B .对角线垂直且相等的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .四边都相等的四边形是正方形 11.如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .2B .2.4C .2.6D .312.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .23C .33D .6二、填空题13.在平面直角坐标系中,菱形ABCD 的对角线交于原点O ,点A 的坐标为()23,2-,点B 的坐标为()1,3--,则点D 的坐标为______.14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.15.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.16.如图,边长为1的菱形ABCD 中,∠DAB=60°.连接对角线AC ,以AC 为边作第二个菱形AC C 1D 1,使∠D 1AC=60°;连接AC 1,再以A C 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;……按此规律所作的第n 个菱形的边长为___________.17.如图,长方形ABCD 中,AD =8,AB =4,BQ =5,点P 在AD 边上运动,当BPQ 为等腰三角形时,AP 的长为_____.18.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.19.如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是_____.20.如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成.若长方形ABCD的面积为6,则三角形ABE的面积为 ______,正方形EFGH的面积为______.三、解答题21.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.∆顺时针旋转22.如图,E是正方形ABCD中CD边上一点,以点A为中心把ADE90︒.(1)在图中画出旋转后的图形;(2)若旋转后E 点的对应点记为M ,点F 在BC 上,且45EAF ︒∠=,连接EF . ①求证:AMF AEF ∆≅∆;②若正方形的边长为6,35AE =,求EF .23.如图,在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,AN 为△ABC 的外角∠BAM 的平分线,BE ⊥AN ,垂足为点E .(1)求证:四边形ADBE 是矩形.(2)连接DE ,试判断四边形ACDE 的形状,并证明你的结论.24.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB ,交MN 于点E ,连接AE 、CD .(1)求证:OD =OE ;(2)请判断四边形ADCE 的形状,并说明理由.25.如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E , F .(1)求证:BE=CF .(2)若∠AOB=60°,AB=8,求矩形的面积.26.如图,在长方形ABCD 中,4AB =,5AD =,点E 为BC 上一点,将ABE △沿AE 折叠,使点B 落在长方形内点F 处,连接DF ,且3DF =,求AFD ∠的度数和BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先证明△ABE ≌△ACF ,推出AF =AE ,∠EAF =60°,得到△AEF 是等边三角形,即可解决问题.【详解】解:∵四边形ABCD 是菱形,∴∠D=∠B =60°,AB =BC ,∴△ABC 是等边三角形,∴AB =AC ,∵AC 是菱形的对角线,∴∠ACF 12=∠DCB =60°, ∴∠B =∠ACF ,∵AB =AC ,BE =CF ,∴△ABE ≌△ACF ,∴AF =AE ,∠BAE =∠CAF ,∴∠BAE +∠EAC =∠CAF +∠EAC ,即∠EAF =∠BAC =60°,∴△AEF 是等边三角形,∵EF =2,∴S △AEF 3=×223=, 故选:D .【点睛】 本题考查了菱形的性质、等边三角形的判定与性质等知识,解题的关键是证明全等三角形得到△AEF 是等边三角形,牢记等边三角形面积公式是解题关键.2.B解析:B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG 即可. 【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,∴AE=12AD=12BC=1,EF ⊥AD , ∴∠AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∴AG=AD=2,∴22213-=, 故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键. 3.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.4.B解析:B【分析】直接利用勾股定理得出DC 的长,再利用角平分线的定义以及等腰三角形的性质得出BE 的长,进而得出答案.【详解】解:∵四边形ABCD 是长方形,∴∠B =∠C =90°,AB =DC ,∵ED =5,EC =3,∴DC 4==,则AB =4,∵AE 平分∠BAD 交BC 于点E ,∴∠BAE =∠DAE ,∵AD ∥BC ,∴∠DAE =∠AEB ,∴∠BAE =∠BEA ,∴AB =BE =4,∴长方形的周长为:2×(4+4+3)=22.故选:B .【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.5.D解析:D【分析】过A 作AE ⊥OC 于E ,由菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,求出A(1,3)坐标,由点D 为AC 中点,可求D (132,),由458=360︒⨯︒,转8次回到原位置,菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,2020445=45252+88⎛⎫︒⨯︒ ⎪⎝⎭,相当于旋转454=180︒⨯︒,菱形旋转180°。

九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)

九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)

九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。

(常考题)人教版初中数学九年级数学上册第一单元《一元二次方程》测试(有答案解析)

(常考题)人教版初中数学九年级数学上册第一单元《一元二次方程》测试(有答案解析)

一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或203.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -= B .()217x -= C .()214x -= D .()215x +=4.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=7.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确8.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1 B .m =1 C .m ≥1D .m ≠0 10.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 11.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 12.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2 二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 14.一元二次方程 x ( x +3)=0的根是__________________.15.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 16.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.19.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 22.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 23.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 24.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.25.用配方法解方程:22450x x +-=.26.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.3.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 7.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b2﹣4ac=9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.B解析:B【分析】设方程的另一个根为x1,根据根与系数的关系可得出关于x1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x1,根据题意得:2+x1=3,∴x1=1.故选:B.【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.15.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a 的方程然后利用一元二次方程的定义确定a 的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x 2+2x+a 2-1=0,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把x=0代入(a+1)x 2+2x+a 2-1=0得a 2-1=0,解得a=1或a=-1,而a+1≠0,所以a 的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.19.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x =当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.23.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 24.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解.25.121122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.26.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.。

