高等代数因式分解定理

合集下载

高等代数(二)预习——4、唯一因式分解定理

高等代数(二)预习——4、唯一因式分解定理

⾼等代数(⼆)预习——4、唯⼀因式分解定理4、唯⼀因式分解定理 上⼀篇介绍到了公因式的问题,为探索多项式最重要的问题之⼀——因式分解问题,做了很好的准备。

下⾯我们就来介绍这个问题。

因式分解问题与整数的质因数分解问题很相似,我们先来介绍基本的不需要分解的多项式:⼀、不可约多项式 不可约多项式的定义是类⽐质数做出的,实际上在因式分解问题⾥,它们也是基本的因式,因为它们不能被继续分解。

定义:⼀个多项式p∈K[x]是不可约多项式,当且仅当deg p>0,且它在K[x]中的因式只有零次多项式或者它⾃⾝的相伴式。

即若q|p,则q∼1或q∼p。

如同质数,不可约多项式有⼀些基本的性质:1、K[x]中,若p不可约,则对任意的f∈K[x],或者(p,f)=1,或者p|f。

证明:由于(p,f)|p,则或者(p,f)=1,或者(p,f)∼p,从⽽由传递性,p|(p,f)|f。

2、K[x]中,若p不可约,且p|fg,则或者p|f,或者p|g。

证明:不妨设p∤f,那么由于不可约,(p,f)=1,⼜由于p|fg,可知p|g。

性质2可以推⼴到多个多项式的情形,即若p|f1f2...f s,则⾄少存在i=1,2...或s,使p|f i。

3、多项式p不可约当且仅当p不可表⽰为两个次数更低(但是次数为正)的多项式之积。

证明:必要性是显然的,充分性⽤反证法即可。

性质3⽴刻告诉我们,每个1次多项式都是不可约的。

有了这三条性质,我们就可以介绍此篇最重要的定理了。

⼆、唯⼀因式分解定理定理:K[x]中的任意⾮零多项式f可以唯⼀地表⽰为若⼲个K[x]中不可约多项式的乘积:f=p1p2...p s。

注意,定理中的唯⼀是指,若存在f=p1p2...p s=q1q2...q t,则s=t,且调整过顺序后,有p i∼q i,i=1,2,...,s。

证明:先来证存在性。

对f的次数做数学归纳法。

1° n=1时,显然存在分解式。

2° 假设次数⼩于n时定理均成⽴,那么对次数为n的多项式f,若其是不可约多项式,分解式显然存在,否则,由性质3,我们可以找到次数更低但是为正的f1、f2,使得f=f1f2,从⽽由归纳法,f的分解式也存在。

根据高中数学代数定理总结:多项式的因式分解

根据高中数学代数定理总结:多项式的因式分解

根据高中数学代数定理总结:多项式的因式分解多项式的因式分解是高中数学中一个重要的概念和技巧,在解决各种数学问题和方程时经常会用到。

通过因式分解,我们可以将一个多项式表示为几个较简单的因子的乘积形式。

1. 一次因式分解一次因式分解是指将形如`ax + b` 的一次多项式进行因式分解。

其中,`a` 和 `b` 是实数,且`a ≠ 0`。

1.1 公因式法公因式法是最常见的一次因式分解方法。

它的思路是找到多项式中所有项的公因式,然后提取出来。

例如,对于多项式 `2x + 4`,我们可以提取出 `2` 作为公因式,得到 `2(x+2)`。

1.2 公式法公式法是指根据一次多项式的特定形式,直接利用公式进行因式分解。

例如,一次多项式 `x^2 - 4` 可以使用差平方公式进行因式分解,得到 `(x+2)(x-2)`。

2. 二次因式分解二次因式分解是将二次多项式进行因式分解的方法。

一般情况下,二次多项式的因式分解需要用到平方差公式、完全平方公式或因式分解公式。

2.1 平方差公式平方差公式适用于形如 `x^2 - a^2` 的二次多项式,其中 `a` 是实数。

例如,二次多项式 `x^2 - 9` 可以利用平方差公式进行因式分解,得到 `(x+3)(x-3)`。

2.2 完全平方公式完全平方公式适用于形如 `x^2 + 2ab + b^2` 的二次多项式。

例如,二次多项式 `x^2 + 6x + 9` 可以利用完全平方公式进行因式分解,得到 `(x+3)^2`。

2.3 因式分解公式因式分解公式适用于一般的二次多项式。

例如,二次多项式 `x^2 + 5x + 6` 可以使用因式分解公式进行因式分解,得到 `(x+2)(x+3)`。

总结多项式的因式分解是一个重要的数学概念,通过因式分解可以将复杂的多项式简化为较简单的因子形式。

一次因式分解可以使用公因式法或公式法,而二次因式分解则需要根据不同的情况选择平方差公式、完全平方公式或因式分解公式。

高等代数 第4章多项式 4.5 多项式的因式分解

高等代数 第4章多项式 4.5 多项式的因式分解
则 f x, g x x 33 x 1
虽然根据多项式的标准分解式写出
f x, g x 是简单的,但由于任意多项式的典型
分解式并不容易求得,故求最大公因式的一般方法 还是采用辗转相除法。
2020/3/2
高等代数
问:如何求 f x 的标准分解式?
由定义可得:
① 一次多项式是不可约多项式(二次及二次以上 多项式是否可约是重点讨论对象);
② 多项式的可约性与数域有关(例 x2 2 在C上
可约,在R中不可约)。 ③ 零多项式于零次多项式不讨论它们的可约性。
2. 性质
性质1 若 p x不可约,则 cp x 也不可约,
c 0, c F.
问题: f xF x, f 0, f x 是否可分解为
不可约多项式的乘积?
定理1.5.1: F x 中任一个nn 0 次多项式 f x
都可以分解成 F x 中不可约多项式的乘积。
2020/3/2
高等代数
证(归纳法):
n=1时,命题显然成立。 假设命题对一切小于n的多项式成立,则当
其他因式,则称 f x 在数域F上可约。
等价定义:如果 F x 中一个 nn 0 次多项式 f x 可分解成 F x 中两个次数都小于 n 的多项式
g x,hx 的积,即 f x g xhx, 则称
f x 在数域F上可约。
2020/3/2
高等代数
高等代数
若 f x p1 x p2 xL pr x, 取 c1c2 L cr 1.
则 f x c1 p1 xc2 p2 xL cr pr x, 可见 f x 分解式不唯一。
定理1.5.2:F x 中任一个次数大于零的多项式

高次分解因式的方法与技巧

高次分解因式的方法与技巧

高次分解因式的方法与技巧
高次分解因式的方法和技巧主要包括以下几点:
1. 分解因式的基本原理:要分解一个多项式,首先要找到它的一个因式,然后利用因式定理将多项式分解为两个较低次的多项式。

这个过程可以迭代进行,直到不能再继续分解为止。

2. 因式定理:利用因式定理可以将多项式f(x) 分解为一系列线性因子和一个最高次项次数较低的多项式。

因式定理是指:如果a 是f(x) 的一个根(也就是f(a)=0),那么f(x) 可以被(x-a) 整除。

3. 多项式的合并:当多项式的高次项系数很复杂时,可以尝试对高次项进行合并,用较简单的形式表示。

这样可以更容易找到因式,并进行因式分解。

4. 观察多项式的特征:对于一些常见的多项式,可以通过观察它们的特征来分解因式。

比如,一个多项式如果是一个完全平方的形式,可以通过提取平方根将其分解为两个因式的乘积。

5. 常见快速分解因式的技巧:有一些常见的分解因式的技巧可以用来快速分解高次多项式。

比如,差的平方公式可以用来分解a^2 - b^2,和的立方公式可以用来分解a^3 + b^3 等。

总之,分解高次多项式的因式需要运用一些数学技巧、基本原理和观察特征等方法。

在实际操作中,需要灵活运用这些方法,结合具体问题来选择最合适的分解因式的方法和技巧。

复数域上的因式分解定理高等代数

复数域上的因式分解定理高等代数

复数域上的因式分解定理高等代数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!复数域上的因式分解定理高等代数引言在高等代数中,复数域上的因式分解定理是一项重要的理论,它为我们理解多项式在复数域上的因式分解提供了基础。

因式分解 热门定理

因式分解 热门定理

因式分解热门定理
因式分解是指将一个多项式表示成几个乘积的形式。

这样做可以简化多项式的计算和研究,也可以帮助我们更好地理解多项式的性质和特点。

热门定理中的一个重要定理是因式定理(Factor Theorem)。

因式定理表述为:如果一个多项式P(x)中的数a满足P(a)=0,
则(x-a)是P(x)的一个因式。

通过因式定理,我们可以得到多项式的因式分解。

例如,对于多项式P(x)=(x-1)(x-2)(x-3),我们可以通过因式定理推断出
P(1)=P(2)=P(3)=0,因此(x-1)(x-2)(x-3)是P(x)的因式分解。

