扩散制作PN结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章扩散制作PN 结

Pfann在1952年提出采用扩散技术改变硅或锗的导电类型的设想[1]。此后,人们对如何用扩散方法将掺杂剂引进硅中又提出种种设想,其研究目标是如何控制硅中掺杂剂的浓度、均匀性、重复性以及大批量生产过程中如何降低成本。现在,扩散作为一项基础核心技术在半导体元器件制造工艺中得到广泛的应用。我们可以使用下列方法将掺杂剂原子引入硅中:⑴高温下汽相形成的化学源扩散;

⑵掺杂氧化物源的扩散;⑶离子注入层的退火与扩散。离子注入层的退火是为了激活注入原子和减少离子注入造成的晶体损伤。当退火在高温下进行时,扩散便同时发生。在集成电路工艺中离子注入有着广泛的应用。

扩散研究的另一方面是改进由实验数据而来的扩散模型,从理论分析预测所得到的扩散结果。最终目标是根据工艺参数来计算半导体器件的电特性。

扩散理论主要从以下两个方面发展,即Fick扩散方程的连续性理论和涉及到点缺陷、空位和填隙原子以及杂质原子间相互作用的原子理论。连续性理论是根据具有适当的扩散系数的Fick方程的解来描述扩散现象。掺杂元素的扩散系数可以根据表面浓度、结深或浓度分布等实验测试和Fick方程的解来确定。杂质浓度不高时,测得的扩散分布性能良好,并且与扩散系数为常数的Fick方程相符合。在这些情况中,原子怎样运动并不知道。而当杂志浓度较高时,扩散浓度与简单扩散理论所预言的结果有偏离,而且杂质扩散还受简单Fick扩散定律未考虑在内的其

他因素的影响。因为扩散分布的测量揭示出扩散效应对浓度依赖性,所以高浓度扩散须应用与浓度有关的Fick扩散方程。与浓度有关的扩散系数已由Boltzman —Matano分析或其他的解析式决定。基于缺陷—杂质相互作用的原子扩散模型用来解释与浓度有依赖关系的扩散系数和包括快速热处理(RTP)、快速热扩散(RTD)过程的其他反常扩散所得到的实验结果。原子扩散理论依旧处于积极的发展状态中。许多扩散理论和实验结果已经归并入各种工艺模型中。Taurus-Process 和 TSUPREM4[3]结合了所有重要的物理模型来精确分析深亚微米扩散现象,包括高浓度效应(High concentration effects.),氧化增强和延缓(Oxidation enhancement and retardation)(OED and ORD)效应,掺杂剂通过电场、配对、和发射非平衡电缺陷交互作用(Dopant interaction through the electric field, pairing, and emitting non-equilibrium point defects.),瞬态增强扩散(Transient enhanced diffusion)(TED), 位错环形成和发展(Dislocation loop formation and evolution),杂质在多晶硅中的扩散与晶粒尺寸的关系(Dopant diffusion in polysilicon with dependence on grain size),杂质与多晶硅中晶粒尺寸变化的关系(Dopant dependent grain size evolution in polysilicon),氮抑制Si/SiO2结构中带隙复合速率(Nitrogen-suppressed interstitial recombination rate at Si/SiO2),氟增强杂质在氧化层的扩散速率(Fluorine-enhanced dopant diffusivity in the oxide),厚度(即结构)与氧化层中杂质扩散速率的(Thickness (i.e. structure) dependent dopant

diffusivity in the oxide),由于工艺模型仍在发展,所以我们必须意识到模型的局限性。

5.1扩散的基本原理

高温下,单晶固体中会产生空位和填隙原子之类的点缺陷。当存在主原子或杂质原子的浓度梯度时,点缺陷会影响原子的运动。在固体中的扩散能够被看成为扩散物质借助于空位或自身填隙在晶格中的原子运动。图1.所示为晶格常数为a 的简化二维晶体结构中的原子扩散模型。空心圆表示占据低温晶格位置的主原子,实心圆既表示主原子也表示杂质原子。在高温情况下,晶格原子在其平衡晶格位置附近振动。当某一晶格原子偶然地获得足够的能量而离开晶格位置,成为一个填隙原子,同时产生一个空位。当邻近的原子向空位迁移时,这种机理称为空位扩散。

假如填隙原子从一处移向另一处而并不站据晶格位置,则称为填隙扩散。一个比主原子小的原子通常做填隙式运动。填隙原子扩散所需的激活能比那些按空位机理扩散的原子所需的激活能要低。

采用统计热力学的方法能估算给定晶体的点缺陷的浓度和激活能并发展其扩散理论[2]。然后将理论结果与实验发现做出比较。例如,就硅而言,Ⅲ和Ⅴ族元素通常认为是空位机理占优势的扩散。Ⅰ和Ⅷ族元素的离子半径不大,他们在硅中都能快速扩散。通常认为他们是按填隙机理阔撒的。当杂质浓度高,呈现位错或

其他高浓度杂质存在时,用这些简单的原子机理来描述扩散就不适当了。 当杂质浓度和位错密度都不高时,杂质扩散可以唯象地用扩散系数恒定的Fick 定律来描述。对于高杂质浓度情况,则要用与浓度有关的扩散系数与所假定的原子扩散机理或其他机理相结合来描述。

5.1.1一维Fick 扩散方程

1855年Fick 发表了他的扩散理论。假定在无对流液体(或气体)稀释溶液内,按一维流动形式,每单位面积内的溶质传输可由如下方程描述:

t

t x N D J ∂∂-=),( (1)

式中J 是单位面积的溶质的传输速率(或扩散通量),N 是溶质的浓度,假定它仅仅是x 和t 的函数,x 是溶质流动方向的坐标,t 是扩散时间,D 是扩散系数。 式(1)称为Fick 扩散第一定律。它表明扩散物质按溶质浓度减少的方向(梯度的负方向)流动。

根据质量守恒定律,溶质浓度随时间的变化必须与扩散通量随位置的变化一样,即:

x

t x J t t x N ∂∂-=∂∂),(),( (2)

将式(1)代入式(2),得到一维形式的Fick 第二定律:

相关文档
最新文档