人教版九年级数学第一单元测试题

人教版九年级数学第一单元测试题

人教版九年级数学第一单元测试题一、选择题(每题3分,共30分)1. 一元二次方程公式配方后可变形为()A. 公式B. 公式C. 公式D. 公式解析:对于一元二次方程公式,配方时,首先将方程变形为公式。

然后在等式两边加上一次项系数一半的平方,即公式,得到公式,即公式。

所以答案是A。

2. 方程公式的解是()A. 公式B. 公式C. 公式D. 公式先将方程公式展开得到公式,即公式。

分解因式得公式,则公式或公式,解得公式。

所以答案是B。

3. 关于公式的一元二次方程公式的常数项为0,则公式等于()A. 1B. 2C. 1或2D. 0解析:因为方程公式的常数项为0,所以公式。

分解因式得公式,解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式,所以公式。

答案是B。

4. 若公式是关于公式的一元二次方程公式的一个根,则公式的值为()B. 2018C. 2020D. 2022解析:因为公式是方程公式的一个根,所以将公式代入方程得公式,即公式。

则公式。

5. 一元二次方程公式的一个根是公式,则另一个根是()A. 3B. -1C. -3D. -2解析:已知一元二次方程公式的一个根是公式,将公式代入方程得公式,解得公式。

所以原方程为公式,分解因式得公式,另一个根为公式。

答案是C。

6. 下列方程中,没有实数根的是()A. 公式B. 公式C. 公式D. 公式解析:对于一元二次方程公式,判别式公式。

A选项中,公式,公式,有两个不同的实数根。

B选项中,公式,公式,没有实数根。

C选项中,公式,公式,有两个相同的实数根。

D选项中,公式,公式,有两个不同的实数根。

所以答案是B。

7. 若关于公式的一元二次方程公式有两个相等的实数根,则实数公式的值为()A. -1B. 0C. 1D. 2解析:对于方程公式,公式,因为方程有两个相等的实数根,所以公式,即公式,解得公式。

答案是C。

8. 一种药品经过两次降价,药价从原来每盒公式元降至现在的公式元,则平均每次降价的百分率是()A. 10%B. 11%C. 12%D. 13%解析:设平均每次降价的百分率为公式,则第一次降价后的价格为公式,第二次降价是在第一次降价后的价格基础上进行的,所以第二次降价后的价格为公式。

冀教版九年级上册数学第一单元测试题

冀教版九年级上册数学第一单元测试题

冀教版九年级上册数学第一单元测试题一、选择题1.下列说法正确的是()A. 概率是1的事件在一次试验中一定不会发生B. 可能性很小的事件在一次试验中一定不会发生C. 必然事件发生的概率为1D. 不可能事件在一次试验中也可能发生2.下列调查方式中,最适合采用全面调查(普查)的是()A. 对全国中学生目前使用手机情况的调查B. 对某市市民知晓“礼让斑马线”活动情况的调查C. 对一架“歼20”隐形战机各零部件的调查D. 对某类烟花爆竹燃放安全情况的调查3.下列数据:3,5,4,1,-2的中位数是()A. 1B. 3C. 4D. 54.下列计算正确的是()A. 7a - a = 6B. a2⋅a4=a6C. a6÷a2=a3D. 2a−2=4a215.下列投影中,是平行投影的是()A. 路灯下行人的影子B. 太阳光下楼房的影子C. 台灯下书本的影子D. 在手电筒照射下纸片的影子二、填空题6.已知扇形的圆心角为120°,半径为3,则该扇形的弧长为 _______.7.若关于x的一元二次方程kx2−6x+9=0有两个不相等的实数根,则k的取值范围为 _______.8.已知∣x∣=5,y=3,则x−y= _______ 或 _______.9.已知数据:2,3,x,5,1的平均数为3,则这组数据的方差为 _______.10.若扇形的圆心角为45°,半径为3,则这个扇形的面积等于 _______.三、解答题11.计算:(−a)2⋅a3+(−3a3)2−a2⋅(−7a)212.解方程组:{3x−5y=82x−3y=513.先化简,再求值:(x−1+x−18x−4)÷x−1x2−6x+9,其中x=3−3.14.某水果店销售一批苹果,进货价为每千克3.2元,售价为每千克5元.由于售价太高,几天过去后,还有500千克没有销售掉,于是公司决定按八折出售苹果,又过了几天,部门经理统计一下,一共售出800千克,于是将最后的苹果按每千克3元售出.最后商店一共获利3100元.求水果店一共进了多少千克苹果?15.已知二次函数y=ax2+bx+c的图象经过点A(-1, 0),B(3, 0)和C(0, -3)三点,求这个二次函数的解析式,并写出它的顶点坐标.四、附加题(选做)16.已知:a=5−1,b=5+1,求代数式a2−2ab+b2和ba+ab的值.。

九年级数学上第一单元测试题及答案

九年级数学上第一单元测试题及答案

九年级(上)单元测试卷第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分;共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图;由∠1=∠2;BC=DC;AC=EC;得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7;一腰上的中线把其周长分成两部分的差为3;则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图;EA⊥AB;BC⊥AB;EA=AB=2BC;D为AB中点;有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。