另一个重要的热门定理是韦达定理(Vieta's Theorem)。

韦达
定理给出了一个多项式的根与系数之间的关系。

对于一个一元
n次多项式P(x)=a_n(x^n)+a_{n-1}(x^{n-1})+...+a_1x+a_0,韦
达定理表述如下:
- 第一个系数a_n等于多项式根的乘积的相反数,即a_n=(-
1)^n × r_1 × r_2 × ... × r_n
- 第二个系数a_{n-1}等于多项式根两两之和的乘积的相反数,即a_{n-1}=(-1)^{n-1} × (r_1r_2 + r_1r_3 + ... + r_{n-1}r_n)
- 依此类推,第i个系数a_{n-i}等于多项式根的i次幂之和的
乘积的相反数
通过韦达定理,我们可以根据多项式的根来确定多项式的系数。

这对于因式分解和求解多项式方程都非常有用。

高等代数课本笔记及其例题详解

高等代数课本笔记及其例题详解

高等代数课本笔记及其例题详解第一章 多项式1.1 数域定义1.1(数域):设P 是由一些复数组成的集合,其中包括0与1. 如果P 中任意两个数(这两个数也可以相同)的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.即:设{}C x x P ∈=,P b a ∈∀,,其中0≠a 且P ∈0,1都有P abab b a b a ∈-+,,,,称P为一个数域. (注:Z 表示全体整数;R 表示全体实数;C 表示全体复数;Q 表示全体有理数;N 表示全体自然数;)例题1. 设(){}Q b a b a Q ∈+=,22证明:()2Q 是一个数域. 证明:1)()22000,2011Q ∈+=+=(其中:Q ∈1,0)2)Q d c b a ∈∀,,,有()()()2222Q d b c a d c b a ∈+++=+++(其中: Q d b c a ∈++,);()()()2222Q d b c a d c b a ∈-+-=+-+(其中:Q d b c a ∈--,); ()()()()()22222Q bc ad bd ac d c b a ∈+++=++(其中:Q bc ad bd ac ∈++,2); 若02≠+b a ,有()22222222222Q b a bcad b a bd ac b a d c ∈--+--=++(其中:Q b a bc ad b a bd ac ∈----22222,22,且0222≠-b a ). 2Q ∴是一个数域.例题2. 证明:()()⎭⎬⎫⎩⎨⎧==∈∈++++++=+m j n i Z b a N n m b b b a a a P j i mm n n ,,0;,,0,,,1010 πππππ是一个数域.证明:1) ()πππππP m n ∈++++++=0010011 , ()πππππP mn∈++++++=0000000 2) 显然该集合的和、差、积封闭;若商不封闭,得()πππππππππP d d d c c c b b b a a a tt ss m m n n ∈++++++≠+++++ 101101010,0,得 ()πππππππππππππππππP a a a b b b d d d c c c b b b a a a d d d c c c n n mm t t s s m n n t t s s ∉++++++⋅++++++=++++++++++++ 1010101010101010,这与该集合的积封闭的结论矛盾,故()πP是一个数域.注:最小的数域为有理数域,任何数域都包含有理数域.1.2 一元多项式定义 1.2.1(一元多项式) 设n 是一非负整数. 形式表达式011a x a x a n n n n +++-- ,其中∈n a a a ,,,10 数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式. (注:i i x a 称为i 次项; i a 称为i 次项的系数. )定义1.2.2 (多项式相等)如果在多项式()x f 与()x g 中,除去系数为零的项外,同次项的系数全相等,那么()x f 与()x g 就称为相等,记为()()x g x f =. 系数全为零的多项式称为零多项式,记为0. (注:若0≠n a ,则n n x a 称为多项式的首项;n a 称为首项系数; n 称为多项式的次数,记为()()x f ∂; 零多项式是唯一不定义次数的多项式. ) 性质1.2.1 ()()()()()()()()x g x f x g x f ∂∂≤±∂,max .性质1.2.2 ()()()()()()()x g x f x g x f ∂+∂=⋅∂(其中()0≠x f 且()0≠x g ). 运算规律:1. 加法交换律:()()()()x f x g x g x f +=+.2. 加法结合律:()()()()()()()()x h x g x f x h x g x f ++=++.3. 乘法交换律:()()()()x f x g x g x f =.4. 乘法结合律:()()()()()()()()x h x g x f x h x g x f =.5. 乘法对加法的分配律:()()()()()()()()x h x f x g x f x h x g x f +=+.6. 乘法消去律:如果()()()()x h x f x g x f =且()0≠x f ,那么()()x h x g =.定义1.2.3 (一元多项式环)所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为[]x P ,P 称为[]x P 的系数域.1.3 整除的概念性质1.3.1 (带余除法)对于[]x P 中任意两个多项式()x f 与()x g ,其中()0≠x g ,一定有[]x P 中的多项式()()x r x q ,存在,使()()()()x r x g x q x f +=成立,其中()()()()x g x r ∂<∂或者()0=x r ,并且这样的()()x r x q ,是唯一决定的. (注:()x q 通常称为()x g 除()x f 的商;()x r 称为()x g 除()x f 的余式)定义1.3.1(整除)数域P 上的多项式()x g 称为整除()x f ,如果有数域P 上的多项式()x h 使等式()()()x h x g x f =成立. 我们用“()()x f x g ”表示()x g 整除()x f ,用“()x g ()x f ”表示()x g 不能整除()x f .(注:当()()x f x g 时,()x g 就称为()x f 的因式;()x f 称为()x g 的倍式.)定理1.3.1 对于数域P 上的任意两个多项式()()x g x f ,,其中()0≠x g ,()()x f x g 的充分必要条件是()x g 除()x f 的余式为零. 整除性的常用的性质:1. 如果()()x g x f ,()()x f x g ,那么()()x cg x f =,其中0≠c .2. 如果()()x g x f ,()()x h x g ,那么()()x h x f (整除的传递性).3. 如果()()x g x f i ,r i ,,2,1 =,那么()()()()()()()x g x u x g x u x g x u x f r r +++ 2211其中()x u i 是数域P 上的任意的多项式.(注:()()()()()()x g x u x g x u x g x u r r +++ 2211称为多项式()()()x g x g x g r ,,,21 的一个组合.) 注:两个多项式之间的整除关系不因为系数域的扩大而改变.1.4 最大公因式定义 1.4.1(最大公因式)设()()x g x f ,是[]x P 中两个多项式. []x P 中多项式()x d 称为()()x g x f ,的一个最大公因式,如果它满足下面两个条件:1)()x d 是()()x g x f ,的公因式;2)()()x g x f ,的公因式全是()x d 的因式.(注:两个零多项式的最大公因式就是0) 引理1.4.1 如果有等式()()()()x r x g x q x f +=成立,那么()()x g x f ,和()()x r x g ,有相同的公因式.定理 1.4.1 对于[]x P 中任意两个多项式()()x g x f ,,在[]x P 中存在一个最大公因式()x d ,且()x d 可以表成()()x g x f ,的一个组合,即有[]x P 中多项式()()x v x u ,使()()()()()x g x v x f x u x d +=.(注:两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的;()()()x g x f ,表示首项系数为1的公因式.) 辗转相除法:例题3. 设()343234---+=x x x x x f ,()3210323-++=x x x x g 求()()()x g x f ,,并求()()x v x u ,使()()()()()()()x g x v x f x u x g x f +=,. 解:即:()()()()()()131092595913112x r x q x g x x x x g x f +=⎪⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛-=310925952---x x即:()()()()()()22793109259595272212x r x q x r x x x x x g +=++⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛+-=. ()()()327981108153109259521 +⎪⎭⎫⎝⎛--=---=x x x x x r()()()3,+=∴x x g x f .将(1)代入(2)式可得:()()35251532+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎭⎫⎝⎛-x x g x x x f x ()()525,1532x x x v x x u +-=-=∴就有()()()()()()()x g x f x g x v x f x u ,=+.定义1.4.2(互素)[]x P 中两个多项式()()x g x f ,称为互素(也称互质)的,如果()()()1,=x g x f .定理 1.4.2 []x P 中两个多项式()()x g x f ,称为互素的充要条件是有[]x P 中的多项式()()x v x u ,使()()()()1=+x g x v x f x u .定理1.4.3 如果()()()1,=x g x f ,且()()()x h x g x f ,那么()()x h x f .推论1.4.3.1 如果()()x g x f 1,()()x g x f 2,且()()()1,21=x f x f ,那么()()()x g x f x f 21.推广:定义1.4.3 ()x d 称为()()()()2,,,21≥s x f x f x f s 的一个最大公因式,如果()x d 具有下面的性质:2) ()()s i x f x d i ,,2,1, =;3) 如果()()s i x f x i ,,2,1, =ϕ,那么()()x d x ϕ.(注:符号()()()()x f x f x f s ,,,21 表示首项系数为1的最大公因式.)性质1.4.1()()()()()()()()()()x f x f x f x f x f x f x f s s s ,,,,,,,21121 =-性质1.4.2 ()()()()()()()()()()x f x f x f x f x u x f x u x f x u s s s ,,,212211 =+++,其中 ()()()[]x P x u x u x u s ∈,,,21 .性质1.4.3 ()()()()()()()[],,,,1,,,2121x P x u x u x u x f x f x f s s ∈∃⇔=()()()()()()1:2211=+++x f x u x f x u x f x u st s s .1.5 因式分解定理定义1.5.1(不可约多项式) 数域P 上次数的多项式()x p 称为域上的不可约多项式,如果它不能表示成数域P 上的两个次数比()x p 的次数低的多项式的乘积(注:一个多项式是否是不可约是依赖于系数域的).性质1.5.1 ()x p 在数域[]x P 是不可约多项式,()[]x P x f ∈∀,()()x p x f 当且仅当()0≠=c x f 或()()x cp x f =.