结构的刚度柔度系数(1)汇总.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h EI EI
3EI 3EI 6EI k k左柱 k右柱 3 3 3 h h h
总侧移刚度:
h2
h1
i1
i2
k k左柱 k右柱
3 i1 3 i2 2 2 h1 h2
∞ h
总侧移刚度:
i1
i2
12 i1 12 i2 k k左柱 k右柱 2 2 h h
1
[例2] 计算图示结构的水平和竖向振动频率。
m
H
1
解:
V
E,I E,A
1 H m H
l3 其中 H 3EI
A,E,I
l
1 V mV
l 其中 v EA
[例3] 图示三根单跨梁,EI为常数,在梁中点有集中质量m , 不考虑梁的质量,试比较三者的自振频率。 m m m
l/2 l/2
3 l/ 16
l/2
l/2
P=1
l/2
l/2
1 ,先求δ 解: m
l3 1 48 EI
l/
2
3l /32 7l5 2 P=1 768 EI
l3 3 192 EI
48 EI 1 ml 3
3 l 768 EI 192 EI 1 l 3 l l 5 l 7 l 2 2 2 (2 3 )3 7 EI 6 2ml 16 2 32 768EI ml 3
第十三章 结构的动力计算
§13-1 动力计算的特点和动力自由度 §13-2 单自由度体系的自由振动 ▲ 结构的刚、柔度系数复习 §13-3 单自由度体系的强迫振动 §13-4 阻尼对振动的影响 §13-5 两个自由度体系的自由振动 §13-7 两个自由度体系在简谐荷载下的 强迫振动 §13-11 近似法求自振频率
(1)刚度法 (2)柔度法
—— ——
ky 0 my
y 2 y 0
研究作用于被隔离的质量上的力,建立 平衡方程,需要用到刚度系数。 研究结构上质点的位移,建立位移协调方程, 需要用到柔度系数。
超静定结构,查表(形常数)
取决于结构的
刚度系数 柔度系数
谁较容易求得。
静定结构,图乘法求δ
三、自由振动微分方程的解
y(t ) Asin( t )
四、结构的自振周期和频率
k 1 m m
T
2
五、例题
m
l /2 1 EI l /2
[例1] 计算图示结构的频率和周期。 (柔度法) 解:
1 m
l3 48 EI
ml 3 T 2 48EI
48 EI ml 3
由图示可知:
k11=k1+k2
k12=k21=-k2
k22=k2
3. 应用举例
P
求图示三层刚架的顶端侧移。
解: 1)计算各楼层(侧移)刚度
i3 i2 i1
i3 i2 i1
12i1 k1 2 2 h1
12i2 k2 2 2 h2
12i3 k3 2 2 h3
(柱并联)
2)计算楼顶点(侧移)柔度
k1
、k2 — 楼层刚度
12i2 k2 2 h2
总刚度:
k
P 1 1 1
k1 k2
12i1 k1 2 h1
串联一般公式:
n 1 1 1 1 1 k k1 k2 kn j 1 k j
▲ 楼层刚度与位移法刚度系数的关系
EI∞
k21 k2
据此可得:ω1 ׃ω2 ׃ω3= 1 ׃1.512 ׃2
结构约束越强,则刚度越大, 其自振动频率也越大。
[例4] 图示桁架,E=206GPa , A=0.002m2 , mg=40KN , 计算自振频率。( g取10m/s2 )
1
(柔度法) 解:
3
m 4 4
( Fn )i2 li 243 EA 18EA i 1
5
1 87.35 S 1 m
[例5]求图示结构的自振圆频率。
A
h
m
I→∞ EI C
解:先求δ
B
l
1 lh 2h lh 2 EI 2 3 3EI
1
h h
1 3EI 2 m11 mlh
[例6]求图示结构的自振频率。 解:先求k11