其中结论正确的是()A、(1);(3)B、(2);(3)C、(3);(4)D、(1);(2);(4)5、如图;△ABC中;∠ACB=90°;BA的垂直平分线交CB边于D;若AB=10;AC=5;则图中等于60°的角的个数为()A、2B、3C、4D、5(第2题图) (第4题图) (第5题图)6、设M表示直角三角形;N表示等腰三角形;P表示等边三角形;Q表示等腰直角三角形;则下列四个图中;能表示他们之间关系的是()7、如图;△ABC中;∠C=90°;AC=BC;AD平分∠CAB交BC于点D;DE⊥AB;垂足为E;且AB=6cm;则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm8、如图;△ABC中;AB=AC;点D在AC边上;且BD=BC=AD;则∠A的度数为()A、30°B、36°C、45°D、70°9、如图;已知AC平分∠PAQ;点B;B′分别在边AP;AQ上;如果添加一个条件;即可推出AB=AB′;那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图) (第9题图) (第10题图) 10、如图;△ABC中;AD⊥BC于D;BE⊥AC于E;AD与BE相交于F;若BF=AC;则ABC的大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分;共15分)11、如果等腰三角形的一个底角是80°;那么顶角是度.12、如图;点F、C在线段BE上;且∠1=∠2;BC=EF;若要使△ABC≌△DEF;则还须补充一个条件.(第12题图) (第13题图) (第15题图)13、如图;点D在AB上;点E在AC上;CD与BE相交于点O;且AD=AE;AB=AC。

最新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)

最新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)

一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5% 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=3.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4D .1或-4 4.方程22x x =的解是( ) A .0x =B .2x =C .10x =,22x =D .10x =,22x = 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 7.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 9.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.15.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 16.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.17.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________20.函数()2835m y m x -=+-是一次函数,则m =______.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.24.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 25.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 26.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.4.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根;B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 7.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 8.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.9.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x的方程()32a x4x10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a∆--⨯-⨯-=+>解得:1a≥-且a≠3故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.10.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.11.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k⎛⎫=-+⎪⎝⎭>0,由此即可得出:无论k(k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 12.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 15.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.16.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.17.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn是一元二次方程x2+2x﹣7=0的两个根∴m+n=﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】直接根据根与系数的关系求解,即bm na +=-.【详解】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.18.10【分析】设这个百分率为x然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x由题意得:300(1-x)2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.相等【分析】由t 是一元二次方程()的根利用公式法解一元二次方程即可得出t 的值将其代入完全平方式中即可得出M 的值由此即可得出结论【详解】∵t 是一元二次方程()的根∴或当时则;当时则;∴故答案为:相等【解析:相等【分析】由t 是一元二次方程20ax bx c ++=(0a ≠)的根利用公式法解一元二次方程即可得出t 的值,将其代入完全平方式()22M at b =+中即可得出M 的值,由此即可得出结论.【详解】∵t 是一元二次方程20ax bx c ++=(0a ≠)的根,∴t =t =当t =()224M b b b ac =-=-;当t =时,则()224M b b b ac =-=-; ∴24b ac M =-=.故答案为:相等.【点睛】本题考查了根的判别式、完全平方式以及利用公式法解一元二次方程,利用公式法解一元二次方程求出t 值是解题的关键.20.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m +3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC S cm =.(2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题. 24.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.25.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x 1+x 2=6,x 1x 2=m +1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=24,∴62-2(m +1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.26.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y ,根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。

苏教版数学九年级上册第一单元、第二单元测试题及答案(各一套)

苏教版数学九年级上册第一单元、第二单元测试题及答案(各一套)

苏教版数学九年级上册第一单元测试题一、单选题1.下列方程是一元二次方程的是()A. (x﹣3)x=x2+2B. ax2+bx+c=0C. x2=1D. x2﹣ +2=02.用配方法将方程x2+6x-11=0变形为()A. (x-3)2=20B. (x+3)2=20C. (x+3)2=2D. (x-3)2=23.方程x2=3x的解为()A. x=3B. x=0C. x1=0,x2=﹣3D. x1=0,x2=34.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A. x2+3x-2=0B. x2-3x+2=0C. x2-2x+3=0D. x2+3x+2=05.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A. 11B. 13C. 11或13D. 不能确定6.下列方程:①3x2+1=0 ② x2﹣ x+1=0 ③2x﹣ =1 ④x2﹣2xy=5 ⑤=1 ⑥ax2+bx+c=0 其中是一元二次方程的个数()A. 2B. 3C. 4D. 57.已知a是一元二次方程x2﹣x﹣1=0的根,则2016﹣a+a2的值为()A. 2015B. 2016C. 2017D. 08.用公式法解方程5x2=6x﹣8时,a、b、c的值分别是()A. 5、6、﹣8B. 5、﹣6、﹣8C. 5、﹣6、8D. 6、5、﹣89.已知x=1是一元二次方程x2﹣ax+2=0的一个根,则a的值是()A. 2B. 3C. 4D. 510.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A. 3B. 2C. 1D.二、填空题11.方程x2﹣1=0的根为________.12.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2﹣b2+5的最小值为________.13.若(a+2) +4x+5=0是关于x的一元二次方程,则a的值为________.14.若关于x的方程x2+2(k﹣1)x+k2=0有实数根,则k的取值范围是________.15.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2+3mn+n2=________.16.已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是________.17.已知方程x2﹣5x+15=k2的一个根是2,则另一个根是________.18.如果、是两个不相等的实数,且满足,,那么代数式=________19.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________%。