即:对于()[]x P x f ∈∀,有()()x f x p 或者()()()1,=x f x p . 定理1.5.1 如果()x p 是不可约多项式,那么对于任意的两个多项式()()x g x f ,,由()()()x g x f x p 一定推出()()x f x p 或者()()x g x p .定理1.5.2(定理1.5.1的推广) 如果()x p 是不可约多项式,若()()()(),21x f x f x f x p s 则()()()(){}x f x f x f x f s i ,,,21 ∈∃使得()()x f x p i .定理1.5.3(因式分解及唯一性定理)数域P 上每一个次数1≥的多项式()x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式()()()()()()()x q x q x q x p x p x p x f s s 2121==,那么必有t s =,并且适当排列因式的次序后有()()s i x q c x p i i i ,,2,1, ==,其中()s i c i ,,2,1 =是一些非零常数.(注:()()()()x p x p x cp x f s r s r r 2121=的分解称为标准分解式;已知两个多项式()()x g x f ,的标准分解式,那么()x f 与()x g 的最大公因式()x d 就是那些同时在与的标准式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在()x f 与()x g 中所带的方幂中的较小的一个.)1.6 重因式定义1.6.1(k 重因式)不可约多项式()x p 称为多项式()x f 的k 重因式,如果()()x f x p k ,而()x p k 1+ ()x f .(注:0=k 时,()x p 不是()x f 的因式;1=k 时,()x p 是()x f 的单因式;1≥k 时,()x p 是()x f 的重因式.)定义1.6.2(微商)设有多项式()0111a x a x a x a x f n n n n ++++=-- .我们规定它的微商(也称导数)是()()1211'1a x n a nx a x f n n n n ++-+=--- . 性质1.6.1 :1)()()()()()x g x f x g x f '''+=+2)()()()x cf x cf ''=,3)()()()()()()()x g x f x g x f x g x f '''+=,4)()()()()()x f x f m x f m m '1'-=.定义1.6.3(高阶微商)微商()x f '称为()x f 的一阶微商;()x f '的微商()x f ''称为的二阶()x f 微商;等等.()x f 的k 阶微商记为()()x f k .(注:()()n x f =∂ο,则()()c x f n =,()()01=+x f n .)定理1.6.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么它是微商()x f '的1-k 重因式.推论1.6.1.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么()x p 是()()()()x f x f x f k 1''',,,- 的因式,但不是()()x f k 的因式.推论1.6.1.2 不可约多项式()x p 是()x f 的重因式的充分必要条件为()x p 是()x f 与()x f ' 的公因式.推论 1.6.1.3 多项式()x f 没有重因式的充分必要条件是()x f 与()x f '互素.(注:辗转相除法可用于求解重因式;()()()()x f x f x f ',是一个没有重因式的多项式与()x f 有完全相同的不可约因式.)1.7 多项式函数定义1.7.1(多项式函数)设()()10111 a x a x a x a x f n n n n ++++=--是[]x P 中的多项式,α是P 中的数,在()1中用α代x 所得的数0111a a a a n n n n ++++--ααα 称为()x f 当α=x 时的值,记为()αf .这样一来,多项式就定义了一个数域上的函数.定理1.7.1(余数定理)用一次多项式α-x 去除多项式()x f ,所得的余式是一个常数,这个常数等于函数值()αf .(注:其中()0=αf 时,α=x 是()x f 的一个根或者零点.) 推论1.7.1.1 α是()x f 的根的充分必要条件是()()x f x α-.定义1.7.2(重根)α称为()x f 的重根,如果()α-x 是()x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理1.7.2 []x P 中n 次多项式()0≥n 在数域P 中的根不可能多于n 个,重根按重数计算. 定理1.7.3 如果多项式()()x g x f ,的次数都不超过n ,而它们对1+n 个不同的数121,,,+n ααα 有相同的值,即()()1,,2,1,+==n i g f i i αα,那么()()x g x f =.1.8 复系数与实系数多项式的因式分解定理1.8.1(代数基本定理)每个次数1≥的复系数多项式在复数域中有一根(即:复数域上所有次数大于1的多项式全是可约的.).定理1.8.2(复系数多项式的分解定理)每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.(复系数多项式的标准分解式:()()()()s ls lln x x x a x f ααα---= 2121,其中C s ∈≠≠≠ααα 21,+∈Z l l l s ,,,21 )定理1.8.3 如果α是实系数多项式()x f 的复根,那么α的共轭数α也是()x f 的根. 定理1.8.4(实系数多项式因式分解定理)每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积(即是说:实数域上只含有一次不可约多项式和含二次共轭复根不可约多项式).1.9 有理系数多项式定理 1.9.1 每个次数1≥的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积.定义1.9.1(本原多项式)如果一个非零的整系数多项式()011b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于的公因子,也就是说,它们是互素的,它就称为一个本原多项式.(任意一个非零的有理系数多项式()x f 都可以表示成一个有理数r 与一个本原多项式()x g 的乘积:()()x rg x f =)定理1.9.2(高斯(Gauss )引理)两个本原多项式的乘积还是本原多项式.定理1.9.3 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.推论1.9.3.1 设()()x g x f ,是整系数多项式,且()x g 是本原的. 如果()()()x h x g x f =,其中()x h 是有理系数多项式,那么()x h 一定是整系数的.定理1.9.4 设()011a x a x a x f n n n n +++=-- 是一个整系数多项式,而sr 是它的一个有理根,其中s r ,互素,那么必有n a s ,0a r .特别地,如果()x f 的首项系数1=n a ,那么()x f 的有理根都是整根,而且是0a 的因子. 例题4. 求方程032234=-+-x x x 的有理根. 解:令()32234-+-=x x x x f 得:24=a 的因子为:2,1±±30=a 的因子为:1±,3± ()x f ∴的有理根可能为:21±,23±,1±,2±.判别根的方法一:0321≠-=⎪⎭⎫⎝⎛-f (不为()x f 的根,舍弃);0221≠-=⎪⎭⎫⎝⎛f (不为()x f 的根,舍弃); ()021≠-=-f (不为()x f 的根,舍弃); ()01=f (为()x f 的根); 021523≠=⎪⎭⎫ ⎝⎛-f (不为()x f 的根,舍弃); 042723≠=⎪⎭⎫ ⎝⎛f (不为()x f 的根,舍弃);()0332≠=-f (不为()x f 的根,舍弃); ()0252≠=f (不为()x f 的根,舍弃); 1∴为032234=-+-x x x 方程的有理根.方法二:即2-=x 不是方程032234=-+-x x x 的根.…………经带余除法计算可得:1=x 为032234=-+-x x x 方程的有理根.方法三:21 22002-即21=x 不是方程032234=-+-x x x 的根. …………经综合除法计算可得:1=x 为032234=-+-x x x 方程的有理根.定理1.9.5(艾森斯坦(Eisenstein )判别法)设()011a x a x a x f n n n n +++=-- 是一个整系数多项式.如果有一个素数p ,使得1. p n a ;2. 021,,,a a a p n n --;3. 2p 0a .那么()x f 在有理数域上不可约的.例题5.证明()153+-=x x x f 在有理数域上不可约. 证明:依题意可得()x f 的有理根可能为:1±.又()31-=f ,()51-=-f 都不为零1±=∴x 都不是()x f 的有理根,即()x f 在有理数域上不可约的.1.10 多元多项式定义1.10.1(n 元多项式)设P 是一个数域,n x x x ,,,21 是n 个文字. 形式为n k nk k x x ax 2121的式子,其中P a ∈,n k k k ,,,21 是非负整数,称为一个单项式. 由以上一些单项式的和∑nnn k k k k nk k k k k x x x a,,,21212121 就称为n 元多项式,或者简称多项式.(注:若两个单项式中相同文字的幂全一样,那么它们就称为同类项.)定义1.10.2(元多项式环)所有系数在数域P 中的n 元多项式的全体,称为数域P 上的n元多项式环,记为[]n x x x P ,,21.(注:n k k k +++ 21称为单项式n k nk k x x ax 2121的次数;系数不为零的单项式的最高次数就称为这个多项式的次数.多元多项式的排列顺序方法:字典排列法;)定理1.10.1 当()0,,,21≠n x x x f ,()0,,,21≠n x x x g 时,乘积()()n n x x x g x x x f ,,,,,,2121 的首项等于()n x x x f ,,,21 的首项与()n x x x g ,,,21 的首项的乘积.推论1.10.1.1 如果,,,2,1,0m i f i =≠那么m f f f 21的首项等于每个i f 的首项的乘积. 推论1.10.1.2 如果()()0,,,,0,,,2121≠≠n n x x x g x x x f ,那么()()0,,,,,,2121≠n n x x x g x x x f .(两个齐次多项式的乘积是齐次多项式,乘积的次数等于因子的次数的和.)1.11 对称多项式定理1.11.1(一元多项式根与系数的关系)设()n n n a x a x x f +++=- 11是[]x P 中的一个多项式.如果()x f 在数域P 中有个根n ααα,,,21 ,那么就可以分解成()()()()n x x x x f ααα---= 21.将其展开即得根与系数的关系如下:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-+++=+++=-∑-n n n k k k k i in n n a i a a a j i αααααααααααααααα 211312122111121,的乘积之和个不同的所有可能的. 定义1.11.1(对称多项式)n 元多项式()n x x x f ,,,21 ,如果对于任意的n j i j i ≤≤≤1,,,都有()()n i j n j i x x x x f x x x x f ,,,,,,,,,,,,11 =,那么这个多项式称为对称多项式. 定理1.11.2 对于任意一个n 元对称多项式都有一个n 元多项式()n y y y ,,,21 ϕ,使得()()n n x x x f σσσϕ,,,,,,2121 =.(其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=----n n nn n n n n n n x x x xx x x x x x x x x x x x x x x x x x 21322211211131212211σσσσ称为n 元初等对称多项式.)例题6. 把三元对称多项式333231x x x ++表为321,,σσσ的多项式. 解:令()333231321,,x x x x x x f ++=得首项为:31x 对应的有序数对()0,0,3,()()332133323131333231321,,x x x x x x x x x x x x f ++-++=-++=∴σ()132123223132222132122163g x x x x x x x x x x x x x x x =-+++++-=得首项:2213x x 对应的有序数对()0,1,2.()()32123223132222132122132123223132222132122121133633x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x g +++++++-+++++-=+σσ23213g x x x =-=对应数对()1,1,1又0332=+σg ()3213132133,,σσσσ+-=∴x x x f .课后习题1. 用()x g 除()x f ,求商()x q 与余式()x r :1)()1323---=x x x x f ,()1232+-=x x x g ; 解:()9113-=∴x x q ,()99+-=x r . 2)()524+-=x x x f ,()22+-=x x x g解:()12-+=∴x x x q ,()75+-=x x r . 3)()1434--=x x x f ,()132--=x x x g 解:()1032++=∴x x x q ,()929+=x x r . 4)()13235-+-=x x x x f ,()233+-=x x x g . 解:()x g233+-x x22+x()22+=∴x x q ,()562-+=x x x r . 5)()x x x x f 85235--=,()3+=x x g 解:带余除法:()109391362234+-+-=∴x x x x x q ,()()3327-=-=f x r . 6)()x x x x f --=23,()i x x g 21+-=. 解:综合除法:i 21-1 i 2- i 25-- i 89+-()i x r 89+-=∴,()i ix x x q 2522---=. 2. m ,p ,q 适合什么条件时,有 1)q px x mx x ++-+321 解:方法一:带余除法:12-+mx xm x -即:()()m q x p m x r ++++=12,又q px x mx x ++-+321()0=∴x r 可得⎩⎨⎧-==++q m p m 012. 2)q px x mx x ++++2421. 解:方法二:待定系数法:设商为:()c bx x x q ++=2,又由q px x mx x ++++2421可得:()()q px x x q mx x ++=++2421即⎪⎪⎩⎪⎪⎨⎧==+=++=+q c b m c p m b c b m 010.()⎩⎨⎧=-=+-∴0112q m p m q . 3. 把()x f 表成0x x -的方幂和,即表成()() +-+-+22010x x c x x c c 的形式:1)()5x x f =,10=x ;解:辗转相除法:即:()()()111234+++++-=x x x x x x f .即:()()()()[]()()()1154321154321123223+-++++-=+++++--=x x x x x x x x x x x f()()()()[]()()()()()11511063111510631122322+-+-+++-=+-++++--=∴x x x x x x x x x x x f()()()()[])()()()()115110110411151101041123423+-+-+-++-=+-+-+++--=x x x x x x x x x x x f ()()()()()1151101101512345+-+-+-+-+-=x x x x x ()()()()()()1151101101512345+-+-+-+-+-=∴x x x x x x f .2)()3224+-=x x x f ,20-=x 解:综合除法:2-2-2- 2-14a = 38a =-()()()()()11124122181234+---+---=∴x x x x x f . 3)()()i xx i ix x x f ++-+-+=7312234,i x -=0. 解:综合除法:i - i - i - i -即:()()()()()()i i x i x i i x i i x x f 57512234+++-++-+-+=. 4. 求()x f 与()x g 的最大公因式:1)()143234---+=x x x x x f ,()123--+=x x x x g 解:带余除法:即:1322即:()()()1434121322+-⎪⎭⎫ ⎝⎛+----=x x x x x g又:()()1121322++-=---x x x x()()()1,+=∴x x g xf .2)()1434+-=x x x f ,()1323+-=x x x g . 解:带余除法:即:()()()2312+--=x x x g x f .即:()()13213232-+⎪⎭⎫ ⎝⎛+-+-=xx x x g .即:41942729132232-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=+-x x x .()()()1,=∴x g x f .3)()11024+-=x x x f ,()124624234+++-=x x x x x g . 解:即:()()x x f x g 242423-=即:()()12232124241624223++-⎪⎭⎫ ⎝⎛--++-=x x x x x x x f .即:()93292889323241223241624223++⎪⎪⎭⎫ ⎝⎛-++-=++-x x x x x x x .即:12192426328827932928812232+⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=++-x x x x . ()()()1,=∴x g x f .5. 求()x u ,()x v 使()()()()()()():,x g x f x g x v x f x u =+1)()242234---+=x x x x x f ,()22234---+=x x x x x g . 解:()13即:()()()221223 -++-=x x x x x g()()32223 x x x x -=- ()()()2,2-=∴x x g x f将(1)代入(2)得:()()()()2212-=+++-x x g x x f x即:取()1--=x x u ,()2+=x x v 可得:()()()()()()()x g x f x g x v x f x u ,=+.2)()951624234++--=x x x x x f ,()45223+--=x x x x g 解:即:()()622--=x x x g x f 即:()()()213139362 +-⎪⎭⎫⎝⎛+-+--=x x x x x g()()()39619362 ++-=+--x x x x()()()1,-=∴x x g x f ,将(1)式代(2)式得:()()()()1322311312-=--+--x x g x x x f x .即:取()()131--=x x u ,()()322312--=x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 3)()144234++--=x x x x x f ,()12--=x x x g 解:即:1232 -+-=x x x g x f()()()()2312 ++-=x x x g()()()1,=∴x g x f将(1)式代入(2)式得:()()13233123=--+++-x g x x x x f x 即取()()131+-=x x u ,()()233123--+=x x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 6. 设()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式,t ,u 的值. 解:又()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式()()u tx x u x t x t +++-++∴3221.即()()()()[]()c x u x t x t u tx x t ++-++=+++21123即:()()()()⎪⎩⎪⎨⎧+=+=-+=++-u t cu t t t c u t c t 112012解得:⎩⎨⎧=-=04u t ,或⎪⎩⎪⎨⎧=+=02321u i t ,或⎪⎩⎪⎨⎧=-=0231u i t ,或⎪⎩⎪⎨⎧--=+-=i u i t 11721121,或⎪⎩⎪⎨⎧+-=--=i u i t 1172111. 7. 证明:如果()()x f x d ,()()x g x d ,且()x d 为()x f 与()x g 的一个组合,那么()x d 是()x f 与()x g 的一个最大公因式.证明:()x d 为()x f 与()x g 的一个组合即:()()()()()x d x g x v x f x u =+.又()()x f x d ,()()x g x d ,即()x d 是()x f 与()x g 的一个公因式.()()x f x h ∀,且()()x g x h 则()()x d x h ()x d ∴是()x f 与()x g 的一个最大公因式.8. 证明:()()()()()()()()()x h x g x f x h x g x h x f ,,=,(()x h 的首项系数为1). 证明:()()()()x f x g x f , ,()()()()x g x g x f ,()()()()()()x h x f x h x g x f ,∴,()()()()()()x h x g x h x g x f ,. 即:()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个公因式. 又()()()()()()()()()x g x f x g x v x f x u st x v x u ,:,=+∃. 则()()()()()()()()()()x h x g x f x h x g x v x h x f x u ,=+()()()x h x f x c ∀,()()()x h x g x c 有()()()()()x h x g x f x c ,. 即()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个最大公因式. 又()x h 的首项系数为1.()()()()()()()()()x h x g x f x h x g x h x f ,,=∴.9. 如果()x f ,()x g 不全为零,证明:()()()()()()()()1,,,=⎪⎪⎭⎫ ⎝⎛x g x f x g x g x f x f .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.()()()0,≠∴x g x f ,又()x u ∃,()x v ()()()()()()()x g x f x g x v x f x u st ,:=+()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u .即:()()()()()()()()1,,,=⎪⎪⎭⎫⎝⎛x g x f x g x g x f x f 成立. 10.证明:如果()x f ,()x g 不全为零,且()()()()()()()x g x f x g x v x f x u ,=+,那么()()()1,=x v x u .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.且()()()()()()()x g x f x g x v x f x u ,=+()()()0,≠∴x g x f ()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u ()()()1,=x v x u .11.证明:如果()()()1,=x g x f ,()()()1,=x h x f ,那么()()()()1,=x h x g x f . 证明:()()()1,=x g x f ,()()()1,=x h x f .()x u 1∃∴,()x v 1,()x u 2,()x v 2使得:()()()()()1111 =+x g x v x f x u ()()()()()2122 =+x h x v x f x u . 由(1)式与(2)式相乘可得:()()()()()()()()()()()()()()()121212121=+++x h x g x v x v x f x g x u x v x h x v x u x f x u x u即()()()()1,=x h x g x f .12. 设()x f 1, ,()x f m ,()x g 1, ,()x g n 都是多项式,而且()()()1,=x g x f ji()n j m i ,,1;,,1 ==.求证:()()()()()1,11=x g x g x f x f nm.证明:由11题可得:()()()1,=x g x f ,()()()1,=x h x f ()()()()1,=⇒x h x g x f 又()()()1,=x g x f j i (其中m i ,,1 =;n j ,,1 =)可得,对于i 取m ,,2,1 中的任何一个固定值有:()()()()1,1=x g x g x f n i . 再将()()x g x g n 1看作一个整体可得:()()()()()1,11=x g x g x f x f n m . 13. 证明:如果()()()1,=x g x f ,那么()()()()()1,=+x g x f x g x f . 证明:()()()1,=x g x f 故有:()()()()1=+x g x v x f x u .即:()()()()()()()()()()()()()()()()1=++-=+-+x g x f x v x f x v x u x g x v x f x v x f x v x f x u()()()()1,=+∴x f x g x f ;同理可得:()()()()1,=+x g x f x g()()()()()1,=+∴x g x f x g x f .14. 求下列多项式的公共根:()12223+++=x x x x f ,()12234++++=x x x x x g . 解:()()()212+-=∴x x x f x g 即:()()()112+++=x x x x f()()()1,2++=∴x x x g x f 令:012=++x x 解得:2311i x +-=;2312ix --=. 即:()x f 与()x g 的公共根为:2311i x +-=和2312ix --=.(提示:公共根出现在多项式的公因式中.)15. 判别下列多项式有无重因式: 1)()842752345-+-+-=x x x x x x f解:()()()x x x x x x x x f 1524421205'2234+-=+-+-=又()()()1284275232345++-=-+-+-=x x x x x x x x x f即:()()()()22',-=x x f x f ()x f ∴有三重因式:2-x2)()34424--+=x x x x f解:()124484'33-+=x x x f即:()()()1',=x f x f ()x f ∴没有重因式. 16.求t 值使()1323-+-=tx x x x f 有重根.解:依题意可得:待定系数法:当有()x f 重根时,可得重根为有理根时,此时只能取重根为:1±=α.当重根为:1=α 1可得:3=t .当3=t 时,()()3231133-=-+-=x x x x x f 此时1=x 是()x f 的三重根;当重根为:1-=α1-解得:5-=t ,当5-=t 时,()()()141153223--+=---=x x x x x x x f 与1-=x 为重根矛盾,舍去.设重根为二重时得()⎪⎭⎫⎝⎛+-=+-=323163'22t x x t x x x f()()()()()()()()()12,''131,'',+=⎪⎭⎫ ⎝⎛--=x x f x f x x f x f x f x f 即得:021'=⎪⎭⎫⎝⎛-f .解得:415-=t . 17.求多项式q px x ++3有重根的条件.解:()()()()()()()()132,'3','3,',23≠⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-=+++=q px x f x f x f x f p x q px x x f x f 得: ()x f q px'32+即得:027423=+q p . 18.如果()11242++-Bx Ax x ,求A ,B .解:依题意可由综合除法可得:1 1A A 2B A +3 B A 24+由()11242++-Bx Ax x 可得:⎩⎨⎧=+=++02401B A B A 解得:⎩⎨⎧-==21B A .19.证明:!!212n x x x n++++ 不能有重根.证明:令()!!212n x x x x f n ++++= 得:()()!1!21'12-++++=-n x x x x f n反证法:设()x f 的重根为α得:()()⎩⎨⎧==0'0ααf f 即:()()0'=-ααf f 0!=∴n nα得:0=α 又()010≠=f 矛盾.∴!!212n x x x n++++ 不能有重根.20.如果a 是()x f '''的一个k 重根,证明a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根.证明:依题意可得:()()()[]()()0''2=+-+-=a f a f a f a f aa a g ()()()[]()()0'''22'''=--++=a f a f aa a f a f a g()()()()()a f a f aa a f a f a g '''''22''2''''--++=又()0'''=a f ()0''=∴a g()()()()02'''21'''4=-+-=a f a a a f a g又a 是()x f '''的一个k 重根a ∴是()x g '''的一个k 重根. 又()()()()0''''''====a g a g a g a g∴a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根. 21.证明:0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k证明: 0x 是()x f 的k 重根()()x f x x k0-∴即()x g ∃,使得:()()()x g x x x f k0-=,其中0x x -不整除()x g()()()()()x g x x x g x x k x f kk ''010-+-=∴-可得:()()x f x x k '10--()0'0=∴x f同理由此类推可得到:()()()()0'0100====-x f x f x f k 若()()00=x f k 得:()()()x f x x k 0-()()x f x x s k s10+--⇒其中k s ≤,即()()x f x x k 10+-这与0x 是()x f 的k 重根矛盾.()()00≠∴x f k反之显然成立.∴0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k .22.举例说明断语“如果a 是()x f '的m 重根,那么a 是()x f 的1+m 重根”是不对的. 解:例如:()()111111+-=+m a x x f 则()()()ma x m x f -+=1'a 是()x f '的m 重根,但a 不是()x f 的1+m 重根.23. 证明:如果()()n x f x 1-,那么()()n n x f x 1-. 证明:令:n x y =得:()()y f x 1-即()()011==f f n ∴()()y f y 1-即()()n n x f x 1-.24. 证明:如果()()()323121x xf x f x x +++,那么()()x f x 11-,()()x f x 21-证明:.令:012=++x x 解得:2311i x +-=,2312ix --= 又()()()323121x xf x f x x +++即:()()()32311x f x f x x +-,()()()32312x f x f x x +-()()()()⎩⎨⎧=+=+∴0032223213121311x f x x f x f x x f 即:()()()()⎪⎪⎩⎪⎪⎨⎧=--+=+-+0123110123112121f i f f i f 又0323112311≠-=--+-i i i即该方程程组只有唯一零解:()()⎩⎨⎧==010121f f∴()()x f x 11-,()()x f x 21-.25. 求多项式1-n x 在复数域范围内和在实数范围内的因式分解. 解:在复数域上分解:()()()111----=-n n x x x x εε 其中ni n ππε2sin 2cos +=. 在实数范围内因式分解:当n 为奇数:()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--=-+---111112222222212x x x x x x x x n n n n nεεεεεε 其中:n i i n i πεε2cos2=+-为一个实数,21,,2,1-=n i . 当n 为偶数时:()()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--+=-+---1111112222222212x x x x x x x x x n n n n nεεεεεε 26. 求下列多项式的有理根: 1)1415623-+-x x x解:令()1415623-+-=x x x x f 则()x f 的有理根可能为:1±,2±,7±,14±.由综合除法计算得:1即:()41-=f同理:()361-=-f ,()762-=-f ,()02=f ,()7567-=-f ,()1407=f ,()414414-=-f()176414=f∴1415623-+-x x x 多项式的有理根为:2.2)157424---x x x解:令()157424---=x x x x f 则的有理根可能为:41±,21±,1± 将根挨个代入原式得:641114154174144124-=--⨯-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-f同理:6417141-=⎪⎭⎫ ⎝⎛f ,021=⎪⎭⎫ ⎝⎛-f ,521-=⎪⎭⎫⎝⎛f ,()11=-f ,()91-=f∴157424---x x x 多项式的有理根为:21-.3)3111462345----+x x x x x解:令()3111462345----+=x x x x x x f 则()x f 的有理根可能为:1±,3±由带余除法计算得:即:()01=-f 同理:()321-=f ,()963-=-f ,()03=f .∴3111462345----+x x x x x 多项式的有理根为:1-,3. 27. 下列多项式在有理数域上是否可约? 1)12+x解:不可约;理由如下:依题意可得令()12+=x x f 则()x f 的有理根可能为:1± 又()()0211≠=-=f f 即1±不为()x f 的有理根∴多项式12+x 在有理数域上是不可约的.(二次有理多项式在有理数域上可约的话必有有理根)2)2128234++-x x x解:不可约;理由如下: 取素数2=p 得: (1)p 41a =.(2)38a p =-,212a p =,10a p =,02a p = (3)42=p 02a =由艾森斯坦判别法可得:多项式2128234++-x x x 是不可约的. 3)136++x x解:不可约;理由如下:令()136++=x x x f ,1+=y x 得:原多项式39182115623456++++++=y y y y y y 这时只要取3=p 可由艾森斯坦判别法得出:39182115623456++++++y y y y y y 不可约;∴136++x x 不可约.4)1++px x p ,p 为奇素数;解:令1+=y x 作转化,再由艾森斯坦判别法判别不可约; 5)144++kx x ,k 为整数. 解:同4),不可约:。

因式定理法因式分解

因式定理法因式分解

因式定理法因式分解1. 引言在数学中,因式分解是将一个多项式表达式表示为若干个乘积的形式的过程。

因式分解是代数学中的重要概念,它可以帮助我们简化复杂的多项式,解决方程和不等式,以及理解更高级的数学概念。

因式定理法是一种常用的因式分解方法之一。

它基于代数基本定理,即任何一个次数大于1的多项式都可以被分解成一系列次数为1的一次多项式。

本文将详细介绍因式定理法以及如何使用它进行因式分解。

2. 因式定理法的原理因式定理法基于以下两个重要原理:2.1 代数基本定理代数基本定理(Fundamental Theorem of Algebra)表明任何一个非常数的次数大于1的多项式都可以在复数域内被完全分解为一次因子。

2.2 因子定理对于一个多项式f(x),如果f(a)=0,则(x−a)是f(x)的一个因子。

这个原理称为因子定理(Factor Theorem)。

换句话说,如果我们找到了f(x)在某个点a处等于零,那么我们可以将f(x)除以(x−a)得到一个次数降低的多项式。

基于以上原理,因式定理法通过不断地使用因子定理和代数基本定理,将一个多项式逐步分解为一次因子的乘积。

3. 因式定理法的步骤下面是使用因式定理法进行因式分解的步骤:3.1 确定多项式的最高次数首先,我们需要确定给定多项式的最高次数。

最高次数决定了我们需要找到多少个一次因子来完全分解这个多项式。

3.2 寻找可能的一次因子接下来,我们需要寻找可能的一次因子。

一次因子是指形如(x−a)的表达式,其中a是一个实数。

常用的寻找一次因子的方法包括有理根定理、综合除法等。

有时候,我们也可以根据观察和猜测来找到可能的一次因子。

3.3 使用综合除法进行验证在找到可能的一次因子后,我们需要使用综合除法来验证这个表达式是否真正是多项式的一个因子。

如果余数为零,则说明找到了一个有效的一次因子。

3.4 迭代应用因子定理如果找到了一个有效的一次因子,我们可以使用因子定理将多项式除以这个因子,得到一个次数降低的多项式。

高等代数实系数和复系数多项式的因式分解

高等代数实系数和复系数多项式的因式分解


n−2
(ε 2
+
ε
n+2 2
)x
+
1].
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
例题选讲
例 设 f(x), g(x) 是两多项式,且 f(x3) + xg(x3) 可被 x2 + x + 1 整除, 则 f(1) = g(1) = 0.
两边取共轭数,有
f(α¯) = anα¯n + an−1α¯n−1 + · · · + a0 = 0,
这就是说,f(α¯) = 0,α¯ 也是 f(x) 的根.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实系数多项式因式分解定理
. .. . . ..
高斯与代数基本定理
代数基本定理在代数乃至整个数学中起着基础作用. 据说,关于 代数学基本定理的证明,现有 200 多种证法. 迄今为止,该定理 尚无纯代数方法的证明. 大数学家 J.P. 塞尔曾经指出:代数基本 定理的所有证明本质上都是拓扑的. 美国数学家 John Willard Milnor 在数学名著《从微分观点看拓扑》一书中给了一个几何直 观的证明,但是其中用到了和临界点测度有关的 sard 定理. 复变 函数论中,对代数基本定理的证明是相当优美的,其中用到了很 多经典的复变函数的理论结果.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
高斯与代数基本定理
该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完 整. 接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于 1772 年又重新证明了该定理,后经高斯分析,证明仍然很不严 格的. 代数基本定理的第一个严格证明通常认为是高斯给出的 (1799 年在哥廷根大学的博士论文),高斯后来又给出了另外三个 证法,其中第四个证法是他 71 岁公布的,并且在这个证明中他 允许多项式的系数是复数.

高等代数因式分解定理

高等代数因式分解定理

一、不可约多项式 1、定义
定义1 设 p( x) P[x]且( p( x)) 1,若 p( x) 不能 不能表示成数域 P上两个次数比 p( x) 低的多项 乘积,则称 p( x)为数域 P上的不可约多项式. 否则,称 p( x)为数域 P上的可约多项式.
说明: ① 一次多项式总是不可约多项式. ② 一个多项式是否不可约依赖于系数域. ③ (不)可约多项式前提是次数大等于1.
例2

f
(
x)

ap1r1
(
x)
p r2 2
(
x)
psrs ( x),
g(
x)

bp1l1
(
x)
p l2 2
(
x
)
psls ( x),
其中 ri 0, li 0且ri li 0, pi ( x) 为互不相同的
首1不可约多项式,
则有 (1) f ( x), g( x) p11 ( x) p22 ( x) pss ( x),
说明: ① 若已知两个多项式 f ( x), g( x)的标准分解式, 则可直接写出( f ( x), g( x)),[ f ( x), g( x)].
② 虽然因式分解定理在理论有其基本重要性, 但并未给出一个具体的分解多项式的方法.
实际上,对于一般的情形普通可行的分解 多项式的方法是不存在的.而且在有理数域上, 多项式的可约性的判定都是非常复杂的.
使 f ( y) g1( y)g2( y),其中( gi ( y)) ( f ( y)),i 1, 2.
令 y x b ,则
a
xb
xb xb
p( x) f (
其中gi

代数基本定理分解因式

代数基本定理分解因式

代数基本定理分解因式代数基本定理,也被称为代数基本定理,是代数学中的一个基本定理。

它表明,任何一个非常数的一元n次多项式,都可以在复数域上因式分解成 n 个一次多项式的乘积。

代数基本定理是现代代数学的基石之一,它的证明是复杂而深奥的,需要借助于复数域的特性和高深的代数理论。

代数基本定理的表述可以用简洁的数学语言来描述。

假设 f(x) 是一个非常数的一元n次多项式,其中 n 是一个正整数。

那么f(x) 可以表示为以下形式之一:f(x) = a(x - x₁)(x - x₂)⋯(x - xₙ)或者f(x) = a(x - x₁)²(x - x₂)²⋯(x - xₙ)²其中 x₁, x₂, ..., xₙ 是复数,a 是一个复常数,且a ≠ 0。

这意味着,一个非常数的一元n次多项式总可以因式分解为 n 个一次多项式的乘积,或者是 n 个二次多项式的乘积。

代数基本定理的证明是非常复杂的,它需要运用复数域的代数性质和代数理论的深层次结构。

然而,我们可以通过一些直观的例子来理解代数基本定理的含义和应用。

考虑一个一元二次多项式 f(x) = x² + 1。

我们可以将它写成如下形式:f(x) = (x - i)(x + i)其中 i 是虚数单位,满足 i² = -1。

这样,我们就将 f(x) 因式分解成了两个一次多项式的乘积。

这个例子说明,即使是二次多项式,也可以分解成一次多项式的乘积。

类似地,考虑一个一元三次多项式 g(x) = x³ - 2x² + x - 2。

我们可以将它写成如下形式:g(x) = (x - 2)(x - 1)(x + 1)这里,我们将 g(x) 分解成了三个一次多项式的乘积。

这个例子说明,任何一个非常数的一元三次多项式都可以分解成一次多项式的乘积。

代数基本定理的重要性不仅体现在它的理论意义上,而且在于它的应用。

因为代数基本定理保证了任何一个非常数的一元n次多项式都能够因式分解,这为代数方程的求解提供了一种有效的方法。

大一高代知识点因式分解

大一高代知识点因式分解

大一高代知识点因式分解高等代数是大学数学的一门重要课程,它主要研究多项式及其运算、方程与不等式的性质与解法等。

在高等代数中,因式分解是一项非常重要的内容,它能帮助我们将一个复杂的多项式分解成简单的因子相乘形式,从而更方便地研究和计算。

本文将介绍大一高等代数中常见的因式分解方法,包括公因式法、提公因式法、完全平方差公式、差的平方公式、分组分解法等,以及一些常见的应用技巧。

一、公因式法公因式法是因式分解中最基本的方法之一,它的基本思想是将一个多项式中的共同因子提取出来,从而简化计算。

对于一个多项式,如果每一项都含有一些公因子,则可以将这个公因子提取出来,形成括号里的部分,剩下的部分就是括号外的部分。

例如:4x^2+8x=4x(x+2)2xy^2 - 4y^2 = 2y^2(x - 2)二、提公因式法提公因式法是公因式法的一种变形,当一个多项式可以因式分解成两个或多个括号的乘积形式时,我们可以将其中的公共因子提取出来,形成一个因子,再根据乘积形式的特性进行因式分解。

例如:x^2+2x-8=(x-2)(x+4)3x^2-12x+15=3(x-1)(x-5)三、完全平方差公式完全平方差公式是一种常用的因式分解方法,它用于分解一个二次多项式为两个因子的乘积形式,即(a+b)(a-b)=a^2-b^2、根据这个公式,我们可以将一个二次多项式进行因式分解。

例如:x^2-9=(x+3)(x-3)4x^2-1=(2x+1)(2x-1)四、差的平方公式差的平方公式和完全平方差公式类似,也用于分解一个二次多项式为两个因子的乘积形式,即(a+b)(a-b)=a^2-b^2、不同的是,差的平方公式适用于两个项之间是减号的情况。

例如:x^2-4=(x+2)(x-2)16x^2-25=(4x+5)(4x-5)五、分组分解法分组分解法是一种适用于含有多个项的多项式的因式分解方法。

它的基本思想是通过重新排列多项式的项,将其分为两个或多个组,并利用一些特殊的因式分解方法进行化简。

《高等代数》数分高代定理大全

《高等代数》数分高代定理大全

数分高代定理大全《髙等代数》第一章帶余除法对于P[x]中任意两个多项式/'(兀)与g(x),其中g(x)HO, —定有P[A]中的多项式q(x), r(x)存在,使/(x) = g(x)g(x) + r(x)成立,其中d(r(x)) < d(g(x)) 或者心)=0,并且这样的<?(x),r(x)是唯一决定的.定理1对于数域P上的任意两个多项式f(x)9g(x),其中g(x)H0,g(x)I/*(x)的充分必要条件是g(x)除/(x)的余式为零.定理2对于P[X]中任意两个多项式/(A), g(x),在P[x]中存在一个最大公因式d(x),且d(x)可以表示成f (x), g(x)的一个组合,即有P[x]中多项式M(X),V(A)使d(x) = w(x)/(x) + y(x)g(x).定理3 P[x]中两个多项式/(A-), g(x)互素的充分必要条件是有P[x]中的多项式/心),v(x)使«(x)/(x) + v(x)g(x) = 1 .定理 4 如果(f(x),g(x)) = l,且/(x)I g(x)h(x),那么f(x)I h(x).定理5如果“(X)是不可约多项式,那么对于任意的两个多项式/(x),g(x),由p(x) I f(x)gM一定推出p(x) I f(x)或者p(x)\ g(x).因式分解及唯一性定理数域P上每一个次数XI的多项式/(X)都可以唯一地分解成数域P上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式f(X)= Pl (x)p2 (x)•- p s (x) = 4 (x)§2 (x) ••q (x),那么必有s = t ,并且适当排列因式的次序后有Pi(x) = c i q i(x),i = 1,2,•••,$,其中Cf(i = 1,2,…,s)是一些非零常数. 定理6如果不可约多项式"(x)是/(X)的k重因式(k>\),那么它是微商广(x)的—1重因式.定理7 (余数定理)用一次多项式A-6Z去除多项式/(X),所得的余式是一个常数,这个常数等于函数值/(&).定理8 P[x]中n次多项式(// > 0)在数域P中的根不可能多于〃个,重根按重数计算.定理9如果多项式/(x), g(x)的次数都不超过川,而它们对幵+ 1个不同的数弘冬,•••£+]有相同的值,即/g)= g(e),i = 1,2,•••/1 + 1,那么f(x) = g(x). 代数基本定理每个次数21的复系数多项式在复数域中有一根.复系数多项式因式分解定理每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理每个次数XI的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理10 (高斯(Gauss)引理)两个本原多项式的乘积还是本原多项式.定理11如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.定理12设/(朗=唧+%的+・•• +如是一个整系数多项式,而二是它的有理S根,其中互素,那么必有s\a n,r\a0.特别地,如果/(x)的首项系数"” =1 , 那么/(x)的有理根是整根,而且是心的因子.I定理13 (艾森斯坦(Eisenstein)判别法)设f(x) = a…x n + a…_x x n~x + • • •+a0是一个整系数多项式,如果有一个素数",使得1. p I a n ;2・PI勺_],%_2昇・・,°0;3・ p 2 / a ()那么/(x)在有理数域上是不可约的.第二章定理1对换改变排列的奇偶性.定理2任意一个"级排列与排列12・."都可以经过一系列对换互变,并且所作 对换的个数与这个排列有相同的奇偶性.立:a kA\ + % 人2 + ••• +a kn A m Cl \l A \ j + Cl 2!A 2 丿 + …+ 勺/帀定理4 (克拉默法则)如果线性方程组 a [X x A +a n x 2+-- + a Xn x n =b r“2內 + «22X 2 + ・・・ + a 2n X n = b 2,<°"內+°”2兀2+••• + %"="“ 4如…"J 的系数矩阵A=如如…①”♦ • • ♦ • •.a n\ Cl n2 …%.的行列式〃=国H 0 ,定理3设d =5 (':2 ,州表示元素®的代数余子式,则下列公式成〃,当《 =二 飞当kHi那么该线性方程组有解, 并且解是唯一的,解可以通过系数表为旦,… d=佥, 其中©是把矩阵A 中第丿•列换成方程组的常数项所成的行列式,即定理5如果齐次线性方程组4內+如七+•••+"],耳=°, 。

1-5因式分解定理

1-5因式分解定理

高等代数II 第一章多项式第5节. 因式分解定理教学大纲一.素因子的个数小学算术就学了正整数的因子分解, 学了质数合数. 初中学了多项式的因式分解. 因子分解是你们熟悉的. 很多人就认为因式分解很容易, 就凭那三招(提取公因子, 用乘法公式,分组分解法)就可以纵横天下。

其实,正整数的因子分解都是世界难题。

多项式就更不可能容易。

先别去碰难题。

还有些入门的小儿科都没有搞清楚。

比如, 1不能分解,为什么不是质数?学了负整数, 2=(-2)(-1)可以分解, 2还是质数吗?-6的分解式是3×(-2) 还是(-3)×2 还是(-1)×3×22x+4 在有理系数范围内能不能分解?2x+4=2(x+2) 不就分解了吗?还有一个被忽略的问题:书上要求因式分解到底。

你分到不知道怎么分就结束了。

为什么不想一下,你不知道怎么分,不能断定它就不能分。

有可能是它还能分,你水平不够没有发现它的分解式。

因此, 不但应该有方法教你怎样分,还应该教你判别分到什么时候就到底了。

最简单的情况: 全部因式都是一次,肯定到底了。

大部分时候不能分到一次,怎么知道它到底没有。

比如x10+x5+1, x12+x9+x6+x3+1在有理数范围内能不能分?1.正整数的分解:不能分解的正整数叫做质数(也叫素数), 能分解的叫合数.例1.1是质数还是合数?学生: 1不能分解, 是质数.老师: 1既不是合数, 也不是质数.学生: 既不是合数, 也不是质数, 是什么呢?老师: 它就是1.点评: 为什么不说“2 既不是合数, 也不是质数, 它就是2”?1 和2 都不能分解,它们有什么区别?例2. 如下正整数是多少个素因子的乘积?(1)24; (2) 24×2×1×3×1; (3) 24÷2÷1÷3÷1; (4) 23×32; (5) 210÷210。

高等代数§1.8 复系数与实系数多项式的因式分解

高等代数§1.8 复系数与实系数多项式的因式分解

地分解成一次因式与二次不可约因式的乘积.
推论5 设f ( x ) [ x ], 则 f ( x ) 在 上具有标准分解式
f ( x ) an ( x c1 )k1 ( x c2 )k2 ( x c s )ks ( x 2 p1 x q1 )k1
( x 2 pr x qr )kr
若 ( p( x )) 1, 下证 ( p( x )) 2 即可. 由代数基本定理, p( x )存在复根
则 也是 p( x )的根,即 x | p( x ), x | p( x ).
注意到( x , x ) 1 (否则, ,则 p( x )在 上 存在一次因式,这与 p( x )实不可约相矛盾.) 所以, ( x )( x ) | p( x ).
推论2 复数域上不可约多项式只有一次多项式. 即 f ( x ) [ x ], 若 ( f ( x )) 1, 则 f ( x ) 可约.
2、复系数多项式因式分解定理
定理2 f ( x ) [ x ], 若 ( f ( x )) 1, 则 f ( x ) 在 复数域上可唯一分解成一次因式的乘积.
[ x 2 (
n 2 2 n 2 2 n 2 2 n 2 2

)x

]
2 n2 2 ( x 1)( x 1)( x 2 x cos 1) [ x 2 x cos 1] n n
2
不可约多项式.

求 x n 1 在 上与在 上的标准分解式.
在复数范围内 x n 1 有n个复根,
2 n 1
解: 1)
1, , , , 2 2 i sin , 这里 cos n n 2k 2k k cos i sin , n n

高等代数第1章.

高等代数第1章.
sihuabin@ 南昌大学理学院数学系
例1 求方程2x4-x3+2x-3=0的有理根。 解: 由定理12,方程的有理根为r/s 则必有s⎪an=2,r⎪a0=-3 从而方程的可能有理根为±1,±3,±1/2,±3/2 用综合除法可知,只有1为方程的根。 例2 证明:f(x)=x3-5x+1在Q上不可约。 证明: 若f(x)可约 则f(x)至少有一个一次因式,即有一个有理根 但f(x)的有理根只可能是±1 而f(1)=-3,f(-1)=5 矛盾! 所以f(x)不可约
§1.8 复系数与实系数多项式的因式分解
代数基本定理:对于任意的f(x)∈C[x],若 ∂(f(x))≥1,则f(x)在复数域C上必有一根。 利用根与一次因式的关系,代数基本定理 可以等价地叙述为: 推论1 对于任意的f(x)∈C[x],若∂(f(x))≥1, 则存在x-a∈C[x],使得(x-a)⎪f(x),即f(x)在 复数域上必有一个一次因式。 推论2 复数域上的不可约多项式只有一次多项 式,即对于任意的f(x)∈C[x],若∂(f(x))>1, 则f(x)可约。

n+1 2
)x + ε
n −1 2
ε
n +1 2
]
当n为偶数时 x n − 1 = ( x − 1)( x + 1)[ x 2 − (ε + ε n+1 ) x + εε n+1 ] ⋅ ⋅ ⋅
n− 2 2 n+ 2 2 n− 2 2
[ x 2 − (ε + ε )x + ε ε ] 2π n−2 2 2 = ( x − 1)( x + 1)( x − 2 x cos + 1) ⋅ ⋅ ⋅ [ x − 2 x cos π + 1] n n

1.8 C,R上多项式的因式分解

1.8 C,R上多项式的因式分解

实系数多项式的标准分解式:
f ( x) a( x c1 )l1 ( x c2 )l2 ( x 2 p1 x q1 ) k1 ( x 2 pr x qr ) kr
c1 , , cs , p1 , , pr , q1 , , qr R; l1 , , ls , k1 , , kr N . pi2 4qi < 0, i 1, 2, , r.
评论: 代数基本定理是本节讨论的理论基础,在此 基础上肯定了n次方程有n个复根. 但这里并没有给出 求根的具体方法,高次方程求根问题还远远没有解决, 其内容构成数学的其它分支,已不是高等代数所要讨 论的问题.
作业: P48 补充题9.10.11.
一 复数域上多项式的因式分解
1. (代数基本定理) 对任意的f(x)(∈C[x],∂f≥1)在C 上至少有一个根(或:至少有一个一次因式). 由该定理可以推出: C上次数大于1的多项式全是可约多项式 事实上,据该定理, 当∂f >1时, 应有根α 1, 使得 f(x) = (x- α 1) f1(x), 若∂f1 >1 , 又据该定理有根 α 1,使 f(x) = (x- α 1) (x- α 2) f2(x), ·· ·,如此讨论下 去, 至多 ∂fn = 1,即fn(x) = x- α n, 故重根按重数计, 有 下 式成立: f(x) = a(x- α 1) (x- α 2) … (x- α n )
二 实数域上多项式的因式分解
1 复习共轭复数性质: 设 a bi, a bi ,则
1) ; 3) R ; 5) R. 2) ; 4) R;
2
也是 f ( x) 的根 R 上 f ( x) 有一非实复根 与 有相同重数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x
+
√ 2)(x

√2)(x2
+
2).
而在复数域 C 上,还可以进一步分解成




(x + 2)(x − 2)(x + 2i)(x − 2i).
由此可见,必须明确系数域后,所谓不能再分才有确切的涵义.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
注 1 根据定义,一次多项式总是不可约多项式.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的定义
在下面的讨论中,仍然选定一个数域 P 作为系数域,我们考察 数域 P 上的一元多项式环 P[x] 中的因式分解.
定义 数域 P 上次数 ≥ 1 的多项式 p(x) 称为数域 P 上的不可约多项 式(irreducible polynomial),如果它不能表成数域 P 上的两个 次数比 p(x) 的次数低的多项式的乘积.
现在设不可约因式的个数为 s − 1 时唯一性已证. 由 (1),p1(x) | q1(x)q2(x) · · · qt(x),因此,p1(x) 必能整除其中的 一个,不妨设
p1(x) | q1(x).
因为 q1(x) 也是不可约多项式,所以有
p1(x) = c1q1(x),
(2)
. . . .... .... .... . . . . .... .... .... . .
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
因式分解与系数域
例如,在有理数域 Q 上,把 x4 − 4 分解为
(பைடு நூலகம்2 − 2)(x2 + 2),
的形式就不能再分了. 但在数域 Q(√2),或更大一些,在实数域 R 上,就可以进一步分解成
. .. . . ..
标准分解与最大公因式
定理 设 f(x), g(x) ∈ P[x],且不为 0, 又
f(x) = apr11 (x)pr22 (x) · · · prss (x), ri ≥ 0 g(x) = bpt11 (x)pt22 (x) · · · ptss (x), ti ≥ 0
分别为 f(x), g(x) 的标准分解,则
证 对 s 用数学归纳法不难证明.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
因式分解及唯一性定理
定理 (因式分解及唯一性定理)
数域 P 上每一个次数 ≥ 1 的多项式 f(x) 都可以唯一地分解成数 域 P 上一些不可约多项式的乘积. 所谓唯一性是说,如果有两个
(p(x), f(x)) = c−1p(x).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的性质
定理 如果 p(x) 是不可约多项式,那么对于任意的两个多项式 f(x), g(x),由 p(x) | f(x)g(x) 一定推出 p(x) | f(x) 或者 p(x) | g(x).
. .. . . ..
因式分解唯一性
在 (1) 式两边消去 q1(x),就有 p2(x) · · · ps(x) = c−1 1q2(x) · · · qt(x).
由归纳法假定,有
s − 1 = t − 1, 即 s = t,
(3)
并且适当排列次序之后有
p2(x) = c′2c−1 1q2(x), 即 p2(x) = c2q2(x),
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的性质
定理 如果 p(x) 是不可约多项式,那么对于任意的两个多项式 f(x), g(x),由 p(x) | f(x)g(x) 一定推出 p(x) | f(x) 或者 p(x) | g(x). 证 如果 p(x) | f(x),那么结论已经成立. 如果 p(x) ∤ f(x),那么由上面的命题可知
. .. . . ..
因式分解唯一性
再证唯一性. 设 f(x) 可以分解成不可约多项式的乘积
f(x) = p1(x)p2(x) · · · ps(x). 如果 f(x) 还有另一个分解式
f(x) = q1(x)q2(x) · · · qt(x),
其中 qi(x) 都是不可约多项式, 于是
f(x) = p1(x)p2(x) · · · ps(x)
因式分解与系数域
在中学所学代数里我们学过一些具体方法,把一个多项式分解为 不可再分的因式的乘积. 但那里并没有深入地讨论这个问题. 那 里所谓不能再分,常常只是我们自己看不出怎样再分下去的意 思,并没有严格地论证它们确实不可再分. 所谓不能再分的概念, 其实不是绝对的. 而是相对于系数所在的数域而言的.
证 如果 p(x) | f(x),那么结论已经成立. 如果 p(x) ∤ f(x),那么由上面的命题可知
(p(x), f(x)) = 1.
即得 p(x) | g(x).
推论 如果不可约多项式 p(x) 整除一些多项式 f1(x), f2(x), · · · , fs(x) 的 乘积,那么 p(x) 一定整除这些多项式之中的一个.
分解式
f(x) = p1(x)p2(x) · · · ps(x)
= q1(x)q2(x) · · · qt(x),
那么必有 s = t,并且适当排列因式的次序后有
pi(x) = ciqi(x), i = 1, 2, · · · , s. 其中 ci(i = 1, 2, · · · , s) 是一些非零常数.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的性质
定理 如果 p(x) 是不可约多项式,那么对于任意的两个多项式 f(x), g(x),由 p(x) | f(x)g(x) 一定推出 p(x) | f(x) 或者 p(x) | g(x).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
因式分解存在性
证 先证分解式的存在. 我们对 f(x) 的次数作数学归纳法. 因为一次多项式都是不可约的,所以 n = 1 结论成立. 设 ∂(f(x)) = n,并设结论对次数低于 n 的多项式已经成立. 如果 f(x) 是不可约多项式,结论是显然的,不妨设 f(x) 不是不 可约的,即有
(p(x), f(x)) = 1.
即得 p(x) | g(x).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的性质
定理 如果 p(x) 是不可约多项式,那么对于任意的两个多项式 f(x), g(x),由 p(x) | f(x)g(x) 一定推出 p(x) | f(x) 或者 p(x) | g(x).
(4)
pi(x) = ciqi(x)(i = 3, · · · , s).
(2), (3), (4) 合起来即为所要证的. 这就证明了分解的唯一性.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
标准因式分解
在多项式 f(x) 的分解式中,可以把每一个不可约因式的首项系 数提出来,使它们成为首项系数为 1 的多项式,再把相同的不可 约因式合并. 于是 f(x) 的分解式成为
f(x) = f1(x)f2(x),
其中 f1(x), f2(x) 的次数均低于 n. 由归纳法假定 f1(x) 和 f2(x) 都 可以分解成数域 P 上一些不可约多项式的乘积. 把 f1(x), f2(x) 的 分解式合起来就得到 f(x) 的一个分解式. 由归纳法原理,结论普遍成立.
. . . .... .... .... . . . . .... .... .... . .
证 如果 p(x) | f(x),那么结论已经成立. 如果 p(x) ∤ f(x),那么由上面的命题可知
(p(x), f(x)) = 1.
即得 p(x) | g(x).
推论 如果不可约多项式 p(x) 整除一些多项式 f1(x), f2(x), · · · , fs(x) 的 乘积,那么 p(x) 一定整除这些多项式之中的一个.
f(x) = cpr11 (x)pr22 (x) · · · prss (x),
其中 c 是 f(x) 的首项系数,p1(x), p2(x), · · · , ps(x) 是不同的首项 系数为 1 的不可约多项式,而 r1, r2, · · · , rs 是正整数. 这种分解 式称为标准分解式.
. . . .... .... .... . . . . .... .... .... . .
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不可约多项式的性质
命题 p(x), f(x) ∈ P[x],且 p(x) 不可约,则
(p(x), f(x)) = 1, 或 (p(x), f(x)) = c−1p(x)
(c 为 p(x) 的首项系数). 后一情况成立当且仅当 p(x) | f(x).
(1)
= q1(x)q2(x) · · · qt(x).
. . . .... .... .... . . . . .... .... .... . .
相关文档
最新文档