微波与等离子体合成
《微波辐照煤焦低温等离子体的形成机理》范文
《微波辐照煤焦低温等离子体的形成机理》篇一一、引言随着科技的不断进步,等离子体技术在煤焦领域的应用日益广泛。
微波辐照煤焦技术作为其中一种新兴的技术手段,以其独特的优势引起了广泛的关注。
本文主要探讨了微波辐照煤焦低温等离子体的形成机理,旨在为相关研究提供理论基础。
二、微波辐照煤焦的基本原理微波辐照煤焦技术是指利用微波辐射对煤焦进行加热和改性的一种技术。
微波辐射具有高频、高能、非接触式等特点,能够快速、均匀地加热煤焦,从而引发一系列的物理和化学变化。
三、低温等离子体的基本概念低温等离子体是一种特殊的气体状态,其中的电子和离子温度较高,而气体分子温度较低。
在微波辐照下,煤焦中的气体分子可以发生电离,形成低温等离子体。
低温等离子体具有极强的氧化性和还原性,能够有效地改善煤焦的结构和性质。
四、微波辐照下煤焦低温等离子体的形成机理在微波辐照下,煤焦中的有机物质会受到微波电磁场的作用,发生分子振动和内部热运动。
这种作用会使煤焦内部产生大量的自由基和活性物质。
当这些自由基和活性物质与气体分子发生碰撞时,会引发气体分子的电离和激发,从而形成低温等离子体。
具体来说,微波辐射的电磁场会使气体分子中的电子受到激发,使其跃迁到高能级。
这些高能级电子在与其他气体分子碰撞时,会传递能量并使其电离,产生更多的电子和离子。
同时,由于微波辐射的加热作用,煤焦内部的温度会逐渐升高,进一步促进了气体分子的电离和等离子体的形成。
五、影响微波辐照下煤焦低温等离子体形成的因素影响微波辐照下煤焦低温等离子体形成的因素主要包括微波功率、辐照时间、气氛条件等。
微波功率越大,对煤焦的加热效果越明显,有利于气体分子的电离和等离子体的形成。
辐照时间越长,煤焦内部的温度越高,有利于提高等离子体的浓度和稳定性。
此外,气氛条件也会影响等离子体的形成,如氧气、氮气等气体的存在会促进气体分子的电离和等离子体的形成。
六、结论本文通过分析微波辐照煤焦的基本原理和低温等离子体的基本概念,探讨了微波辐照下煤焦低温等离子体的形成机理。
微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析
微波ECR 等离子体增强磁控溅射制备SiN x 薄膜及其性能分析3丁万昱 徐 军 李艳琴 朴 勇 高 鹏 邓新绿 董 闯(大连理工大学三束材料表面改性国家重点实验室,大连 116024)(2005年5月24日收到;2005年9月12日收到修改稿) 利用微波ECR 磁控反应溅射法在室温下制备无氢S iN x 薄膜.通过傅里叶红外光谱、X 射线电子谱、膜厚仪、纳米硬度仪、原子力显微镜等分析手段,分析了N 2流量、S i 靶溅射功率等实验参数对S iN x 薄膜结构、化学配比以及机械性质的影响.结果表明,S iN x 薄膜中S i 2N 结构、化学配比及机械性质与等离子体中的S i 元素含量关系密切,随着N 2流量的增加或者S i 靶溅射功率的降低,等离子体中的S i 元素含量降低,S iN x 薄膜结构、化学配比及硬度发生变化,红外光谱发生偏移,硬度下降,沉积速率降低.关键词:SiN x ,磁控溅射,傅里叶变换红外吸收光谱,X 射线电子谱PACC :6855,6860,7830L3国家自然科学基金重大项目(批准号:50390060)资助的课题. E -mail :xujun @11引言SiN x ,由于它具有硬度高、抗腐蚀、耐高温、导热性与绝缘性好、光电性能优良等优点,因而在微电子领域、微机械系统、材料表面改性等诸多领域都得到广泛的应用[1—5].最近,Y en 等人发现SiN x 薄膜的膜厚极限非常低,达到115nm 厚度时仍能形成连续的薄膜,非常适用于计算机高密度磁盘保护膜[6],因此,对SiN x 薄膜的研究再一次在国内外引起重视.由于薄膜中成分配比将直接影响到SiN x 薄膜的性能,所以研究影响SiN x 薄膜成分配比的工艺参数也就具有重要意义.SiN x 薄膜的制备方法有多种,其中最常用的有物理气相沉积(PVD )法、离子束增强沉积(I BE D )法[7]和化学气相沉积(C VD )法[8—10]等.本实验利用微波ECR 等离子体增强磁控反应溅射法制备SiN x 薄膜[11].