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列函数关系中是二次函数的是( )A. 正三角形面积S与边长a的关系B. 直角三角形两锐角A与B的关系C. 矩形面积一定时,长y与宽x的关系D. 等腰三角形顶角A与底角B的关系2.已知二次函数y=(k−3)x2+2x+1的图像与x轴有交点,则k的取值范围是( )A. k<4B. k≤4且k≠3C. k<4,且k≠3D. k≤43.对于关于x的函数y=(m+1)x m2−m+3x,下列说法错误的是( )A. 当m=−1时,该函数为正比例函数B. 当m2−m=1时,该函数为一次函数C. 当该函数为二次函数时,m=2或m=−1D. 当该函数为二次函数时,m=24.将抛物线y=x2+3x+2向右平移a单位正好经过原点,则a的值为( )A. a=1B. a=2C. a=−1或a=1D. a=1或a=25.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③b2−4ac>0;④a+b+c>0,其中正确的个数是( )A. 1B. 2C. 3D. 47.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8.抛物线y=x2−2x−3的顶点坐标是( )A. (1,−4)B. (2,−4)C. (−1,4)D. (−2,−3)9.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b−2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个10.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )A. y=(200−5x)(40−20+x)B. y=(200+5x)(40−20−x)C. y=200(40−20−x)D. y=200−5x11.用长8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A. 64m225B. 4m23C. 83m2D. 4m212.已知二次函数y=x2−x+√28,若x=a时,y<0;则当x=a−1时,对应的函数值范围判断合理的是( )A. y<0B. 0<y<√28C. √28<y<16+√28D. y>4+√28第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若y=(m−3)x2+3x−4是关于x的二次函数,则m的取值范围是.14.若函数y=−9(x+3)2+1−k的顶点在x轴上,则k=______.15.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为______ .16.如图,某扶贫单位为了提高贫困户的经济收入,购买了29m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个矩形养鸡舍,门MN宽1m,该鸡舍的最大面积可以达到m2.三、解答题(本大题共9小题,共72.0分。

数学九年级上册第一单元测试题

数学九年级上册第一单元测试题

北师大版数学九年级上册第一单元测试题一.选择题(共10小题)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6 D.84.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF5.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.66.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.48.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()A.BE=DH B.∠H+∠BEC=90°C.BG⊥DH D.∠HDC+∠ABE=90°10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个二.填空题(共10小题)11.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.12.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.13.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E 处,则∠CME=.14.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.15.菱形的两条对角线长分别为16和12,则它的面积为.16.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.17.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.18.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为.19.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.20.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为.三.解答题(共10小题)21.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.22.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.23.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)24.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.25.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.26.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.27.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.28.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若∠E=50°,求∠BAO的大小.29.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.30.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.01月18日dxzxshuxue的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6 D.8【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.4.(2016•荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【分析】先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.5.(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.6.(2016•内江)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形【分析】A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.7.(2016•龙岩模拟)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【点评】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.8.(2016•蜀山区二模)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD 需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.【点评】此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.9.(2016•曹县校级模拟)如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()A.BE=DH B.∠H+∠BEC=90°C.BG⊥DH D.∠HDC+∠ABE=90°【分析】根据正方形的四条边都相等,角都是直角,先证明△BCE和△DCH全等,再根据全等三角形对应边相等,全等三角对应角相等,对各选项分析判断后利用排除法.【解答】解:在正方形ABCD中,BC=CD,∠BCD=∠DCH=90°,在△BCE和△DCH中,,∴△BCE≌△DCH(SAS),∴BE=DH,故A选项正确;∠H=∠BEC,故B选项错误;∠EBC=∠HDC,∴∠EBC+BEC=∠HDC+DEG,∵BCD=90°,∴∠EBC+BEC=90°,∴∠HDC+DEG=90°,∴BG⊥DH,故C选项正确;∵∠ABE+∠EBC=90°,∴∠HDC+∠ABE=90°,故D选项正确.故选B.【点评】本题主要利用正方形的和三角形全等的性质求解,熟练掌握性质是解题的关键.10.(2016•新华区一模)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),=x2,∵S△CEFS△ABE=x2,∴2S=x2=S△CEF,(故⑤正确).△ABE综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二.填空题(共10小题)11.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.12.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.13.(2016•龙岩)如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=45°.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.【点评】本题考查了正方形的性质、折叠的性质;熟练掌握正方形和折叠的性质是解决问题的关键.14.(2016•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.15.(2016•白云区校级二模)菱形的两条对角线长分别为16和12,则它的面积为96.【分析】由菱形的两条对角线长分别为16和12,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为16和12,∴它的面积为:×16×12=96.故答案为:96.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.16.(2016•河源校级一模)如图,矩形ABCD的对角线AC,BD相交于点O,CE ∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8.【分析】先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.【点评】本题考查了菱形的判定与性质以及矩形的性质;证明四边形是菱形是解决问题的关键.17.(2016•临沭县校级一模)如图,在矩形ABCD中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.【分析】由矩形的性质得出CD=AB=2,AD=BC=4,∠D=90°,由线段垂直平分线的性质得出CE=AE,设CE=AE=x,则DE=4﹣x,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴CD=AB=2,AD=BC=4,∠D=90°,∵EF是AC的垂直平分线,∴CE=AE,设CE=AE=x,则DE=4﹣x,在Rt△CDE中,由勾股定理得:CD2+DE2=CE2,即22+(4﹣x)2=x2,解得:x=,∴CE=;故答案为:.【点评】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.(2016•抚顺模拟)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为7.5cm2.【分析】设DE=xcm,由翻折的性质可知DE=EB=x,则AE=(9﹣x)cm,在Rt△ABE中,由勾股定理求得ED的长;由翻折的性质可知∠DEF=∠BEF,由矩形的性质可知BC∥AD,从而得到∠BFE=∠DEF,故此可知∠BFE=∠FEB,得出FB=BE,最后根据三角形的面积公式求解即可.【解答】解:设DE=xcm.由翻折的性质可知DE=EB=x,∠DEF=∠BEF,则AE=(9﹣x)cm.在Rt△ABE中,由勾股定理得;BE2=EA2+AB2,即x2=(9﹣x)2+32.解得:x=5.∴DE=5cm.∵四边形ABCD为矩形,∴BC∥AD.∴∠BFE=∠DEF.∴∠BFE=∠FEB.∴FB=BE=5cm.∴△BEF的面积=BF•AB=×3×5=7.5(cm2);故答案为:7.5cm2.【点评】本题主要考查的是翻折的性质、勾股定理的应用,等腰三角形的判定、三角形的面积公式,证得△BEF为等腰三角形,从而得到FB的长是解题的关键.19.(2016•苏州校级二模)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.20.(2016•天桥区三模)矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B 落在线段CD的点F处,则线段BE的长为 2.5.【分析】根据翻转前后,图形的对应边和对应角相等,可知EF=BF,AB=AE,故可求出DE的长,然后设出FC的长,则EF=4﹣FC,再根据勾股定理的知识,即可求出BF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=90°,∵将矩形折叠,使得点B落在线段CD的点F处,∴AE=AB=5,AD=BC=4,EF=BF,在Rt△ADE中,由勾股定理,得DE=3.在矩形ABCD中,DC=AB=5.∴CE=DC﹣DE=2.设FC=x,则EF=4﹣x.在Rt△CEF中,x2+22=(4﹣x)2.解得x=1.5.∴BF=BC﹣CF=4﹣1.5=2.5,故答案为:2.5.【点评】本题考查了矩形的性质、勾股定理的运用以及翻转变换的知识,属于基础题,注意掌握图形翻转前后对应边和对应角相等是解题关键.三.解答题(共10小题)21.(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.22.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.23.(2016•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.24.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.25.(2016•通辽)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.【解答】证明:取AB的中点H,连接EH;∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF.【点评】此题考查了正方形的性质和全等三角形的判定与性质,解题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.26.(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用.27.(2016•乐山)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.【分析】欲证明CE=DF,只要证明△CEB≌△DFC即可.【解答】证明:∵ABCD是正方形,∴AB=BC=CD,∠EBC=∠FCD=90°,又∵E、F分别是AB、BC的中点,∴BE=CF,在△CEB和△DFC中,,∴△CEB≌△DFC,∴CE=DF.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握正方形的性质以及全等三角形的判定和性质,属于基础题,中考常考题型.28.(2016•长春二模)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若∠E=50°,求∠BAO的大小.【分析】根据菱形的四条边都相等可得AB=BC,从而得到BC=BE,再根据等腰三角形的性质求出∠CBE,然后根据两直线平行,同位角相等可得∠BAD=∠CBE,再根据菱形的对角线平分一组对角线可得∠BAO=∠BAD,问题得解.【解答】解:菱形ABCD中,AB=BC,∵BE=AB,∴BC=BE,∴∠BCE=∠E=50°,∴∠CBE=180°﹣50°×2=80°,∵AD∥BC,∴∠BAD=∠CBE=80°,∴∠BAO=∠BAD=×80°=40°.【点评】本题考查了菱形的性质,等腰三角形的性质,平行线的性质,熟记各性质并准确识图是解题的关键.29.(2016•哈尔滨模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE 交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.30.(2016•会宁县一模)如图,在矩形ABCD中,对角线BD的垂直平分线MN 与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.【解答】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.【点评】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.。

九年级上学期数学第一章单元测试卷

九年级上学期数学第一章单元测试卷

九年级上学期第一章单元测试卷班级: 学号: 姓名:一、选择题(每小题3分,共30分)1、两个直角三角形全等的条件是 ( ) A 一锐角对应相等 B 两锐角对应相等 C 一条边对应相等 D 两条边对应相等2、不能确定两个三角形全等的条件是 ( ) A 三条边对应相等 B 两角和一条边对应相等C 两条边及其夹角对应相等D 两条边和一条边所对的角对应相等3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( ) A 4 B 10 C 4或10 D 以上答案都不对4、如图,EA ⊥AB ,BC ⊥AB ,EA=AB=2BC ,D 为AB 中点, 有以下结论:①DE=AC ;②DE ⊥AC ;③∠CAB=30°;④∠EAF=∠ADE 。

其中结论正确的是 ( ) A ①,③ B ②,③ C ③,④ D ①,②,④ 5、如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB边于D ,若AB=10,AC=5,则图中等于30°的角的个数为 ( ) A 2 B 3 C 4 D 5 6、如图,⊿ABC 中,∠ACB =090,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,如果AC = 3cm ,那么AE + DE的值为 ( )A 2cmB 3 cmC 4 cmD 5 cm 7、某校计划修建一座既是中心对称又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、等边三角形、等腰梯形、菱形等四种图案,你认为符合条件的是 ( ) A 等腰三角形 B 等边三角形 C 等腰梯形 D 菱形 8、如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 ( ) A 30° B 36° C 45° D 70°9、在⊿ABC 中,∠A 的度数是0100,∠B 和∠C 的角平分线相交于C ,则∠BOC ( ) A 0120 B 0140 C 060 D 以上答案都不对 10、如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相 交于F ,若BF=AC ,则ABC 的大小是 ( ) A 、 40° B 、 45° C 、 50° D 、 60°二、填空题(每小题3分,共24分)11、如图(1)若⊿ABE ⊿ADC ,则AD = AB ,DC = ;∠D = ∠ ; ∠BAE = ∠ ;12、 ⊿ABC 中,∠A :∠B :∠C = 1:2:3,则∠B = ; 13、 如图(2),已知AB ∥DC ,AD ∥BC ,有 对全等三角形;BAB C D E C图(1) 图(2) 14、如果等腰三角形的一个底角是80°,那么顶角是 度;15、若等腰三角形的底角等于顶角的一半,则此三角形是 三角形; 16、如图,△ABC 中,∠C=Rt ∠,AD 平分∠BAC 交BC 于点D ,BD ∶DC=2∶1,BC=7.8cm ,则D 到AB 的距离为 cm ;17、如图,在等腰直角三角形ABC 中,AD ⊥BC ,PE ⊥AB ,PF ⊥AC ,则△DEF 是 三角形;18、如图,∠E =∠F =90°,∠B =∠C .AE =AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD =DN 。

九年级数学第一单元测试题

九年级数学第一单元测试题

一、计算题(1)211)223(23822+--+⨯- (2)2122442--++-x x x(3)2)523(+ (4)6)223(⨯+ (5)32)136(⨯+-(6)4832714122++ (7)22)16()23(--+ (8)253517231⨯(9)543112785⨯⨯- (10))32)(32()27(2+-+-二、解答题1、先化简,再求值24)22(-÷+--x x x x x x (其中22-=x )2、已知231-=x ,231+=y ,求y x y xy x +++22的值。

3、先化简,后求值:ba b a ab b a --÷++2222)2(,其中13+=a ,13-=b 。

4、已知:251251+=-=b a ,,求722++b a 的值。

5、先化简,再求值:a b b a b a ab b a ab ----)()(,其中819==b a ,6、已知131131+=-=b a ,,求值:)(bb b a ab +。

7、已知:2=x ,求:)211(21222xx x x x ++÷-+-的值。

8、已知1888+-+-=x x y ,求代数式x y y x xy y x y x ---+2的值。

三、应用题1、如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动。

问:几面后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)28km,A,B两地之间有一天东北走向的2、如图,B地在A地的正东方向,两地相距2高速公路,A,B两地分别到这条高速公路的距离相等,上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向向P处。

至8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为100km/h,问该车有否超速行驶?3、要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?4、学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?5、同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市。

人教版数学九年级上册第一单元测试卷(附答案)

人教版数学九年级上册第一单元测试卷(附答案)

一元二次方程单元测试题(满分120分)一、选择题(每题3分,共30分) 1、下列方程中,是一元二次方程的是( )A. 0y x 3x 22=-+B.06x 5x 23=--C.4x 4x 2++D.03x2x 2=++2、如果01x 3)x 2(m 2=+++是一元二次方程,则m 的取值范围是 ( ) A. 0m = B.2m -=C.2m -≠D.0m ≠ 3、1x =是下列哪个方程的一个解?( )A.01x 3x 22=-+B.03x 5x 22=--C.05x 4x 2=-+D.03x 2x 2=-- 4、方程x x 2=的解是( )A.0x =B.1x =C.1x ±=D.0x =或者1x =5、用配方法解一元二次方程13x 12x 2=-时,等号左右两边应同时加上( )A.212B.12C.26D.6 6、一元二次方程05x 4x 2=+-的根的情况是( )A.有两个不相等的根B.有一个根C.有两个相等的根D.无实根7、一元二次方程02m x 22=+-x 有两个不相等的实根,则m 的取值范围是 ( )A.4m >B.4m -<C.44<<-mD.4m 4m >-<或者8、已知一个三角形的底比高多2,如果这个三角形的面积是24,则它的底是( )A.8B.6C.4D.29、已知方程08x 6x 2=+-的两个根分别是等腰三角形的底和腰,则它的周长是 ( ) A.8 B.10 C.8或10 D.610、一次排球比赛中每两队之间都要进行一次比赛,一共比赛了45场,则参赛的队伍一共有多少个? ( ) A.8 B.9 C.10 D.11二、填空题(每小题4分,共28分)11、一元二次方程9x 5x 42=-的二次项系数是_____________,常数项是____________。

12、如果2x =是方程08x 2mx 2=+-的一个解,那么=m ______________。

九年级数学苏科版上册第1单元复习《单元测试》01 练习试题试卷 含答案

九年级数学苏科版上册第1单元复习《单元测试》01 练习试题试卷 含答案

苏科九年级上单元测试第1单元班级________姓名________一.选择题1.用配方法解方程x2﹣8x+2=0,则方程可变形为()A.(x﹣4)2=5B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=82已知x=1是方程x2+m=0的一个根,则m的值是()A.﹣1B.1C.﹣2D.23.方程x2+ax+7=0和x2﹣7x﹣a=0有一个公共根,则a的值是()A.9B.8C.7D.64.关于x的一元二次方程有两个实数根,那么实数k的取值范围是()A. B.且 C.且 D.5.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.06.若关于x的一元二次方程(a+2)x2﹣3ax+a﹣2=0的常数项为0,则a的值为()A.0B.﹣2C.2D.37.用配方法解方程x2+10x+9=0,变形后的结果正确的是()A.(x+10)2=9B.(x+10)2=16C.(x+5)2=9D.(x+5)2=168.x=是下列哪个一元二次方程的根()A.2x2+3x+1=0B.2x2﹣3x+1=0C.2x2+3x﹣1=0D.2x2﹣3x﹣1=09.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣201910.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=2400二.填空题(共11小题,每小题3分,共计33分)11.已知关于x的一元二次方程x2﹣x+a=0有一个根是x=2,则a=.12.设a ,b 是一个直角三角形两条直角边的长,且2222()(1)6a b a b ++-=,则这个直角三角形的斜边长为_________.13.若一元二次方程220mx x ++=有两个相等的实数根,则m =______.14.如图,在宽为4m 、长为6m 的长方形花坛上铺设两条同样宽的石子路,余下部分种植花卉.若种植花卉的面积215m ,则铺设的石子路的宽应为_________m .15.已知方程221321x xx x ++=+,如果设21x y x =+,那么原方程可以变形为关于y 的整式方程是__________.16.方程x 2﹣4x +4=5的根是.17.关于x 的方程(a ﹣3)x 2+x +10=0是一元二次方程,则a 的取值范围是.18.用公式法解方程2x 2﹣7x +1=0,其中b 2﹣4ac =,x 1=,x 2=.19.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x +8=0的解,则此三角形的周长是.20.已知一周长为11的等腰三角形(非等边三角形)的三边长分别为a 、b 、5,且a 、b 是关于x 的一元二次方程x 2﹣6x +k +2=0的两个根,则k 的值为.21.x =0是关于x 的方程(k ﹣1)x 2+6x +k 2﹣k =0的根,则k 的值是.三.解答题(共8小题,共计57分)22.当m 是何值时,关于x 的方程(m 2+2)x 2+(m ﹣1)x ﹣4=3x 2(1)是一元二次方程;(2)是一元一次方程;(3)若x =﹣2是它的一个根,求m 的值.23.(2y ﹣3)2﹣64=0.24.求4x 2﹣25=0中x 的值.25.(1)(y ﹣1)2﹣4=0(2)(配方法)2x 2﹣5x +2=0.26某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x 元,则x 为多少元时商品每月的利润可达到4000元.27.一块长30cm ,宽12cm 的矩形铁皮,(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm 2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.参考答案一.选择题(共10小题,每小题3分,共计30分)1.C.2.A.3.B4.C5.A.6.C.7.D.8.C.9.C.10.A.二.填空题(共11小题,每小题3分,共计33分)11.20231213.±14.115.12.16.x 1=2+;x2=2﹣.17.a≥﹣3且a≠3.18.41,,.19.13.20.3或7.21.1或0.三.解答题(共8小题,共计57分)22.解:原方程可化为(m2﹣1)x2+(m﹣1)x﹣4=0,(1)当m2﹣1≠0,即m≠±1时,是一元二次方程;(2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;(3)x=﹣2时,原方程化为:2m2﹣m﹣3=0,解得,m1=,m2=﹣1.23.解:方程整理得:(2y﹣3)2=64,开方得:2y﹣3=8或2y﹣3=﹣8,解得:y=5.5或y=﹣2.524.解:移项,得4x2=25,系数化为1,得x2=,开平方,得x=±.25.解:(1)移项得:(y﹣1)2=4,开方得:y﹣1=±2,解得:y1=3,y2=﹣1.(2),,,,∴,x2=2.26解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.27解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144.(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴盒子的体积=104×2=208(cm3).答:能折出底面积为104cm2的有盖盒子,盒子的体积为208m3.。

九年级上册数学第一单元测试题

九年级上册数学第一单元测试题

一、选择题(一)1、关于的一元二次方程的一个根是0,则的值为(B)A、 B、 C、或D、2、关于的方程的根的情况是( A )A、有两个不相等的实数根B、有两个相等的实数根C、无实数根D、不能确定3、如果关于的方程的两个实数根互为倒数,那么的值为( C )A、 B、 C、D、4、已知关于的方程有实数根,则的取值范围是(B)A、 B、 C、D、5、市政府为了申办冬奥会决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均绿地面积的增长率是( B )A、19%B、20%C、21% D、22%6、已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是( B )A、 B、3 C、6 D、97、如果是一元二次方程的一个根,是一元二次方程的一个根,那么的值是( D )A、1或2B、0或C、或D、0或38、若一元二次方程的两根、满足下列关系:,,则这个一元二次方程为( B )A、 B、C、D、二、填空题9、写出一个一元二次方程使它的二次项系数、一次项系数、常数项系数的和为零,该方程可以是____x²-2x+1=0_________。

10、写出一个一元二次方程,使它没有实数解,该方程可以是__x²-x+1=0_______。

11、写出一个一元二次方程,使它的两实数根之和为3,该方程可以是__x²-2x+2=0___________。

12、写出一个既能直接开方法解,又能用因式分解法解的一元二次方程是__(x+1)²=9________。

三、解下列方程13、1、214、四、解答题15、制造一种产品,原来每件的成本是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使第二个月的销售利润达到原来的水平,该产品的成本价平均每月应降低百分之几?16、如图所示,四边形是矩形,,。

动点P、Q 分别同时从A、C出发,点P以3cm/s的速度向D移动,直到D为止,Q以2cm/s的速度向B移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)
九年级数学(上)单元测试(圆1)
一、选择题(27分)
1、如图(1),已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A.80° B.100° C.120° D.130°
2、如图(2),⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( )
A、2 B、3 C、4 D、5
3、如图(3),已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )
A 、25º
B 、29º
C 、30º
D 、32° 4、已知:如图(4),∠BPC = 50°,∠ABC = 60°, 则∠ACB 是( )
A.40°
B.50°
C. 60°
D. 70°
5、已知⊙O 的半径为10cm,弦AB ∥CD,AB=12cm,CD=16cm,则AB 和CD 的距离为( ) A.2cm B.14cm C.2cm 或14cm D.10cm 或20cm
6、AB 是⊙O 的弦,∠AOB = 80°,则AB 所对的圆周角是( ) A .40° B .40°或140° C .20° D .80°或100°
7、如图3,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠
AOC=84°,则∠E 等于( ) A .42 ° B .28° C .21° D .20° 8、如图将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,
则折痕A B 的长为( )
A 、2cm
B 、
C 、
D 、
9. 如图所示,AB 是⊙O 的一固定直径,它把⊙O 分成上、下两个半圆, 自上半圆上一点C 作弦CD ⊥AB .∠OCD 的平分线交⊙O 于点P ,当点 C 在上半圆(不包括AB 两点)上移动时,点P( ) A .到CD 的距离保持不变 B .位置不变、 C. 等分 D .随C 点的移动而移动
二、填空题(24分)
1、如图,⊙O 的半径为5cm ,圆心到弦AB 的距离为3cm ,则弦AB 的长为________cm
2、在半径为1的圆中,长度等于2的弦所对的圆心角是 度。

3、在直径为10m 的圆柱形油槽内装入一些油后,截面如图所示如果油面宽8A B m =,那么油的最大深度是
4、如图,在⊙O 中弦 1.8A B cm =,圆周角30A C B ∠=︒,则⊙O 的直径等于 cm
5、一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm .
6、如图24—B —10,正方形ABCD 内接于⊙O ,点P 在AD 上,则∠BPC= . 7.如图24—B —6,AB 是⊙O 的直径, BC=BD ,∠A=25°,则∠BOD=
8、如图7,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点。

有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门。

仅从射门角度考虑,应选择________种射门方式.
三、解答题(7+8+8+8+8+10=49分)
1、如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE . 求证:∠D = ∠B.
图24—B
—10
图24—B —6

用图
(2)
备用图(1)
图10
B
2、如图所示,在Rt △ABC
中,∠C=90°,AC=8,BC=15,以C 为圆心,AC 为半径的⊙C 交AB 于D ,求AD 长.
3、如图所示,AD 是⊙O 的直径,AC 为弦,
∠CAD=30°,OB ⊥AD 于O ,交AC 于B ,AB=5, 求BC 的长.
4、已知AB 是⊙O 的直径,AC, AD 是弦,且AB=2, AC=AD=1,求圆周角∠CAD 的度数
5、24、如图,⊙O 是△ABC 的外接圆,且AB=AC=13,BC=24,求⊙O 的半径。

6、已知:如图10,AB 是⊙Ο内的一条弦,CD 为的直径,且CD ⊥AB ,垂足为点M ,过点C 作直线交AB 所在直线于点E ,交于点F 。

(1) 判断图中∠CEB 与∠FDC 的数量关系,并写出结论;
(2) 将直线绕点C 旋转(与CD 不重合),在旋转过程中,点E
、点F 的位置也随之变化,请你
在下面的备用图(1)中画出当点E 、F 重合时的图形,在备用图(2)中画出当点E 在AB
的延长线上时的图形,标上相应的字母,此时(1)的结论是否还成立,若成立,请说明理由。

相关文档
最新文档