k11 m
3EI k11 k 3 l
1
k22 k2
k12 k2
k2
EI∞
k11 k1 k2
1
k1
k1 、k2 —— 楼层刚度(本楼层单位侧移所需的侧向力) k11 、k12 、k21 、k22 —— 位移法的刚度系数 kij
kij
—— 第j 个结点位移发生单位位移(其它结点位移均锁固)时, 在第i 个结点位移处产生的反力。
▲ 结构的刚、柔度系数 复习
1. 刚、柔度概念
δ 1
补充内容
柔度 —— 单位力引起的位移。 (力偶) (转角)
1 k
刚度 —— 单位位移所需施加的力。 (转角) (力偶)
两者的互逆关系:
K δ
k 1
1
单自由度时:
● 熟记几种简单情况的刚、柔度
δ 1
悬臂梁自由端: l3 3EI
k
3EI l3
i
1 k
两端固支梁侧移刚度: 12 EI 12i k 3 2 l l
i
1
一固一铰支梁的侧移刚度:(同悬臂梁) 1 3EI 3i k 3 2 l l k 简支梁中点柔度、刚度:
l3 48EI 48EI k 3 l
δ
2. 柱的并联、串联刚度 (1)并联 总侧移刚度:
并联一般公式:
k kj
j 1
n
(2)串联
Δ P h2 k2 Δ1 Δ2
1 1 P 1 P k1
楼面刚度 为无穷大 视同刚臂
1 2 P 2 P k2
h1
k1
1 1 1 1 1 2 P P P k1 k2 k1 k2
1 1 1 1 k k1 k2 k3
3)计算顶端侧移
1 1 1 P P k1 k2 k3 2 2 h3 P h12 h2 24 i1 i2 i3
▲单自由度体系的自由振动要点回顾
一、自由振动 二、振wk.baidu.com微分方程的建立
(刚度并联,两者叠加)
k
k11 k
EI
1
l
3EI l3
k11 m
3 EI
l3
k m
[例7]计算图示刚架的频率和周期。
1
m EI1= I I h
k
解: (刚度法)
由柱刚度并联 得:
3EI 3EI 6EI k k左柱 k右柱 3 3 3 h h h
总侧移刚度:
h2
h1
i1
i2
k k左柱 k右柱
3 i1 3 i2 2 2 h1 h2
∞ h
总侧移刚度:
i1
i2
12 i1 12 i2 k k左柱 k右柱 2 2 h h
1
[例2] 计算图示结构的水平和竖向振动频率。
m
H
1
解:
V
E,I E,A
1 H m H
l3 其中 H 3EI
A,E,I
l
1 V mV
l 其中 v EA
[例3] 图示三根单跨梁,EI为常数,在梁中点有集中质量m , 不考虑梁的质量,试比较三者的自振频率。 m m m
l/2 l/2
3 l/ 16
l/2
l/2
P=1
l/2
l/2
1 ,先求δ 解: m
l3 1 48 EI
l/
2
3l /32 7l5 2 P=1 768 EI
l3 3 192 EI
48 EI 1 ml 3
3 l 768 EI 192 EI 1 l 3 l l 5 l 7 l 2 2 2 (2 3 )3 7 EI 6 2ml 16 2 32 768EI ml 3
第十三章 结构的动力计算
§13-1 动力计算的特点和动力自由度 §13-2 单自由度体系的自由振动 ▲ 结构的刚、柔度系数复习 §13-3 单自由度体系的强迫振动 §13-4 阻尼对振动的影响 §13-5 两个自由度体系的自由振动 §13-7 两个自由度体系在简谐荷载下的 强迫振动 §13-11 近似法求自振频率
(1)刚度法 (2)柔度法
—— ——
ky 0 my
y 2 y 0
研究作用于被隔离的质量上的力,建立 平衡方程,需要用到刚度系数。 研究结构上质点的位移,建立位移协调方程, 需要用到柔度系数。
超静定结构,查表(形常数)
取决于结构的