微波ECR 磁控反应溅射法是PVD 方法中的一种,它兼备了磁控溅射和反应溅射的优点,与C VD 方法相比较,可以在低温环境下(室温)制备SiN x 薄膜,解决了反应温度过高限制SiN x 薄膜应用问题,如SiN x 薄膜作为计算机磁盘保护膜[12,13];并且大大降低薄膜中的H 含量,提高薄膜机械性质,如硬度[12,13].此外,本方法在制备SiN x 薄膜过程中易于控制薄膜结构和成分,薄膜的许多性能可以与用C VD 方法、I BE D 方法制得的薄膜相媲美.21实 验本实验制备SiN x 薄膜设备采用自行研制的微波ECR 磁控溅射系统,关于该系统的详细描述请参阅相关文献[11,14,15].基片材料采用经过抛光处理的(100)取向单晶硅片,依次经过丙酮、酒精、去离子水超声清洗,然后吹干,最后固定在加射频偏压(RF )的载物台上.沉积前先对基片进行溅射清洗(Ar =20sccm ,-400V RF ,10min ),以去除单晶硅基片表面的氧化层,溅射靶材选取纯度为99199%的单晶硅靶,溅射硅靶同样加射频偏压.工作气体为高纯N 2(991999%)和高纯Ar (991999%);在实验过程中,真空室的本底真空抽至510×10-3Pa ;反应气压为012Pa 左右;微波功率为850W.本实验通过改变参数制备出不同的SiN x 薄膜.利用美国尼高利(Nicolet )仪器公司生产的智能型AVAT AR360傅里叶变换红外光谱仪(FT 2IR )(该仪器扫描范围在400—4000cm-1之间,扫描步长为第55卷第3期2006年3月100023290Π2006Π55(03)Π1363206物 理 学 报ACT A PHY SIC A SI NIC AV ol.55,N o.3,March ,2006ν2006Chin.Phys.S oc.2cm -1)、美国Acton 公司的SP 2305型单色仪、英国VG 公司MKII 型X 射线光电子能谱仪等设备分析薄膜的结构及成分,通过MTS XP 纳米硬度仪、Surfcorder ET 4000M 型膜厚仪、NanoScope Ⅲ原子力显微镜(AFM )等仪器分析薄膜的机械性质和表面形貌.实验参数如下表1所示,通过改变N 2流量或者Si 靶溅射功率,制备出不同成分、结构及化学配比的SiN x 薄膜.在改变N 2流量或者Si 靶溅射功率时,薄膜的沉积时间皆为120min ,载物台加的沉积偏压皆为-100V (RF ).表1 实验参数表样品N 2流量ΠsccmAr 流量ΠsccmS i 靶溅射功率ΠW111220350222035034203504820350515203506301035074203008420250942020010420150114205031结果与讨论3111红外光谱图1为在不同N 2流量下沉积的SiN x 薄膜的傅里叶变换红外光谱,图中各条谱线旁边的数字为样品编号.1号谱线为N 2流量为112sccm 时沉积的SiN x 薄膜的傅里叶红外变换光谱(FT 2IR ),从光谱中可以看到,谱线在611135cm -1,896178cm -1,110311cm -1处出现吸收峰,它们分别对应的是,Si 基底、Si 2N 伸缩振动峰、Si 2O 伸缩振动峰[16—18].其中Si 2O 伸缩振动峰主要是由于背底真空中或者样品在空气中吸附的O 2或者H 2O.从谱线中可以发现,与其他方法制备SiN x 薄膜的红外光谱相比较[16—18],本实验的光谱在2200cm -1和3400cm -1处并不存在明显的Si 2H 和N 2H 的伸缩振动峰[16,17],这表明利用本系统制备的SiN x 薄膜中H 杂质含量很低,同时也显示本方法对比PEC VD 方法的优势.从图1还可以发现,随着N 2流量的增加,在870cm -1处的Si -N 伸缩振动峰强度逐渐减弱,但是在1080cm -1处的Si 2O 伸缩振动峰强度逐渐增强,主图1 不同N 2流量下制备的S iN x 薄膜傅里叶变换红外光谱峰逐渐由870cm -1处转移至1080cm -1处,这说明随着N 2气流量的增加,薄膜中的O 含量逐渐增加,当N 2气流量超过15sccm 时,Si 2O 伸缩振动峰变为主峰,即此时薄膜以Si 2O 结构为主[11].