人体脉搏信号检测系统设计
一种便携式脉搏测量系统的设计
关 键 词 :脉 搏 测 量 ; 红 外 传 感 器 ;信 号 调 理 电路 ;S TC 8 9 C 5 1 中 图 分 类 号 :TN3 5 3 文 献标 识 码 :A 国 家标 准 学 科 分 类 代 码 :5 1 0 . 8 0 4 0
De s i g n o f a p o r t a bl e pu l s e me a s u r e me n t s y s t e m
La n YU
( Sh a nx i Po l y t e c h n i c I n s t i t u t e, Xi a n y a n g 7 1 2 0 02 , Ch i n a )
Ab s t r a c t : O ut d o or e me r ge n c y c a r e us u a l l y r e qu i r e s f a s t a nd a c c ur a t e,n on — i n va s i v e m e a s ur e me n t o f hu ma n p ul s e
s y s t e m b a s e d o n STC8 9C5 1 mi c r o c o nt r ol l e r .T he c om p l e t i on o f t he s ys t e m ha r dw a r e a n d s of t wa r e de s i g n,t he mi c r oc o nt r ol l e r t hr o ug h t he i ndu c t i on f r e qu e nc y of t h e pu l s e t o pu l s e i s obt a i ne d b y a dd i n g t he pho t os e ns i t i ve t r i o de, a g ai n b y t he c om pu t e r c a l c ul a t e s a mi nut e p ul s e e l e c t r i c s i g na l f r e q ue n c y pul s e, da t a f r om t he LED di gi t a l t u be d i s pl a y. Thr ou gh t he p e r f o r man c e t e s t s y s t e m i s s t a bl e, v a l i d r a ng e: 4 O~ 1 99 t i me s pe r mi n ut e, t he e r r o r i s l e s s t h a n 2 . Ke y wo r ds: pul s e me a s ur e me n t ; i nf r ar e d s e ns o r; s i gn a l pr o c e s s i ng c i r c u i t ; STC89 C51
《人体脉搏信号测试系统》设计提案
人体人体脉搏信号脉搏信号脉搏信号测试测试测试系统系统系统设计提案摘 要:人体脉搏信号测试系统由上、下位机构成,下位机通过电容传声器采集脉搏信号,由串口RS2232(USB或无线传输方式)将信号送入上位机;上位机利用虚拟仪器技术对信号进行软件处理、分析和波形显示。
一、第一方案第一方案人体脉搏信号测试系统人体脉搏信号测试系统组成组成组成人体脉搏信号测试系统由上、下位机组成。
下位机(单片机系统) 进行数据采集、信号调理,上位( PC) 机处理、分析数据、显示波形,上、下位机通过串口RS-232 通信(系统框图见图3) 。
(图1)人体脉搏信号测试系统框图1 1 传感器传感器传感器为了克服接触式(光电式、应变计式及压电晶体式等) 传感器获取脉搏信号信息时易受干扰的缺点,建议以非接触式采集低频率、低幅值的脉搏波信号。
选用外套耦合腔的电容传声器B&K-4193型(主要指标为:灵敏度12.5mV/Pa,极化电压200V,频率范围0.01Hz~20kHz,频响特性:声压场15~146dB,具有瞬态响应快、低频响应好等特点)。
2 2 下位机系统下位机系统下位机系统主要由选通滤波、程控放大、A/D 转换、单片机等几部分组成(图4) 。
信号调理(放大与滤波)是下位机的主要功能。
滤波处理包括抑制共模干扰(如工频干扰、人体静电干扰)、消除基线漂移等。
整个系统由(89C51) 单片机控制,经过处理后的信号由串口RS-232 送入上位机。
(图2)下位机系统框图上位机系统3上位机系统上位PC 机通过RS-232串口读入信号,由软件处理后显示脉搏波形。
上位PC 机的界面(软面板) 主要由控制窗口、显示窗口、数据窗口等组成。
软面板代替传统仪器硬开关、按钮控制整个采集过程、实现波形分析、显示、回放等功能。
第二方案二、第二方案该方案由应变式脉搏传感器及其信号放大及滤波电路、AD 转换、接口及脉搏信号数字处理软件构成。
系统的最大特点是能够用LabVIEW虚拟仪器的操作面板及相应的程序, 显示出脉搏的波形。
便携式心率采集系统设计
便携式心率采集系统设计学生:学号:指导教师:助理指导教师:专业:摘要随着生物医学工程技术的开展, 医学信号测量仪器日新月异。
生物医学测量与临床医学和保健医疗的联系日益严密。
通过对人体各种生理信号的检测,能更好的认识人体的生命现象,这其中脉搏信号包含丰富的人体健康状况信息,从中提取的心率值对人体健康有着重要的参考作用。
本文采用光电反射式传感器, 设计了一套便携式可穿戴的获取和保存脉搏信号的系统。
本设计主要是基于STM32L低功耗单片机,利用光电传感器产生脉冲信号,经过放大整形滤波后,输入单片机内AD进展采样并将数字化后的脉搏信号和计算出的心率值保存在SD卡中。
后期通过上位机软件可以观测脉搏信号,对人体健康进展评估,因此该系统适用于保健中心、医院和家庭等场所。
本设计所设计的基于单片机的便携式心率采集系统对推进脉诊技术客观化和HRV研究具有积极的促进作用。
关键词:脉搏,单片机,光电传感器,脉冲信号,便携式ABSTRACTWith the development of the biomedical engineering technology, the medical signal measuring instrument is changing everyday. Biomedical measurement and clinical medicine and health care increasingly close ties. We could better understand the phenomenon of human. life through various physiological signal detection of the human body. Pulse inclusions rich state of the health information, By using optical sensors, With the high development of electronics and puter nowadays, the pulse diagnosing technology should be objective and quantitive. this text access to the pulse signal design methods. This paper mainly introduces the concrete realization method for digital pulse counter, which uses photoelectric sensors to generate pulse signal. The pulse signal is amplified and regenerated to input into MCU to carry out corresponding control, as a result the pulse number per a minute is measured. The use of the pulse counter is quick and convenient. Through observing the pulse signal, human health can be inspected, it is usually used in health care centers and the hospitals. In my design, Portable heart rate measuring instrument based on MCU has a positive role in promoting the objective of the pulse technology.Key words:Pulse, MCU, Photoelectric Sensor, Pulse Signal, Portable目录摘要IABSTRACTIII1 绪论11242 整体系统结构62.1 脉搏测量模块772.1.2 光电式脉搏传感器711131319213 系统软件设计233.1功能配置:233.2硬件相关配置:243.3文件系统配置:24325.总结33参考文献341 绪论随着人们生活水平的提高,地球环境遭到破坏,多种疾病威胁着人们的生命,而心脏病的发作又是人们难以预防的突发致命疾病。
ARM数字式人体脉搏仪设计方案
封面作者:PanHongliang仅供个人学习嵌入式系统设计题目:基于ARM的数字式人体脉搏仪的设计专业:电气工程及其自动化学号:K030941441姓名:张雄2011年11月14日-数字式人体脉搏器测量系统总体方案设计1.1系统硬件电路设计方案数字式人体脉搏器是通过脉搏传感器采集脉搏信息输出电压信号,经信号放大电路对英进行放大。
然后,将放大后的脉搏信号通过A/D转换模块转换为单片机易于处理的脉冲信号。
通过对单片机进行编程来实现对脉搏波动频率的测量和计算,最终在显示电路中直观的显示出来。
硬件原理框图如图1.1所示:图1. 1数字式人体脉搏仪测疑系统駛件原理框图由图可知,本系统硬件部分主要由以下部分构成:脉搏传感器部分、信号放大电路部分、A/D 转换电路部分、单片机处理电路部分及显示电路部分。
其中各部分实现功能如下:(1)脉搏传感器部分。
选用合适的脉搏传感器,将脉搏信号转换成电信号输出。
脉搏传感器的精度、灵敏度、抗干扰能力及安装方式决定了脉搏测量精度,因此其选型对整个设计具有决圧性的作用。
(2)信号放大电路部分。
脉搏传感器出来的电压信号较弱,一般在亳伏级,需要进行放大。
所以,设计信号放大电路,将脉搏传感器出来的信号进行放大,使之成为一个幅值适当的信号,便于后续电路的处理。
(3)A/D转换电路部分。
单片机是数字信号处理工具,输入单片机的信号必须是离散的数字信号或者是脉冲信号,经A/D转化,便于单片机处理。
(4)单片机处理电路部分。
本设计作为一个简单脉搏测量仪,最后需给出脉搏波动频率,以单片机作为信息处理中心,通过对单片机进行编程,完成信号输入检测、信息分析处理及信息显示。
(5)显示电路部分。
单片机处理得到的脉搏波动频率信息,最后在显示电路中直观地显示出来。
所以,需要选用合适的显示设备及显示电路,来实现对脉搏波动频率信息的显示。
1. 1. 1脉搏传感器的选择传感器又称为换能器、变换器等。
脉搏传感器是脉搏检测系统中重要的组成部分,其基本功能是将切脉压力和挠动脉搏动压力这样一些物理量(非电量)转换成为便于测量的电量。
脉搏测量仪设计
第1章概述随着科学技术的发展,脉搏测量技术也愈来愈先进,对脉搏的测量精度也愈来愈高,国内外前后研制了不同类型的脉搏测量仪,而其中关键是对脉搏传感器的研究。
起初用于体育测量的脉搏测试集中在对接触式传感器的研究,利用此类传感器所研制的指脉、耳脉等测量仪各有其优缺点。
指脉测量比较方便、简单,但因为手指上的汗腺较多,指夹常年利用,污染可能会使测量灵敏度下降:耳脉测量比较干净,传感器利用环境污染少,容易保护。
但因耳脉较弱,尤其是当季节转变时,所测信号受环境温度影响明显,造成测量结果不准确[3]。
过去在医院临床监护和日常中老年保健中出现的日常监护仪器,如便携式电子血压计,可以完成脉搏的测量,可是这种便携式电子血压计利用微型气泵加压橡胶气囊,每次测量都需要一个加压和减压的进程,存在体积庞大、加减压进程会有不适、脉搏检测的精准度低等缺点。
最近几年来国内外致力于开发无创非接触式的传感器,这种传感器的重要特征是测量的探测部份不侵入机体,不造成机体创伤,能够自动消除仪表自身系统的误差,测量精度高,通常在体外,尤其是在体表间接测量人体的生理和生化参数。
其中光电式脉搏传感器是按照光电容积法制成的脉搏传感器,通过对手指结尾透光度的监测,间接检测出脉搏信号。
具有结构简单、无损伤、精度高、可重复利用等长处。
通过光电式脉搏传感器所研制的脉搏测量仪已经应用到临床医学等方方面面并收到了理想效果。
人体心室周期性的收缩和舒张致使主动脉的收缩和舒张,是血流压力以波的形式从主动脉根部开始沿着整个动脉系统传播,这种波成为脉搏波[4]。
从脉搏波中提取人体的心理病理信息作为临床诊断和医治的依据,从来都受到中外医学界的重视。
脉搏波所呈现出的形态(波形)、强度(波幅)、速度(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波收集和处置具有很高的医学价值和应用前景[5]。
但人体的生物信号多属于强噪声背景下的低频的弱信号, 脉搏波信号更是低频微弱的非电生理信号,因此必需通过放大和后级滤波以知足收集的要求。
光电脉搏测量仪
光电脉搏测量仪设计报告一、设计意义从脉搏波中提取人体的生理病理信息作为临Array床诊断和治疗的依据,历来都受到中外医学界的重视。
目前医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。
为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高,因此,需要有使用更加方便,测量精度更高的设备。
二、关键技术脉搏检测中关键技术是传感器的设计与传感器输出的微弱信号提取问题, 本文设计的脉搏波检测系统以光电检测技术为基础,并采用了脉冲振幅光调制技术消除周围杂散光、暗电流等各种干扰的影响。
并利用过采样技术和数字滤波等数字信号处理方法,代替实现模拟电路中的放大滤波电路的功能。
本系统模拟电路简单,由ADC841芯片实现脉搏信号采集,信号处理和脉搏次数的计算等功能,因此体积小,功耗低,系统稳定性高。
本系统可实现脉搏波的实时存储并可实现与上位机(PC机)的实时通讯, 因此可作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。
三、硬件设计3.1 设计框图光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。
本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。
脉搏测量仪硬件框图如图1所示。
当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。
由于手指放在光的传递路径中,血管中血液饱和程度的变化将引起光的强度发生变化,因此和心跳的节拍相对应,红外接收三极管的电流也跟着改变,这就导致红外接收三极管输出脉冲信号。
该信号经放大、滤波、整形后输出,输出的脉冲信号作为单片机的外部中断信号。
单片机电路对输入的脉冲信号进行计算处理后把结果送到数码管显示。
3.2脉搏信号采集与放大整形目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。
光电脉搏信号检测电路设计
光电脉搏信号检测电路设计生物医学工程1班-唐维-3004202327摘要:系统采用硅光电池做为光电效应手指脉搏传感器识取脉搏信号。
信号经放大后采用低通放大器克服干扰。
关键词:脉搏测量放大器二阶低通一、前言脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。
随着科学技术的发展,脉搏测试不再局限于传统的人工测试法或听诊器测试法。
利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点, 可通过传感器对脉搏信号进行检测,这种技术具有先进性、实用性和稳定性,同时也是生物医学工程领域的发展方向。
本文将详细介绍一种光传导式的脉搏信号检测电路,并说明所涉及到的问题和方法。
二、系统设计1 系统目标设计及意义设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。
2 设计思想(1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。
(2)按正常人脉搏数为60~80次/min ,老人为100~150次/min ,在运动后最高跳动次数为240次/ min 设计低通放大器。
5Hz 以上是病人与正常人脉搏波体现差异的地方,应注意保留。
(3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz 干扰。
人体脉搏检测的软件模块设计
件、 驱动程序和应用软件三部分。本系统结 合水囊 间接接触法 通过 传感器将获取的脉搏波经滤波、 放大 、 A / D转换后通过 U S B接 口送入 P c机 , 再利用 L a b V I E W的V I S A函数库调用实现信号的输入 , 并
第3 1卷 第 5期 2 0 1 3年 1 0月
青
海 大 学 学 报
( 自 然 科
学No . 5 Oc t . 2 01 3
J o u na r l o f Q i n g h a i U n i v e r s i t y ( N a t u r a l S c i e n c e E d i t i o n )
析 仪模 块 , 构建 出了虚拟人 体 脉搏 采 集 系统 , 实现 了虚拟 仪 器界 面 中脉搏 信 号 的采 集 、 存储 、 回
放 和 处理 , 可应 用 于 中医脉诊教 学及 实验 。
关键 词 : 脉搏 波形 ; 虚拟仪 器 ; L a b V I E W; 采集 系统
中图分类 号 : T N 9 2
号 的采集 、 存储、 显 示及 分 析 。
1 系 统 设 计 分 析
人体 脉搏 采集 系统 结构 框 图如 图 1 所示 , 它主 要 由硬件 和 软 件 系统 组 成 , 硬 件包 括 计 算机 、 硬件 接 口。本 系统硬 件接 口采 用华 科 电子技 术研 究所 研 制 的 H K一2 0 0 0 C集 成 化数 字 脉搏 传感 器 , 它将 P V D F 压 电膜 、 灵 敏度 温度 补偿 元件 、 感 温元 件 、 信号 调理 电路 、 程 控 放 大 电路 、 基线 调 整 电路 、 A / D转 换 电路 、 串行 通信 电路 集成 在传 感器 内 , 采用 U S B总 线 接 口 , 携带方便、 便 于 移 动 。 软件 包 括 仪 器 I / O接 口软
脉搏监测系统设计方案
脉搏监测系统设计方案目录引言 (4)1 课题现状及研究意义 (5)1.1 课题现状 (5)1.2 研究意义 (6)2 方案论证 (7)2.1 方案选择 (7)2.2 系统框图 (8)3 主要芯片介绍 (10)3.1 光电传感器 (10)3.2 Atmega8515 (10)3.3 无线收发模块 (14)3.4 MAX232芯片 (17)4 硬件设计 (19)4.1 采集部分 (19)4.2 滤波部分 (20)4.3 放大部分 (21)4.4 555施密特整形电路 (22)4.5 下位机处理部分 (23)4.5.1单片机复位电路 (23)4.5.2数码管显示部分电路 (24)4.5.3无线发送模块部分 (24)4.5.4单片机的晶振和中央处理部分 (25)4.6 上位机部分 (26)4.6.1无线接收模块部分 (26)4.6.2接收数据处理部分 (26)4.6.3串口部分 (27)5 软件设计 (30)5.1 下位程序设计的流程图 (30)5.2 无线模块部分 (30)5.3 上位机部分流程图 (31)5.4 VB界面 (31)6 系统调试与验证 (33)6.1 硬件调试 (33)6.1.1 采集部分 (33)6.1.2 滤波部分 (33)6.1.3 放大部分 (34)6.1.4 555整形部分的调试 (34)6.1.5 下位机处理部分 (34)6.1.6 上位机处理部分 (35)6.2 软件调试 (35)6.2.1下位机处理部分 (36)6.2.2上位机部分 (37)6.3 整体调试 (39)6.4 抗干扰措施 (40)6.4.1硬件抗干扰措施 (40)6.4.2软件抗干扰措施 (40)7 结果分析与展望 (42)参考文献 (44)附录 (45)附录一 (45)附录二 (46)摘要随着人们生活的水平不断提高,生活方式、饮食结构不断改变,习惯的变化和高节奏的生活导致了高血压、冠心病等心血管疾病成为常见病与多发病。
心率测试仪设计毕业论文(设计)
毕业论文设计(论文)题目:心率测试仪设计摘要心脏的每一次搏动都会导致手指皮肤毛细血管产生一次充盈和收缩,该血脉变化信号可用于检测心率。
本课题设计了一种基于反射式光电传感器的心率测试仪,由反射式光电传感器提取出手指皮肤处的微弱脉搏信号并加以处理,使心率的测量显得更简便更精确。
本设计主要由六部分组成,包括测量电路、放大电路、滤波整形电路、倍频电路、控制电路和计数译码显示电路。
该设计的首要任务是测量电路中传感器的选取,其次就是信号的放大及滤波整形电路的设计,关键点是计数译码显示电路中计数和译码方式的选择。
该设计利用外置恒流源电路的反射式光电传感器,将人体的脉搏信号转变为可处理的电信号,再将所得电信号经过电压放大、滤除高频、A/D转换和倍频等处理得到数字脉冲信号,接着在由555定时器组成的闸门控制电路的控制下,经过计数器、译码器的处理,最终将心率测试结果用数码管显示出来。
利用Mulitisim仿真软件,可以对此心率测试仪实现仿真。
本设计只需要被测人把手指放在传感器内不足10秒钟就可以精确测量出心率值,测量结果用三位七段数码管显示。
本设计在仿真实验中,当输入1Hz正弦信号时,经过6次测试,心率平均值为60次/分钟,最大误差1.67%;当输入2Hz正弦信号时,经过6次测试,心率平均值为119次/分钟,最大误差1.68%。
仿真结果满足课题要求的当心率大于50次/分钟时,误差小于5%,仿真实验成功,所设计心率测试仪达到预期目的。
【关键词】心率测试仪反射式传感器Mulitisim仿真软件数字脉冲信号ABSTRACTThe heart beat of each time will cause the capillaries of finger skin have a filling and shrinkage, the changes of blood signal can be used for the detection of heart rate, which causes the finger skin producing the weak vibration. The vibration signal can be used to test the heart rate This topic designs a heart rate tester which is based on reflecting photoelectric sensor, By reflecting photoelectric sensor extracts the pulse signal from finger skin and process it, at last making the heart rate measurement appears more simple and precise.This design mainly by six parts, including measuring circuit, amplifying circuit, filtering plastic circuit, times frequency circuit, control circuit and count decode display circuit. As for the design , the selection of sensor is the primary task in the measurement circuit, followed by signal amplifier and filtering plastic circuit design, the key point is that the count of the counter decoder circuit and the choice of the ways of decoding.This design uses reflecting photoelectric sensor whose outer is constant current source circuit, this design makes the human body pulse signal into the electrical signals which can be handled, and then through the electrical signal voltage amplifier, filtering hf, A/D conversion and frequency doubling processing get digital pulse signal, and then process it under the control of the gate control circuit which is composed by 555 timing device, followed by the counter, decoder, eventually display the heart rate test results with A digital tube.Using Mulitisim simulation software can realize the simulation about the heart rate tester. This design only needs to the man putting his finger in the sensor less than 10 seconds to measure the value of heart rate, the measured results will be displayed with three seven period of digital pipe. This designed simulation results show that when the input 1 Hz sine signals, after six times test, average heart rate for 60 times/minutes, the maximum error 1.67%; When the input 2 Hz sine signals, after six times test, heart rate average of 119 times a minute, the maximum error of 1.68%. The simulation results meet requirements when the subject is greater than 50 / minutes heart rate, the error is less than 5%, the simulation experiment is successful, and the design of the heart rate tester achieved the expected purpose.【Key words】Heart rate tester Reflecting sensor Mulitisim simulation software Digital pulse signal目录前言 (1)第一章基于反射式光电传感器的设计 (2)第一节心率测试仪组成构架图 (2)第二节反射式光电传感器分析 (3)一、反射式光电传感器定义 (3)二、反射式光电传感器在心率测试仪中的应用 (3)三、传感器信号关系 (4)第三节设计方案分析 (5)一、测量法的选择 (5)二、技术指标要求 (6)三、测试误差分析 (6)第二章指尖脉搏信号采集 (8)第一节反射式光电传感器的工作原理 (8)第二节传感器恒流源电路 (9)第三章信号处理 (11)第一节放大电路 (11)一、电路说明 (11)二、电路仿真 (12)第二节滤波电路 (13)一、电路分析 (13)二、仿真波形 (15)第三节整形电路 (15)一、集成施密特触发器74LS14D (16)二、电路仿真 (16)第四节倍频电路 (17)一、利用简单门电路等组成的二倍频电路级联 (17)二、8倍频电路仿真 (18)第五节本章小结 (19)第四章心率显示 (20)第一节控制电路 (20)一、控制信号的产生 (20)二、启动清零的控制 (24)第二节计数译码显示电路 (25)一、计数器 (25)二、译码显示电路 (26)三、电路仿真图 (27)第三节系统测试 (28)第四节本章小结 (29)致谢.................................................................................................................. 错误!未定义书签。
脉搏测量仪设计方案
脉搏测量仪设计方案脉搏测量仪是一种用于测量人体脉搏的仪器,具有重要的医疗和健康监测功能。
下面是一个脉搏测量仪的设计方案,包括主要功能、硬件设计和软件设计。
1. 主要功能:- 测量人体脉搏:使用传感器检测人体脉搏,并将数据转化为数字信号。
- 显示脉搏数据:通过液晶显示屏显示当前的脉搏数据,以便用户实时获知自己的脉搏情况。
- 存储数据:将脉搏数据存储在内部存储器中,为用户提供历史脉搏数据的查询。
- 分析数据:对存储的脉搏数据进行分析,并生成相应的报告,帮助用户了解自己的脉搏状况。
2. 硬件设计:- 传感器:采用光电传感器,通过感应人体血流的反射光强度变化来测量脉搏。
- 微控制器:选择一款高性能的微控制器作为主控芯片,负责数据采集、信号处理、通信和显示控制等功能。
- 显示屏:选用高分辨率的液晶显示屏,可以显示脉搏数据和其他相关信息。
- 存储器:选择大容量的闪存作为数据存储器,并考虑使用可拓展的存储器接口,方便用户扩展存储容量。
- 电源:采用可充电电池供电,确保仪器长时间的使用时间,并考虑添加低电量提醒功能。
3. 软件设计:- 数据采集和处理:通过光电传感器采集到的模拟信号经过采样和放大处理,并转化为数字信号,以便于后续的数据处理和分析。
- 数据显示和存储:将测量到的脉搏数据显示在液晶屏上,并同时将数据存储在内部存储器中。
- 用户交互:设计使用友好的用户界面,并增加触摸屏等交互方式,使用户操作更加方便、直观。
- 脉搏数据分析:对存储的脉搏数据进行分析,可将数据进行图表化显示,以便用户更加直观地了解自己的身体健康状况。
- 数据传输:可考虑添加数据传输功能,如蓝牙或USB接口,以便用户将数据导出到电脑或其他设备进行进一步分析和储存。
以上是一个脉搏测量仪的设计方案,旨在提供一个可靠、精确且易于使用的脉搏测量解决方案,以满足用户的医疗和健康监测需求。
具体的技术细节和设计参数需要在实际设计过程中进一步完善。
脉搏测量实验报告结论(3篇)
第1篇一、实验目的本次实验旨在通过设计并实现一个基于ATmega8微控制器的脉搏测量与显示系统,验证脉搏测量技术的可行性和实用性,并探索其在实际应用中的潜在价值。
实验过程中,我们对脉搏信号的采集、处理、显示以及存储等环节进行了深入研究,取得了以下结论。
二、实验方法1. 硬件组成:实验中使用了ATmega8微控制器、LCD1602显示器、DS1302时钟芯片、AT24C02存储芯片、蜂鸣器、按键以及脉搏测量电路等。
2. 系统设计:采用模块化设计方法,将脉搏测量、显示、报警和数据存储等功能模块进行集成,形成一个完整的脉搏测量与显示系统。
3. 脉搏信号采集:利用脉搏测量电路将人体脉搏信号转换为电信号,通过ATmega8微控制器进行采样和处理。
4. 脉搏信号处理:对采集到的脉搏信号进行滤波、放大、去噪等处理,提取脉搏信号的频率和幅度信息。
5. 显示与报警:将处理后的脉搏信号在LCD1602显示器上实时显示,并根据设定的上下限值判断是否触发报警。
6. 数据存储:利用AT24C02存储芯片将测量数据、设定的上下限值以及报警状态等信息进行存储,实现数据的掉电保护。
三、实验结果与分析1. 脉搏信号采集:实验中成功采集到人体脉搏信号,并进行了有效处理,提取出脉搏信号的频率和幅度信息。
2. 显示与报警:系统实时显示脉搏测量结果,并根据设定的上下限值判断是否触发报警。
实验结果表明,系统对脉搏信号的检测和报警功能均达到了预期效果。
3. 数据存储:实验过程中,成功将测量数据、设定的上下限值以及报警状态等信息存储在AT24C02芯片中,实现了数据的掉电保护。
4. 实验误差分析:实验过程中,脉搏信号的采集和处理过程中可能存在一定的误差。
通过对实验数据进行统计分析,得出以下结论:(1)脉搏信号采集误差:主要受脉搏测量电路性能和人体脉搏信号波动的影响,误差范围在±5%以内。
(2)脉搏信号处理误差:主要受滤波、放大、去噪等处理环节的影响,误差范围在±3%以内。
基于单片机的远程监控脉搏测量仪设计共3篇
基于单片机的远程监控脉搏测量仪设计共3篇基于单片机的远程监控脉搏测量仪设计1基于单片机的远程监控脉搏测量仪设计近年来,随着科技的发展,智能医疗设备成为了研究的热点之一。
远程监控脉搏测量仪作为智能医疗设备的一种,它的出现为医疗行业带来了很大的便利和改善。
本文将介绍基于单片机的远程监控脉搏测量仪的设计思路。
一、前期准备在实际设计前,需要进行前期准备工作,包括了解脉搏测量原理、单片机的基本原理和网络通信原理。
在此基础上,我们还需要对脉搏测量仪进行分析和测试,以确定脉搏信号的特征参数和采样周期等重要参数。
二、硬件设计1.传感器模块脉搏测量仪的核心部分是传感器模块。
传感器模块的设计需要兼顾数据精度和实现难度。
在本设计中,我们采用了压力传感器模块,它是一种成本较低、测量精度较高的传感器。
在使用时,压力传感器模块根据脉搏的频率产生相应的压力波形,传感器模块通过变换电路将压力信号转换为电信号,然后输入到单片机系统中进行处理。
2.单片机系统本设计采用的是AT89S51单片机,它是一种高性价比的通用单片机。
单片机系统由单片机、AD转换器、RAM、ROM、EEPROM 等部分组成。
单片机通过AD转换器将模拟信号转换为数字信号,存储在RAM中,并通过通讯模块与用户终端进行交互和传输。
3.通讯模块在远程监控中,通讯模块是非常重要的组成部分。
通讯模块用于将单片机系统采集到的脉搏信号通过网络传输到用户终端。
在本设计中,我们采用的是ESP8266 Wi-Fi模块,它是一种高集成度的Wi-Fi芯片,具有低功耗、可靠性高等优点。
三、软件设计1.程序框图在单片机程序设计过程中,程序框图十分重要。
本设计中采用的是基于C语言的程序框图。
程序框图包括了采集、处理、存储、通讯等部分,并设置了失效检测和暴力破解功能。
2.程序设计本设计的程序设计采用了汇编语言和C语言相结合的方式进行开发。
通过汇编语言实现底层驱动,用C语言进行上层应用程序开发,并通过电脑端串口调试工具进行调试。
电子测量实验报告脉搏
电子测量实验报告脉搏实验目的:通过电子测量仪器测量脉搏信号的频率和幅值,并分析脉搏信号的特征。
实验仪器和材料:电子测量仪、电极贴片、导线、计算机。
实验原理:1. 脉搏信号是心脏每搏一次所产生的,脉搏信号在人体各部位都可以测得,但最常见的是手腕上的脉搏。
2. 脉搏信号是由心脏收缩产生的,它经过血管传导到各个部位,使得血液在血管内流动起伏,形成脉搏波形。
3. 脉搏信号的频率和幅值可以反映人体的生理状况,如心率、血压、心肌功能等。
实验步骤:1. 将电极贴片正确地贴在手腕上,保持良好的接触。
2. 将接地线连接到电子测量仪上的接地端口。
3. 将正极线连接到电子测量仪上的正极端口。
4. 打开电子测量仪的电源,并进行相应的设置。
5. 通过电子测量仪测量脉搏信号的频率和幅值。
6. 记录测量结果,并进行分析。
实验结果:通过电子测量仪测量脉搏信号,我们得到了脉搏信号的频率和幅值。
实验结果显示,脉搏信号的频率为X次/分钟,幅值为X伏。
实验分析:根据实验结果,我们可以得出以下结论:1. 脉搏信号的频率可以反映心率。
心率是心脏每分钟搏动的次数,一般以“次/分钟”为单位。
正常成人的心率范围是60-100次/分钟,若心率低于60次/分钟或高于100次/分钟,则可能存在心脏疾病或其他健康问题。
2. 脉搏信号的幅值可以反映血流量和血压。
脉搏信号的幅值越大,说明血流量越大,血压越高;反之,脉搏信号的幅值越小,说明血流量越小,血压越低。
通过测量脉搏信号的幅值,可以初步判断血压水平是否正常。
3. 脉搏信号的形态也具有一定的参考价值。
正常情况下,脉搏信号应该是周期稳定、波形规则、上升较快、下降较慢的波形。
若脉搏信号的波形异常,如存在剧烈的波动、波形不规则等,可能存在心脏病或其他疾病。
实验结论:通过本次实验,我们成功地使用电子测量仪器测量了脉搏信号的频率和幅值,初步了解了脉搏信号的特征。
脉搏信号的频率、幅值和形态可以反映人体的生理状况,如心率、血压、心肌功能等。
基于STC89C52的人体脉搏检测仪设计
脉搏信号 ,通过特定算法快速 、准确计算脉率 ,可 以在
硬件成本增加不多 的情况下 ,降低后 级信号处理 电路 的
设计难度 ,减轻处理器 的运算负担 。同时 ,信号处理 电 路 中引入了滞回放大 电路 ,可 以提高单片机 中断 的可靠 性。测试结果表 明 ,本仪器具有快速、准确 的特点 ,对 临床诊 断和受试者的数据采集有一定的帮助 。
一
、
鞠 出
11 .数学模型 的建立 根据下列数学关系式 :
f,
图1 单片 机实 现心 率测 定 的数 学模 型
n 硫 l
() 1
二 、 系统硬 件设 计
21 .系统总体结构及 工作原理
假 定某人 的心率为n 次/ ,则 6 K n 表示 以秒 为 1 分 0 /1 单位 的K个心搏 周期 的时 间间隔 ,将 式 ( )中的分母 1 变换成(0 /。 (/0 ,可得到在l个心搏周期的时间 6K n) £6 K)
统计外部脉 冲的个数 。若使用外 中断输入脚作 为门控信
号 ,则 可 以测 量外 中断 引脚上正 脉 冲的宽度 。基 于上 述特性 ,本 系统将T 设置成定时模式 ,实现对£ 0 K 0 的6 * 分频 ( 因单片机 的频率较高 ,实 际使用 时 ,£ 为机器周 期的 l分频 ),并 以此作为T 的外部脉 冲f 6 1 2 。将T 设置 1 成计数方式 ,使 用 门控位 ,统计P . / 1 33(I NT )高 电平 期 间从P . 35 输入 的脉冲数 ,然后根 据式 ( 3)的数学模
隔 ;f 1 0 2 经6 K分频 后 的时钟 频率 ; ( 0 n ) f 为f 6 K/ 2 为 K 心搏 周期 的时 间内 ,频率 f 个 2 的脉 冲个数 。若令n = 2 (0 / ) 2 6 Kn f,则简化后的心率计算公式为 :
人体脉搏波信号检测系统
人体脉搏波信号检测系统
程咏梅;夏雅琴;尚岚
【期刊名称】《北京生物医学工程》
【年(卷),期】2006(025)005
【摘要】脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息,能反映出人体心血管系统中许多生理病理的血流特征.将人体脉搏波转化为电信号进行测量和分析,使中医的脉象有了一个客观的分辨标准,便于揭开脉诊现代科学本质,为预防和治疗疾病提供参考.根据人体脉搏信号特征设计了一套脉搏检测装置.该装置由应变式脉搏传感器及其信号放大及滤波电路、AD转换、接口及脉搏信号数字处理软件构成.该脉搏检测系统的最大特点是能够用LabVIEW虚拟仪器的操作面板及相应的程序,显示出脉搏的波形.
【总页数】4页(P520-523)
【作者】程咏梅;夏雅琴;尚岚
【作者单位】北京工业大学机电学院,北京,100022;北京工业大学机电学院,北京,100022;北京工业大学机电学院,北京,100022
【正文语种】中文
【中图分类】R318.04
【相关文献】
1.人体血氧饱和度检测中消除脉搏波信号高频噪声的方法 [J], 李庆波;韩庆阳
2.人体心电信号检测系统的研究 [J], 杨华;耿晶辉;宫鹤
3.基于LabVIEW的人体脉搏波检测系统 [J], 王芳;吴效明
4.基于HHT分解光电容积脉搏波信号的人体血液流变信息评估 [J], 于露; 金龙哲; 徐明伟; 刘建国
5.人体脉搏波传播时差检测系统 [J], 李庆芬;瞿继恂;文晓阳
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1 研究背景和意义随着社会和科学技术的不断进步,人们对生命现象的认识也越来越深入,生物医学信号的检查是对人体健康状况评估的手段。
在医院里,通过检查必要的生物医学数据,医生可以对病人健康程度做一个评估,并且根据数据诊断出病患所得的疾病以及康复状况。
同时,医药保健类产品早已经不是医院的专利,以家庭为单位,几乎每个家庭都配备了必要的医疗保健类用品[1-3]。
在适宜的医疗设备条件下,病人可以不依靠医生的辅助,自己采集医学生理数据,通过医学根据对此参数分析,评估健康水平或者诊断自身是否有疾病。
现代的医疗仪器给人民生活带来了便捷,在智能化、便携式、可靠性、安全性等方面都有了很大的提高。
仪器在实现功能的同时都有不同的特点,有的仪器便于携带,有的仪器操作简单。
当然,结合众多优点的仪器无疑受到消费者的青睐。
以医院为单位,因为测量出来的数据可以直接提供给医生作为诊断或评估病人身体状况的参考,所以这类医疗仪器性能高、功能强大、测量数据准确。
而对于以家庭或个人来说,在保证功能的同时,方便测量生理数据、便于携带、价格低廉、智能化这些特点是此类医疗仪器发展的趋势。
作为诸多生理信号的一种,脉象信号蕴含着丰富的信息,从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。
脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征[4]。
许多中医文献分析脉象的形成和西医分析虽然表、述各有不同,但是有相同的科学原理。
人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。
血液经由心脏的左心室收缩而挤压流入主动脉,随即传递到全身动脉。
当大量血液进入动脉将使动脉压力变大而使管径扩张,在体表较浅处动脉即可感受到此扩张,即所谓的脉搏[1]。
正常人的脉搏和心跳是一致的。
脉搏的频率受年龄和性别的影响,婴儿每分钟120-140次,幼儿每分钟90-100次,学龄期儿童每分钟80-90次,成人为60-100次/分,老年人为55-60次/分。
正常人脉率规则,不会出现脉搏间隔时间长短不一的现象,脉搏强弱均等,不会出现强弱交替的现象。
成人脉率每分钟超过100次,称为心动过速;每分钟低于60次,称为心动过缓[2]。
综上所述,脉搏信号对于人体心脑血管系统和整体健康水平都有很好的反映,因此研制出一种能够对脉搏信号进行检测、分析的脉搏分析仪器就拥有重要的意义:其一,对于前期心脑血管疾病预防和中期病情监护,安全、方便、快捷的评估心脑血管健康状况的设备对人体心脑血管系统功能进行监测,及早发现病情,实时把握健康状况,并准确做出诊断具有重要的现实意义。
对于危重病人既可用于检查治疗,可及早发现致命性病变。
其二,对一般人则可用于早期健康评估和病人身体状况的愈后检查。
通过脉搏信号的检测和分析,可以结合其他生理参数,对人体亚健康状态的早期病变进行预测。
脉搏信号检测不需要复杂昂贵的设备,且操作简便拥有无创性的特点,在心脑血管和临床医学检查、治疗、用药、康复、保健等方面都有着良好的应用前景。
因此,诊脉建立切实可行的客观指标,即脉诊客观化,乃是继承和发扬中医脉学迫切需要解决的首要问题,在此同时实现可视化,对于疾病人群和健康人群的分类有着重大的意义。
利用现代的科学技术仿真中医诊脉,用科学的分析方法从不同角度分析脉搏波数据是实现客观化和可视化指标的重要手段。
应用脉诊的客观指标就可以使脉诊有了共同的客观标准和依据,促进相互讨论和交流脉诊的实践经验和研究成果,促进中医脉学的现代化和快速发展,提高中医临床诊断水平。
应用脉诊的客观指标,可以研究中医名家的诊脉特点,有利于吸取经验和观点。
现代脉搏信号仪器实现脉诊指标的客观化和可视化是通过测量脉搏信号,画出脉象图,测量图上各个指标来进行的。
因此,脉象图是实现脉诊客观化的一项重要指标。
脉诊所得脉象的各种信息可用脉搏传感器放在切脉部位的皮肤上,以不同的压力取法画出脉象曲线,这种脉象曲线称为脉象图。
以此为心脑血管疾病作诊断,这也为无创伤诊断开辟了一条新途径。
现代脉象诊断就要实现可视化,可以通过分析脉搏图,测量脉搏图的参数。
脉搏图指标在很多资料中命名方法各有不同,在实际中还没有统一的标准。
去除医生主观因素,运用科学的分析手段,对脉象信号进行分析,是势在必行的。
1.2人体脉搏信号检测系统研究现状1860年法国的Vierordt研制出第一台弹簧杠杆式脉搏描记器,使脉象研究由示意图阶段进入示波图阶段[6]。
随着技术水平的发展,脉象仪不断发展,国内外的学者制造出了有代表性、性能各异的脉诊仪器。
脉诊仪器研究的重点是传感器的设计,到现在为止,研究人员已经研制出种类繁多的传感器来模拟中医切脉时的手指,采集脉搏信号记录并分析。
现阶段,用于脉象信息采集的传感器根据其工作原理可分为:压力传感器、光电式脉搏传感器、传声器和超声多普勒技术[9-11]。
其中,压力传感器用的最多,因为它是将压力信号转换为电信号,是最接近中医切脉的模拟医生手指的功能。
它还包括压电式传感器,压阻型传感器和压磁式传感器[9,10]。
(1)压电式传感器利用压电材料的特性将脉搏的压力信号转换为电信号,根据压电式[12]材料的不同可分为压电晶体式传感器、压电陶瓷式传感器、压电聚合物传感器和复合压电材料传感器。
其中以PVDF压电薄膜传感器用的最多。
(2)压阻型传感器主要利用电阻率随应力变化的性质制成的,目前它的应用最为广泛,压阻式传感器根据压力的传导方式不同可分为固态压阻式传感器、液压传感器和气导式传感器。
(3)压磁式传感器也称作磁弹性传感器,是近年来国内外新兴的一种新型传感器。
它的作用原理是建立在磁弹性效应的基础上,即利用这种传感器将作用力变换成传感器导磁率的变化,并通过导磁率的变化输出相应变化的电信号。
但因理论和技术上尚未成熟,限制了其广泛应用。
(4)光电容积式脉搏传感器此种传感器测量部位是指端,由指总动脉分两路从指干两侧通向指尖,再由丰富的冠状小动脉弥散至毛细血管,然后从静脉回流。
用一束光线透过指端的毛细血管床,由于人体手指末端微血管床随着动脉搏动而发生血管容积的变化,因为随着脉搏搏动前后对光的吸收量不同,透过手指的光强也随之变化,利用光敏元件可测出这种随血管容积的变化而变化的光强信号,转换成电信号输出,以此反映出脉搏波的变化情况即获得指端容积脉搏波信号[13,14]。
(5)超声多普勒技术国外对脉搏波的研究,在仪器上正朝着超声显像方面发展,脉搏图也进入了由示波图到声像图研究的新阶段。
动脉脉搏除发出压力搏动的信息之外,还有管腔容积、血流速度、脉管的三维运动等多种信息,仅用压力脉图难以全部定量地反映脉象构成要素的指标。
随着医学超声显像诊断技术的发展,超声多普勒技术在脉象客观化的研究中已经日益受到重视,取得了一定的进展。
当然,传感器探头种类也很多,有单探头、双探头和多探头的传感器。
(1)单探头传感器的研究现在检测人体脉象信息的装置,主要是带有一个单点式脉象传感器的脉象仪,这类仪器是用的最多最广泛的、时间也是最久的。
人们用这类仪器已能初步识别十几种常见脉象,这些仪器的深入应用推动了我国脉象客观化的研究。
目前常用的单触头压力脉搏传感器在整体结构上主要采用了表带式和支架式两种形式。
表带式结构一般是通过尼龙绑带将传感器绑扎在被测者的腕部,操作方便、简单,记录的脉图受人体体位和呼吸的干扰较小。
支架式结构的特点是传感器固定在加压机构上,无须绑扎被测者的腕部,因而可以避免绑扎所引起的附加张力,与医者手指切脉的情景较为相符。
但是由于人体体位和呼吸的影响,被测者手腕与传感器之间的相对位置难以保持稳定,检测过程中会产生较大的呼吸干扰和杂散振动干扰。
另有一种是指套式的单触头压力脉搏传感器结构。
美国ub在20世纪80年代设计的一种脉搏波动检测装置将压力传感器分别并排固定于食指、中指、无名指的手套前端,按在被测者的寸、关和尺三部上,用三支电动描记笔同时记录三部脉的波形,用于进行脉象分析,并且可以将医者的取脉压力也同时显示出来。
用这种结构的传感器进行脉象信息检测,很好地模拟了手指切脉的情景,如果通过一定的设计使指套前端具有良好的力传导性能的话,那么在诊脉过程中除了由传感器检测脉波之外,医者还能根据指端对脉搏波动的感受来进行各种灵活的指法变化,从而测得不同取脉压力下脉搏波动的动态变化。
这种指套式结构所具有的良好模拟特性使得它具有一定的实用性,但是也有文献指出,这种结构形式难以保证医者指端与被测者腕部之间的位置相对稳定,以至于记录的脉图波形缺乏足够的稳定性,而且检测结果的重复性较差[8,15]。
单探头脉象传感器反映的信息比较局限,这是因为单点式脉象传感器的结构特点,限制了更多的脉搏信息及血管力学参数的测定。
单探头、单部位的检测方法与中医实际临床“三部九候”的切脉方法上有一定的差异,主要有下列两方面不足[8]:第一,单探头传感器无法区分血管轴向张力和径向搏动力。
第二,单探头传感器加脉取压时,换能器受到皮肤软组织的反压力不但与受压组织的变形量有关,还与“皮肤-软组织-动脉管”力学特性有关。
现有检测方法无法区分软组织变形量和无法区分软组织变形程度及软组织固有的弹性、硬度等力学参数对切脉压力的影响程度。
(2)双探头传感器的研究设计了双探头复合式脉象传感器,即由外围传感器和中心传感器组成双探头传感器。
中心传感器测得单纯垂直方向的力,而外围传感器测得脉搏搏动力、皮肤切向张力等的综合力对两路信号进行运算,能区分血管径向搏动力、轴向张力、血管等效硬度等力学指标。
双探头传感器的临床意义:目前国内对弦、平、滑等脉象的线性判别标准,由于受到单探头传感器件功能上的限制,只能根据波形形态来分析计算。
利用双探头传感器检测的脉象数据,可能做出深刻地揭示;双探头传感器所测得的脉象力学指标有可能为判断有关血管的固有弹性、硬度等力学性质提供客观标准,利用双探头传感器在无损检测血压、心血管功能状态以及建立中医脉象的力学指标、补充脉象的判断标准等方面都可以进行深入的研究。
(3)三探头传感器的研究三探头压力式传感器组合取脉时,挠动脉被加压以致阻断并被强制地分为三个有生理意义的小区。
三点的脉搏特征是不同的、有特殊生理意义的。
这种组合式的脉搏传感器,特别是“中突型”结构的,一是能测出挠动脉内血流状态;二是能比较压阻点近远心侧脉波的差别;三是能获得有关脉搏波传播速度的信息;四是能够鉴别脉波的拍变化的伪差;五是能大致估计整体外周阻力与首部外周阻力对脉波形态的影响。
同步三部脉象,并与单探头压力式传感器检测单部脉象的结果进行比较,得出以下几个初步结论:二者在最佳脉压力上有差,单部脉象检测在最佳取脉压力下的脉图主峰波高度与在这个压力下三部脉象同步检测所建立的主峰波高度有显著差异,测取的脉图在形态上归平、弦、滑等类,没有发现本质上的差别,对三部脉象同步检测时测取的寸、关、尺脉图进行形态归类,也无明显区别,但幅值差别较大,且因人而异[8,9]。