刚度系数 柔度系数
谁较容易求得。
静定结构,图乘法求δ
三、自由振动微分方程的解
y(t ) Asin( t )
四、结构的自振周期和频率
k 1 m m
T
2
五、例题
m
l /2 1 EI l /2
[例1] 计算图示结构的频率和周期。 (柔度法) 解:
1 m
l3 48 EI
ml 3 T 2 48EI
48 EI ml 3
由图示可知:
k11=k1+k2
k12=k21=-k2
k22=k2
3. 应用举例
P
求图示三层刚架的顶端侧移。
解: 1)计算各楼层(侧移)刚度
i3 i2 i1
i3 i2 i1
12i1 k1 2 2 h1
12i2 k2 2 2 h2
12i3 k3 2 2 h3
(柱并联)
2)计算楼顶点(侧移)柔度
k1
、k2 — 楼层刚度
12i2 k2 2 h2
总刚度:
k
P 1 1 1
k1 k2
12i1 k1 2 h1
串联一般公式:
n 1 1 1 1 1 k k1 k2 kn j 1 k j
▲ 楼层刚度与位移法刚度系数的关系
EI∞
k21 k2
据此可得:ω1 ׃ω2 ׃ω3= 1 ׃1.512 ׃2
结构约束越强,则刚度越大, 其自振动频率也越大。
[例4] 图示桁架,E=206GPa , A=0.002m2 , mg=40KN , 计算自振频率。( g取10m/s2 )
1
(柔度法) 解:
3
m 4 4
( Fn )i2 li 243 EA 18EA i 1
5
1 87.35 S 1 m
[例5]求图示结构的自振圆频率。
A
h
m
I→∞ EI C
解:先求δ
B
l
1 lh 2h lh 2 EI 2 3 3EI
1
h h
1 3EI 2 m11 mlh
[例6]求图示结构的自振频率。 解:先求k11
k11 m
3EI k11 k 3 l
1
k22 k2
k12 k2
k2
EI∞
k11 k1 k2
1
k1
k1 、k2 —— 楼层刚度(本楼层单位侧移所需的侧向力) k11 、k12 、k21 、k22 —— 位移法的刚度系数 kij
kij
—— 第j 个结点位移发生单位位移(其它结点位移均锁固)时, 在第i 个结点位移处产生的反力。
▲ 结构的刚、柔度系数 复习
1. 刚、柔度概念
δ 1
补充内容
柔度 —— 单位力引起的位移。 (力偶) (转角)
1 k
刚度 —— 单位位移所需施加的力。 (转角) (力偶)
两者的互逆关系:
K δ
k 1
1
单自由度时:
● 熟记几种简单情况的刚、柔度
δ 1
悬臂梁自由端: l3 3EI
k
3EI l3
i
1 k
两端固支梁侧移刚度: 12 EI 12i k 3 2 l l
i
1
一固一铰支梁的侧移刚度:(同悬臂梁) 1 3EI 3i k 3 2 l l k 简支梁中点柔度、刚度:
l3 48EI 48EI k 3 l
δ
2. 柱的并联、串联刚度 (1)并联 总侧移刚度:
并联一般公式:
k kj
j 1
n
(2)串联
Δ P h2 k2 Δ1 Δ2
1 1 P 1 P k1
楼面刚度 为无穷大 视同刚臂
1 2 P 2 P k2
h1
k1
1 1 1 1 1 2 P P P k1 k2 k1 k2
1 1 1 1 k k1 k2 k3
3)计算顶端侧移
1 1 1 P P k1 k2 k3 2 2 h3 P h12 h2 24 i1 i2 i3
▲单自由度体系的自由振动要点回顾
一、自由振动 二、振wk.baidu.com微分方程的建立
(刚度并联,两者叠加)
k
k11 k
EI
1
l
3EI l3
k11 m
3 EI
l3
k m
[例7]计算图示刚架的频率和周期。
1
m EI1= I I h
k
解: (刚度法)
由柱刚度并联 得: