正定矩阵ppt
高等代数课件§6.3 正定二次型与正定矩阵
![高等代数课件§6.3 正定二次型与正定矩阵](https://img.taocdn.com/s3/m/2d429ef79e31433239689330.png)
f
x2 1
x2 2
5
x2 3
2t x1x2
2x1x3 4x2 x3
为正定二次型?
解
二次型的矩阵为
A
1 t 1
t 1 2
251 ,
要使二次型为正定二次型 , 则A的各阶顺序 主子式均为正 , 即
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
1>0
(1) xTAx >0 ,则称 f 为正定二次型,
相应地矩阵A称为正定矩阵;
(2) xTAx <0 ,则称 f 为负定二次型,相应
地矩阵A称为负定矩阵;
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
(3)xTAx≥ 0 ,则称 f 为半正定二次型,相应
地矩阵A称为半正定矩阵;
(4)xTAx ≤0 ,则称 f 为半负定二次型,相应
0 1 2
2
5 2
2 6
2 0
2 0 4
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
解 (1) 2>0,
2 2
1 2
5>0,
2 1 0
1 2 1 4>0, ∴该矩阵为正定矩阵.
0 1 2
解 (2)∵-5>0, 5 2 26 >0, 2 6
, 1t
t 1
1 t 2>0,
1t t1
1
2 5t 2 4t >0,
1 2 5
1 t 2>0
因此
5t
2
4t <0
解之得 4<t<0 5
故当 4 <t<0 时,该二次型为正定二次型. 5
南航戴华《矩阵论》Hermite矩阵与正定矩阵(课堂PPT)
![南航戴华《矩阵论》Hermite矩阵与正定矩阵(课堂PPT)](https://img.taocdn.com/s3/m/e5575b13be23482fb4da4cdd.png)
rran (Ak);
(5 )存在 r的 秩 Q 矩 使 为 A 阵 得 Q H Q ;
( 6 )n 存 阶 H在 e矩 rm S 使 阵 A i t得 S e 2 .
.
18
推论5.2.2 设A是n阶Herm非it负 e 定矩阵,为其
称形如(5.1.12)的二次型为Hermite二次型的
标准形。
.
9
定理5.1.7 对Hermite二次型 f (x) = xHAx,存在酉 线性变换x = Uy(其中U是酉矩阵)使得Hermite 二次型f (x)变成标准形
1 y 1 y 1 2 y 2 y 2 n y n y n
其 1,中 2, ,n 是 He矩 rm A 的 阵 ite 特征
A C 0 (A C 0 ).
定理5.3.2 设A,B均为n 阶Hermite矩阵,且A≥0, B>0, 则
(1)BA的充分必要条 (AB 件 1)是 1; (2)BA的充分必要条 (AB 件 1)是 1.
定理5.3.3 设A是n 阶Hermite矩阵, 则
定义5.2.2 设 A,BCnn,如果存 和 在非 复零 数
xCn使得
A x Bx (5 .2 .5 )
则称λ为广义特征值问题 AxB的x特征值,非零
向量 x 称为对应于特征值的特征向量。
定理5.2.7 设A,B 均为n 阶Hermite矩阵 ,且B>0, 则存在非奇异矩阵 P 使得
P H A d P (i 1 , a ,n ) g P ,H B I P
.
14
5.2 Hermite正定(非负定)矩阵
《线性代数教学PPT》二次型的正定型
![《线性代数教学PPT》二次型的正定型](https://img.taocdn.com/s3/m/0986d546ed630b1c59eeb5dc.png)
P2
5 2
2 26 0,
6
P3 | A | 80 0,
f 负定.
数
即 (-1)k Pk > 0 (k = 1, 2, 3) = =
基本要求
线
(1)理解二次型的概念,掌握二次型的矩阵表示, 性 了解二次型的秩、合同矩阵与合同变换、惯
性定理等概念.
代
(2)掌握用正交变换化二次型为标准形的方法,
线
若f (x) xT Ax正定,即x Rn , x 0, 恒有xT Ax 0,
性
于是y Rn , y 0,有Cy 0(否则Cy 0,则C 1Cy 0,
即y 0,这与y 0矛盾),因此y Rn , y 0,有
代
yT (CT AC) y (Cy)T A(Cy) 0
线
解
A t 4 0
需
1 0 2
性
P1 1 0,
P2
1
t
t 4 t 2 0,
4
P3 | A | 4 2t 2 0,
代
4 2t2 0
4
t2
0
数
=
2t 2
所以,当 2 t 2 时f 为正定次型
所以,二次型yT (CT AC) y正定.同理可证,当
数
yT (CT AC) y正定时, 有xT Ax正定.
命题1亦表明A与CT AC有相同的正定性.即合同的
=
矩阵有相同的正定性.
=
例 设A, B 都是n 阶正定矩阵. 证明:kA + lB
也是正定矩阵 (k > 0, l > 0).
正定二次型及正定矩阵.ppt
![正定二次型及正定矩阵.ppt](https://img.taocdn.com/s3/m/d7ffbe49f5335a8102d220fa.png)
2 2 ( 3) f x1 , x 2 x1 3 x 2 为负定二次型
1 为负定矩阵。 3 2 2 (4) f x1 , x2 , x3 x1 3 x2 为半负定二次型
交矩阵P,使得P T AP , 其中 diag(1 , 2 , , n )
对于任意非零向量 x x T Ax x T ( P 1 )T P 1 x ( P 1 x )T ( P 1 x )
T 设y P 1 x (y1 , y2 ,, yn) , 则y为非零向量
1
1
2
1
E n
设C PQ, 则C T AC E , 所以A与单位阵合同。
若A与单位阵合同,则存在可逆矩阵C,使A=
CTEC= CTC,则对于非零向量x xT Ax xT C T Cx (Cx )T (Cx )
C可逆,x 0, 故Cx 0,则(Cx )T (Cx ) 0 所以f正定。
1 3 为半负定矩阵。 0 2 2 (5) f x1 , x 2 x1 3 x2 为不定二次型
1 为不定矩阵。 3
二、正(负)定二次型的判别
准则1 对称矩阵A为正定的充分必要条件是: A的 特征值全为正. 证明 必要性 假设i ( i 1,2 , n)为A的特征值, i 为对应于i的
第六章
二次型
中南财经政法大学信息系
一、正(负)定二次型的概念
定义6.6 具有实对称矩阵A的n元二次型为
f X X AX
T
x1 x 1) 如果对于任意的非零向量 X= 2 ,都有 xn
正定矩阵
![正定矩阵](https://img.taocdn.com/s3/m/91639bf2ad51f01dc281f134.png)
5.4 正定矩阵 5.4.1 正定矩阵[1] 二次型的分类n 个变数的二次型∑===nj i Tji ij n x A x x x a x x q 1,1),,( ,其实就是定义在n R 的一个二次齐次函数,对n R 的每个特定向量q x ,0对应一个函数值)(0x q ,依据)(x q 值的符号,在教材184页上给出了二次型的分类定义:1.正定二次型。
若对一切nR x ∈,当0)(0>=⇒≠Ax x x q x T称二次型)(x q 正定。
显然,正定二次型也就是函数值定正的二次型(当然有唯一的例外,0=x 时,0=q )。
2.正半定(或半正定)二次型。
若对一切nR x ∈,皆有0)(≥=Ax x x q T,且至少有一 00≠x 能使0)(0=x q .3.负定。
对二次型Ax x x q T=)(,当(-q )为正定时,称q 为负定二次型。
4.负半定(或半负定)。
对二次型Ax x x q T=)(,当(-q )为正半定时,称q 为负半定二次型。
5.不定二次型。
若二次型Ax x q T=既能取正值,又能取负值,称为不定二次型。
容易明白,对标准形的二次型(以下给出的均为充要条件)。
若系数全正为正定二次型;若系数全为非负,且至少有一为0,则为正半定二次型; 若系数全负为负定二次型;若系数全为非正,且至少有一为0,则为负半定二次型; 若系数有正、有负,则为不定二次型。
对于不是标准形的二次型,为确定其类型,可通过化成标准形,并依据惯性律而作出判断。
例19 设n a a a ,,,21 是n 个实数,问它们满足什么条件时,二次型212322221121)()()(),,,(x a x x a x x a x x x x q n n n ++++++=是正定二次型。
解 乍一看,这是n 个带正系数1的平方项之和,应明显是正定的。
但与定义一对照,发现这并非是二次型的标准形,每一项都是线性型而非单独变换的平方。
经济学的数学工具教学-第四章 二次型和正定矩阵-PPT精品文档
![经济学的数学工具教学-第四章 二次型和正定矩阵-PPT精品文档](https://img.taocdn.com/s3/m/699dfd22581b6bd97f19eaa7.png)
由于 i j ,则 xix j 0
第四章
二次型和正定矩阵
• 在本章中,我们将介绍特征值和特征向量, 然后介绍由特征向量组成的矩阵,并且运 用这些知识来判断二次型的正定性,与此 同时,我们也介绍特征值与行列式、秩、 迹的关系,最后我们介绍用行列式来判断 二次型正定性的方法,作为特征值方法的 补充。
第一节 引言
• 二次型 完整形式:
• 定理 如果 A 为对称矩阵,那么其所有特征值都为实数。 例
2 A 2 2 1
2 2 2 A I ( 2 ) ( 1 ) 2 3 21
则 A I 0为二次方程
其两个特征值为 1 0 和 2 3
定理 如果A为对称矩阵,那么对应着不同特征值的特征向量正 交。
• 证明 令 i 和 j 是两个不同特征值,分别对应于特征向量 x i 和 x 。 j 那么有 Axj j xj Axi i xi 分别左乘 x j 和 x i ,有 j xA x x i x j xx i j jA i ix jx i
已知A的两特征值为 1 0 和 2 3
1 0
I)x0得到 Ax 0 由(A 1
即
2 2
2 x1 0 1 x2
由方程可得 x2 2x1,那么 作为特征向量我们取
1 2 2 2 x x 1 3 x 1 x 1 2 1 1 3
线性代数6.6 二次型与正定矩阵
![线性代数6.6 二次型与正定矩阵](https://img.taocdn.com/s3/m/459d480ec950ad02de80d4d8d15abe23482f03d1.png)
| A2 | = 1 1 = 1 > 0;
1 2
1
2
| B2 | =
= −2 < 0;
2 2
|A|=
1
1
1
所以A正定.
1
2
0
1
0
3
所以B非正定.
= 1 > 0;
f (x1, x2, … , xn) = a11x12+a22x22 + …+annxn2
+2a12x1x2 + 2a13x1x3 +…+ 2an-1, n xn-1xn
= ,
=
=1 =1
则二次型的矩阵为
a11
a21
A= …
an1
a12 … a1n
结论1
对角矩阵是正定矩阵当且仅当对角线元素均为正数.
定理 设A是实对称矩阵, 且存在可逆矩阵 P, 使得PTAP = B,
若B正定,则A也正定.
结论2
实对称矩阵是正定矩阵当且仅当所有特征值都是正数.
例5
设 A和B 是正定矩阵,求证: A2,A+B 也是正定矩阵.
思考:AB 是否正定矩阵?
例6
设A=PTP,求证:若P可逆,则A是正定矩阵.
f (x) = xTAx
yTQTAQy = yTDy = g(y)
QTAQ = D
✿ 化二次型为标准形的思路: 寻找正交矩阵Q,
将二次型的矩阵A (实对称矩阵) 通过正交矩阵Q将它对角化成D.
这样得到的标准形的系数就是矩阵A的所有特征值.
例3
设二次型 f (x1, x2) = 3x12 − 2x1x2+3x22 ,寻找正交变换将之化为标准形.
线性代数 第4节 正定矩阵
![线性代数 第4节 正定矩阵](https://img.taocdn.com/s3/m/6615a9076c85ec3a87c2c52b.png)
全为正, 因此二次型正定.
7
n 阶实对称矩阵 A 正定的充分必要条件是 A 的 准则2 顺序主子式全大于零. 证略.
其中 A (aij )nn 的 k 阶顺序主子式是指行列式
a11 | Ak | a 21 ak 1
a12 a 22
a1k a2k ,
i 1 j 1
T 取 X i (0, ,1, ,0) ,则有
n
n
f ( X i ) aii 0, (i 0,1,.n) .
4.若 A 和 B 为正定矩阵,则 A+B 也为正定矩阵. 证 对任意非零向量X ,
X T ( A B) X X T AX X T BX 0 .
设 B T AB 为正定阵, 必要性:
这就是说,齐次线性方程组Bx 0 只有零解,
因此 B 列满秩,即 r ( B) n ;
T T T T T 充分性: 因为 ( B AB ) B A B B AB ,
可见 B AB 为实对称阵.
T
将上述过程逆推,即可得证.
23
T
证
因为 ( A A) A A , 故 A A 是 n 阶对称矩阵.
T T
T
T
又 r( A) n ,可知齐次线性方程组AX o 仅有零解,
于是 所以对任意 X o ,必有AX o ,
X T ( AT A) X ( AX )T ( AX ) 0 ,
即二次型 X T ( AT A) X 为正定二次型,
即矩阵 A A 为正定, A 的秩 r ( A) n , A A 为 且 则 正定矩阵.
T
类似结论有:
北京航空航天大学线性代数第六章64正定二次型和正定矩阵.ppt
![北京航空航天大学线性代数第六章64正定二次型和正定矩阵.ppt](https://img.taocdn.com/s3/m/52713a8b58fb770bf78a55ea.png)
答疑时间:星期二晚上18:00-20:30 星期四晚上18:00-20:30
答疑地点:J4-102 Email: liyongzhu@
朱立永
线性代数
第六章 二次型
§6.1 二次型及其矩阵表示 §6.2 化二次型为标准形 §6.3 惯性定理 §6.4 正定二次型和正定矩阵
线性代数
§6.4 正定二次型和正定矩阵
定义6.4.1 设 f (x1, x2 ,, xn ) X T AX 为n元
实二次型. 若对于任意非零实向量 X
(x1, x2, , xn )T 0 ,都有
f (x1, x2 , , xn ) X T AX>0 则称实二次型 f 为正定二次型;相应的实对 称矩阵 A称为正定矩阵.
件是 A的特征值全大于0,从而正定矩阵的
行列式大于0. 证 由定理5.3.5,必有正交矩阵 Q ,使
线性代数
1
QT AQ Q1AQ B
2 ,
n
其中,1, 2, , n 是 A 的全部特征值.因为
,
A正定的充要条件是B 正定.而 B对应的
二次型为
,
Y T BY
1 y12
2
y
2 2
n
y
2 n
由定理6.4.1可知,该二次型正定的充分必
要条件是 i 0(i 1, 2, , n).
线性代数
由于 A B 12 n> 0 ,即正定矩阵 的行列式大于0.证毕.
例6.4.1 判断实二次型 f (x1, x2, x3)
3x12 3x22 x32 4x1x2 的正定性.
,
解 二次型 f 的矩阵为
A3 A t
1
实二次型的正定性与正定矩阵
![实二次型的正定性与正定矩阵](https://img.taocdn.com/s3/m/2ce10db90b4c2e3f5627638b.png)
【法一】由A可逆, 则有 AT A AT EA , 则AT A与单位阵合
同, 所以 AT A正定.
【法二】由A可逆, 则对任意n维实列向量X≠O, 有 AX≠O, X T AT AX ( AX )T AX 0, 所以 AT A 正定.
矩阵之间的关系
A的特征值均大于0 A与单位阵E合同 存在可逆阵P, 使得 A PT P A的各阶顺序主子式 > 0
例3 设A为n阶正定矩阵, E为n阶单位阵, 证明 A E 1
例4 A为n阶实对称矩阵, 且满足 A3 2A2 4A 3E O,
证明A为正定矩阵. 例5 证明
(1)若 An 正定,有实数域上矩阵 Pnm ,r(P) m n ,
2 4 5
例2 若二次型 f ( x1 , x2 , x3 ) 2 x12 x22 x32 2 x1 x2 tx2 x3 是正定的, 则 t 的取值范围?
【解析】已知二次型正定,反求其中未知参数的取值范围一般用
顺序主子式求解.
2 1 0
二次型矩阵为
A2 1
21 0
——负定
2 2 2
(4)
XT
2
5
4
X
判断是否正定?
2 4 5
二、正定矩阵的充分必要条件
准则1 n阶实对称矩阵A正定 A的特征值全为正数.
2 2 2
例1
判断矩阵
A
2 2
5 4
4 5
是否为正定矩阵?
【解析】可求得A的全部特征值为1(二重)和10, 则该实对称矩阵A
的特征值全大于0, 故A为正定矩阵.
对于负定矩阵有类似的结论
A正定 -A负定 二次型 f 为正定 二次型 -f 为负定
正定矩阵(definitematrix)
![正定矩阵(definitematrix)](https://img.taocdn.com/s3/m/7e7e32be68dc5022aaea998fcc22bcd126ff42c3.png)
正定矩阵(definitematrix )
1. 基本定义
在线性规划中,⼀个对称的 的实值矩阵 ,如果满⾜对于任意的⾮零列向量 ,都有 .更⼀般地,对于 的 Hermitian 矩阵(原矩阵=共轭转置,,或者 ),对于任何的⾮零列向量 ,;2. 定理和推论
对称阵 为正定的充分必要条件是:
A 的特征值全为正;
A 的各阶主⼦式都为正;
对称阵 A 为负定的充分必要条件是:奇数阶主⼦式为负,偶数阶主⼦式为正;
3. 正定的⼏何意义
设 是⼆元正定⼆次型,则 ( 为⼤于 0 的常数)的图形是以
3. 简单举例
单位矩阵 是正定矩阵,
对于任何实可逆矩阵, 是正定的,因为对任何⾮零列向量 ,都有 ,可逆矩阵保证了 ;n ×n M z M z >0z T n ×n =a ij a ¯ji A =A T ¯¯¯¯¯z M z
>0z ⋆A f(x,y)f(x,y)=c c I Iz =∥z z T ∥2
A A T z Az =∥Az z T A T ∥2Az ≠0。
3二次型和对称矩阵的正定性.ppt
![3二次型和对称矩阵的正定性.ppt](https://img.taocdn.com/s3/m/ca8d8148dd36a32d7375819e.png)
型.因为对任意的 X (x1, x2 ,, xn )T 0,有 f (x1, x2 ,, xn ) 0.
而二次型 f (x1, x2 ,, xn ) x12 x22 xr2 (r n)不是 正定二次型.因为对任意的 X (0,,0, xr1,, xn )T 0,有
证明:
必要性 : 设二次型 f (x1, x2 ,, xn ) X T AX , ( AT A)正定,
在通过可逆线性替换X CY化成的标准形
d1x12 dk xk2 dn xn2也正定.
根据定理5.6,必有di 0(i 1,2,,n).由此可得二次 型的正惯性指数p n.
由于A的各顺序主子式 det Ak 0, k 1,2,, n.
根据归纳假设 , An1为正定矩阵. 所以, 存在n 1阶可逆矩阵 D, 使得DT An1D En1.
令
C1
D 0
则
An11
1
nn
C1T
AC1
DT
A T 1 n1
0 1
充分性 : 设二次型 f (x1, x2 ,, xn )的定惯性指数为 n.
则此二次型通过可逆线性替换可化为规范性
z12 z22 zn2
这是一个正定二次型.根据定理5.5, 原二次型
f (x1, x2,, xn ) X T AX也是正定二次型.
推论1 实对称矩阵A为正定矩阵的充分必要条件是A合 同于单位矩阵E.即存在可逆矩阵C, 有
记d ann T An11 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
T i
O)A
Xi O
0.
即Ai为正定矩阵,故其行列式 Ai 0.
, xi ),
14
充分必要性.设矩阵A的所有顺序主子式>0.要证 明A是正定矩阵.用数学归纳法证明.n=1时显然:
a11 0, x1 0,a11 x12 0.
设对于n-1结论成立.An-1正定,存在n-1阶非退化矩
阵G,使得
2 5 0 2 5 0 2 0 7 2 0 7
5
( 6)( 5)( 7) 4( 5) 4( 7) ( 6)( 5)( 7) 8 48 ( 6)( 2 12 35) 8( 6) ( 6)( 2 12 27) =( 3)( 6)( 9).
定义 如果实二次型f=XTAX对于某些向量X为 正数,并且对于对于某些向量X为负数,则称二 次型是不定的.
2
二、正定矩阵的充分必要条件
定理 实对称矩阵A正定的充分必要条件是其 特征值都是正数.
证明 设实对称矩阵A的特征值 1, ,n 都是正数. 存在正交矩阵Q,使得 QTAQ= , 为对角矩阵, 其对角线元素为1, ,n , 对于X O, 令Y Q1X ,
X T P T PX (PX )T PX PX 2 0.
设A正定,则A合同于单位矩阵,即存在可逆矩 阵,使得A=PTEP=PTP.
10
例 A正定,B实对称,则存在可逆矩阵R, 使得 RTAR和RTBR同时为对角形. 证明存在P,使得PTAP=E,PTBP实对称,存在正交 矩阵Q,使得 QTPTBPQ=D为对角形,令R=PQ,则
C2TC1T AC1C2
En1
TG
O 1
En1
TG
G T
ann
En1 O
GT
1
En1 O
ann
G T TGGT
En1 O
12
为了叙述下一个正定矩阵充分必要条件,我 们引进
定义 给定实对称矩阵
A (aij )nn , 则其前s行前s列元素组成的行列式
As | aij |ss , s 1, , n 称为A的顺序主子式.即
A1
(a11 ), A2
a11
a21
a12 a22
, A3
a11
a21
a31
a12 a22 a32
必要性得证.
推论 若A是正定矩阵,则|A|>0.
证明 QT AQ ,| QT AQ || QT || A || Q |
| Q1 || A || Q || Q |1| A || Q || A || | 1
n 0.
4
例 判断下列矩阵是否为正定矩阵 解
A
6 2 2
2 5 0
2
0 7
.
E A 6 2 2 6 2 2
故A是正定的.
i 1
必要性.设实对称矩阵A是正定的.由于A是实对
称的,A合同于一个对角矩阵 ,,其对角线元素是
A的特征值 1, ,n, 由于A是正定的,这些特征
值大于零,而这样的对角矩阵与单位矩阵合同,
故A合同于单位矩阵.
9
定理实对称矩阵A 正定的充分必要条件是存在 可逆矩阵P,使得A=PTP. 证明设A=PTP,P可逆.对于任意 X o,由于P可 逆,PX≠o,故 X o
RT AR QTPT APQ QTEQ E,
RTBR 为对角形.
11
例A,B正定,AB正定的充分必要条件是A,B可交换. 证明必要性设AB正定,则AB对称,
AB ( AB)T BT AT BA.
充分性 设A,B可交换,则AB是实对称矩阵,A正 定,A=CCT,AB=CCTB~CTBC, CTBC是正定矩阵,特 征值为正,AB特征值也为正数,故AB正定.
正定矩阵 一、基本概念 二、正定矩阵的充分必要条件 三、正定矩阵的性质
1
一、基本概念
定义 设A为实n阶对称矩阵,如果对于任意非 零向量X,二次型f=XTAX均为正数,则称二次 型f为正定的,其矩阵A 称为正定矩阵.
定义 如果对于任意向量X,二次型f=XTAX均为 非负(非正)数,则称二次型f为半正(负)定的, 其矩阵A 称为半正(负)定矩阵.
即 X QY,显然 Y O, 又1 0, ,n 0, 故
f X T AX
n
(QY )T AQY Y T (QT AQ)Y Y TY i yi2 0.
这就证明了条件的充分性.
i 1
3
设A是正定矩阵,而 是其任意特征值, X是 属于 的特征向量, 则有
于是
AX X ,
X T AX X T X 0, X T X 0,故 0.
GT An1G En1 . Nhomakorabea令 则
G O
C1
O
1
,|
C1
||
G
|
0.
C1T
AC1
GT
O
O An1
1
T
G
ann
O
O
1
G
A T n1
T
GT G
ann
O
O 1
G
T An1G
TG
G T
ann
En1
TG
GT
ann
.
再令
15
C2
En1 O
GT
1
,| C2 | 1 0,
2 3 0 无实根.A的特征值为1,n重故 A是正定矩阵.
8
定理 实对称矩阵A正定的充分必要条件是它与 单位矩阵合同.
证明 充分性.设实对称矩阵A合同与E,即存在可
逆矩阵C,使得 CT AC E,对于任意向量X≠O,由于
C可逆,可从 CY 解X 出Y ≠O,于是
n
X T AX Y TY yi2 0,
a13
a23
,
a33
,
13
a11
As
as1
的行列式.
a1s
,
ass
a11
,
An
an1
a1n
A.
ann
定理 实对称矩阵 A (aij )nn 正定的充分必要条件 是其顺序主子式全大于零.
证明 必要性
设A是正定矩阵,则对于非零向量 Xi (x1,
X
T i
Ai
X
T i
(
1 3,2 6,3 9.
6
例设A为n阶实对称矩阵,且满足 A3 2A2 4A 3E O. 证明A为正定矩阵. 证明设 为A的特征值,则 3 22 4 3为 A3 2A2 4A 3E O 的特征值,故 3 2 2 4 3 0,
7
3 2 2 4 3 3 1 2 2 4 2 ( 1)( 2 1) 2( 1)2 ( 1)( 2 3) 0, 1. 2 3 0, (1)2 12 11 0.