这种现象可以解释为如下原因:首先,由于背底真空中有少量的O 2分子,并且O 元素活泼性要远高于N 元素,因此,被溅射出来的Si 原子在沉积过程中首先与O 元素结合,形成SiO 2结构;其次,等离子体中引入N 元素会在Si 靶表面形成氮硅化合物,导致靶中毒现象.随着N 2流量的增加,靶中毒现象加剧,导致Si 靶溅射率降低.综合这两个原因,随着N 2流量增加,到达基片的Si 原子数量在减小,并且到达基片的Si 原子,首先与背底真空中残余的O 2反应形成SiO 2,这样就间接导致薄膜中的Si 2O 键含量增加而Si 2N 键含量减少,从而导致薄膜红外光谱主峰位置由870cm -1向1080cm -1处转移.同时,这种现象也说明利用本系统可以在N 2流量很小的情况下制备出优异的SiN x 薄膜,大大的提高了N 2的利用率,仅2sccm N 2流量就可以在红外光谱上产生强烈的Si 2N 伸缩振动峰.图2为在不同溅射功率下制备的SiN x 薄膜红外光谱,图中各条谱线旁边的数字为样品编号.从光谱中依然可以得出相同规律,即随着Si 靶溅射功率的降低,在SiN x 薄膜的红外光谱中,870cm -1处的Si 2N 伸缩振动峰强度逐渐减弱,但1080cm -1处的Si 2O伸缩振动峰强度逐渐增强.这种现象验证了由上文所提到的那两个原因,随Si 靶溅射功率的降低,Si 靶的溅射速率降低,即到达薄膜生长表面的溅射Si 原子密度减少,其效果等同于靶中毒.上述结果说明4631物 理 学 报55卷等离子体中Si 元素的密度是影响SiN x 薄膜成分和结构的重要条件.图2 不同溅射偏压下制备的S iN x 薄膜傅里叶变换红外光谱为了进一步验证等离子体中Si 元素密度的变化对薄膜成分和结构的影响,利用美国Acton 公司的SP 2305型单色仪发射光谱法(OES )对等离子体中Si 元素密度进行定性测量,结果如图3所示.图3中63312nm ,63417nm 处谱峰分别对应Si ,Si +的发射光谱谱峰[19],从图3中可以看出,随着Si 靶溅射功率的降低,等离子体中Si 元素的发射光谱谱峰强度单调降低,说明随着Si 靶溅射功率的降低,等离子体中Si 元素的密度单调降低,这与FT 2IR 结果中关于等离子体中Si 元素密度的推测很好地符合.同样,在图3中可以看出,随着N 2流量的增加,等离子体中Si 元素发射光谱谱峰强度单调降低,即等离子体中Si 元素的密度也相应降低,这也与FT 2IR 结果中关于等离子体中Si元素密度的推测很好地符合.通过这两个发射光谱检测结果,可以很好地验证FT 2IR 的结论,也与随后的XPS 结论相符合,从而直接验证了等离子体中Si 元素的密度是影响SiN x 薄膜成分和结构的重要条件.3121X 射线电子能谱为了进一步了解SiN x 薄膜的结构与成分,我们对薄膜进行了X 射线电子能谱(XPS )检测.通过对Si 2p 的高分辨XPS 谱进行解谱,可以发现三个高斯峰,结合能分别为9915eV ,10119eV 和10314eV ,这三个高斯峰分别对应Si 2Si 键结构、Si 2N 键结构、Si 2O 键结构[20—23],如图4所示.通过对不同N 2流量下制备的SiN x 薄膜的Si 2p 高分辨XPS 谱解谱比较(图4),可以发现,在N 2流图3 等离子体中S i 元素发射光谱谱峰强度随S i 靶溅射功率、N 2流量的变化图4 不同N 2流量下制备的S iN x 薄膜中S i 2p 的高分辨XPS 谱及其解谱量较小时(112sccm ),SiN x 薄膜中Si 2Si 键结构含量较高,并且Si 2N 键结构中N ΠSi 比值偏小,见表2,薄膜呈现富Si 态.随着N 2流量的增加,SiN x 薄膜中的Si 2Si 键结构在减少,间接导致薄膜中的Si 2N 键结构相对含量增加,在N 2流量为4sccm 时,薄膜中的Si 2N 键结构相对含量达到最大值,此时通过对Si 2p 和N 1s 的高分辨XPS 谱面积计算并用灵敏度因子校56313期丁万昱等:微波ECR 等离子体增强磁控溅射制备S iN x 薄膜及其性能分析正,计算得出此时薄膜的Si 2N 键中N ΠSi 值为1133,与Si 3N 4的化学配比相符合,如表2所示,此时的薄膜也显示出了最好的红外光谱图像以及最好的机械性质.继续增加N 2流量,薄膜中Si 2O 结构相对增加.当N 2流量超过15sccm 时,薄膜由以SiN x 结构为主转变为以SiO 2结构为主,薄膜的红外光谱及机械性质也相应地逐渐向SiO 2结构转变.XPS 结果与FT 2IR 结果很好地符合,进一步证明了在SiN x 薄膜的沉积过程中,等离子体中Si 元素的密度直接影响薄膜的化学配比和机械性质.表2 在不同N 2流量下制备的S iN x 薄膜中S i 2p 的不同结构含量及S i 2N 结构中的N ΠS i 比值S i 2S iS i 2N S i 2O N ΠS i N 11220951692317900187N 44771675015431133N 858818651242111383131生长速率利用Surfcorder ET 4000M 型膜厚仪采用台阶法测得薄膜厚度,经计算可得到薄膜的生长速率.图5为SiN x 薄膜生长速率随N 2流量、溅射功率变化曲线.由图中可以得出,随着N 2流量的增加,SiN x 薄膜的生长速率单调降低;并且,随着Si 靶溅射偏压的降低,SiN x 薄膜的生长速率也单调降低.这种现象同样可以解释为随着N 2流量的增加,或者随着Si 靶溅射功率的降低,都会直接导致Si 靶表面溅射率降低,从而导致等离子体中Si 元素的含量降低,最终导致SiN x 薄膜沉积速率降低.综合薄膜的红外光谱和生长速率这两个结果,我们可以得出,Si 靶单位面积的溅射率,也就是等离子体中Si 元素的密度,在SiN x 薄膜沉积过程起着重要作用.314 薄膜硬度图6为SiN x 薄膜硬度随N 2流量、Si靶溅射功率变化曲线.从图中可以看出,随着Si 靶溅射功率的降低,SiN x 薄膜的硬度单调降低.这种现象同SiN x 薄膜的红外光谱相结合,可以解释为,当Si 靶溅射功率降低时,间接导致到达基片的Si 原子数量降低,薄膜SiN x 结构含量减少,薄膜的主要成分变为SiO 2结构.因此,薄膜硬度会降低,由SiN x 结构硬度转变为SiO 2结构硬度.随着N 2流量的增加,SiN x 薄膜硬度先增加后减小,在N 2流量为4sccm 时,图5 S iN x 薄膜生长速率随N 2流量、S i 靶溅射功率变化曲线图6 S iN x 薄膜硬度随N 2流量、S i 靶溅射功率变化曲线SiN x 薄膜得到最大硬度,为2219G Pa ,这一值与其他研究小组所得结果一致[6,12,13].结合SiN x 薄膜的XPS 及FT 2IR 结果,这种现象可以解释为,在N 2流量很小时,SiN x 薄膜呈现富Si 态,此时薄膜硬度是SiN x ,SiO 2,非晶硅三者的混合硬度,因此硬度值介于较软的SiO 2、非晶硅和较硬的SiN x 之间.随着N 2流量的增加,薄膜中的SiN x 含量逐渐增加,当N 流量为4sccm 时,薄膜中的N ΠSi 比例达到最佳的1133,因此薄膜硬度达到最大值,2219G Pa.继续增加N 2流量,由于靶中毒现象增加导致薄膜中SiN x 含量降低,薄膜由以SiN x 结构为主逐渐向以SiO 2结构为主转变,因此薄膜硬度随之向SiO 2硬度转变.当N 2流量增加至35sccm 时,薄膜中SiO 2含量较高,同时Si 2N 键结构中的N ΠSi 比值偏离标准值1133,薄膜的硬度也降低至11G Pa 左右,接近于SiO 2的硬度[24].6631物 理 学 报55卷图7 不同N 2流量下制备的S iN x 薄膜表面形貌3151薄膜表面形貌由AFM 观测得到SiN x 薄膜的表面形貌及表面粗糙度.图7为在不同N 2流量下制备的SiN x 薄膜表面形貌,从图中可以看出薄膜表面光滑,没有明显的岛状生长模式.但是随着N 2流量的增加,薄膜的表面粗糙度程度增大.图8为由以上各图片得到的SiN x 薄膜表面粗糙度随N 2流量变化曲线.从图中可以看出,随着N 2流量的增加,薄膜的表面粗糙度略有增加,但总体保持在012nm 以下,这说明利用本技术制备的SiN x 薄膜可以达到在原子尺度上平滑.由本系统沉积的SiN x 薄膜的表面粗糙度低于由电弧离子镀、LPC VD 或者PEC VD 等其他方法制备的SiN x 薄膜的表面粗糙度1—2个数量级[21].这种现象是由于利用本系统沉积的SiN x 薄膜具有较低的生长速率(与电弧离子镀或者C VD 相比较),因此薄膜具有较低的表面粗糙度.图8 S iN x 薄膜表面粗糙度随N 2流量变化曲线41结 论由微波ECR 磁控溅射系统在室温下制备出具有较好结构及性能的无氢SiN x 薄膜.利用FT 2IR ,76313期丁万昱等:微波ECR 等离子体增强磁控溅射制备S iN x 薄膜及其性能分析XPS,纳米硬度仪,AFM,轮廓仪等设备对薄膜进行了结构和性能分析,结果表明,SiNx薄膜的结构和性能强烈依赖于等离子体中Si元素的含量.增加N2流量或者降低Si靶溅射功率,都会导致等离子体中Si元素含量减少,并最终改变SiN x薄膜的结构及化学配比,降低薄膜的机械性质.在N2流量为4sccm,溅射功率为350W时,等离子体中Si元素含量达到最大值,此时,SiNx薄膜的化学配比达到最佳,x值为1133,薄膜硬度亦达到最高值2219G Pa,同时薄膜显示出了最好的红外吸收光谱以及较低的表面粗糙度.[1]Skordas S,S irinakis G,Y u W et al2000Mater.Res.Soc.Symp.Proc109606[2]M orosanu C E1980Thin.Solid.Films17165[3]French P J,Sarro P M,M alle′e R et al1997Sens.Actuator s A14958[4]Bustillo J M,H owe R T1998Muller.R.S.Proc.IEEE861552[5]Eaton W P,Sm ith J H1997Smart.Mater.Struct6530[6]Y en B K,White R L,W altman R J et al2003J.App.Phys.938704[7]Xu D,Zhu H,T ang L J et al1995Acta.Meta.Sin.431(inChinese)[徐 东、朱 宏、汤丽娟等1995金属学报431] [8]Chen J F,Wu X Q,W ang D Q et al1999Acta.Phys.Sin.481310(in Chinese)[陈俊芳、吴先球、王德秋等1999物理学报481310][9]Zhang G W,Long F2001Semi.Opt.22201(in Chinese)[张顾万、龙 飞2001半导体光电22201][10]Y u W,Liu L H,H ou H H et al2003Acta.Phys.Sin.52687(inChinese)[于 威、刘丽辉、侯海虹等2003物理学报52687][11]Ding W Y,Xu J,Piao Y et al2005Chin.Phys.Lett.222332[12]Vila M,Ca′ceres D,Prieto C et al2003J.App.Phys.947868[13]Savall C,Bruyera J C,S toquert J P et al1995Thin.Solid.Films260174[14]Li X,T ang Z A,M a GJ et al2003Chin.Phys.Lett.20692[15]Xu J,M a T C,Lu W Q et al2000Chin.Phys.Lett.17586[16]Y ota J,Hander J,Saleh A A2000J.Vac.Sci.T echnol A18(2)372[17]Vargheese J K D,Rao G M2001J.Vac.Sci.Technol.A191336[18]Lu Z,Santos2Filho P,S tevens G et al2001J.Vac.Sci.Technol.A191336[19]NIST Atom ic S pectrum Database,ver.310,http:ΠΠphysics.nist.g ov[20]M oulder J F,S tickle W F,S obol P E et al1995Handbook o f X2rayPhotoelectron Spectroscopy,Physical Electronics Inc,page57and253[21]Y ang G R,Zhao Y P,Hu Y Z et al1998Thin.Solid.Films333219[22]Bustarret E,Bens ouda M,Habrard M C et al1988Phys.Revi.B388171[23]Xu S H,X in Y,Ning Z Y et al2003Acta.Phys.Sin.521287[24]Scanlon M R,Cammarata R C1994J.Appl.Phys.763387Characterization of silicon nitride films prepared byMW2ECR magnetron sputtering3Ding W an2Y u Xu Jun Li Y an2Qin Piao Y ong G ao Peng Deng X in2Lü D ong Chuang (State K ey Laboratory o f Material Modification by Laser,Ion and Electron Beams,Dalian Univer sity o f Technology Dalian 116024,China)(Received24M ay2005;revised manuscript received12September2005)AbstractHydrogen2free silicon nitride films were deposited at room tem perature by m icrowave electron cyclotron resonance(ECR) plasma source enhanced unbalanced magnetron sputtering system.F ourier2trans form in frared spectroscopy and X2ray photoelectron spectroscopy were used to study the bond type,the change of bond structures,and the stoichiometry of the silicon nitride films.Atom ic2force m icroscopy and nano2indentation were used to study the m orphological features and mechanical characteristics of the films.The results indicate that the structure and characteristics of the films deposited by this technique depend strongly on the density of sputtered S i in plasma and the films deposited at4sccm N2flow show excellent stoichiometry and properties.K eyw ords:silicon nitride,W M2ECR plasma sputtering,FT2IR,XPSPACC:6855,6860,7830L3Project supported by the National Natural Science F oundation of China(G rant N o.50390060).E-mail:xujun@8631物 理 学 报55卷。
微波与等离子体
*工业、科学和医学用的频率有 433 MHz 、915
MHz 、2450 MHz 、5800 MHz 、22125 MHz 。 目前国内用于工业加热的常用频率为915 MHz和 2450 MHz 。
灭菌
4.3 微波在无机化学中的应用
合成催化材料
在分子筛催化剂合成方面引入了微波加热方法,在 其它工艺条件相同时,所用时间仅为传统加热方式的 1/30-1/40.
• 3.6 信息性
由于微波频率很高,其可用的频带很宽, 可达数百甚至上千兆赫兹,这意味着微波 的信息容量大,所以现代多路通信系统, 包括卫星通讯系统,都是工作在微波波段。
4 微波的应用
雷达和通讯
加热和灭菌 在无机化学中的应用
4.1 雷达和通讯
卫星通讯
4.2 加热和杀菌 *对食物加热的频率:2450 MHz(波长为 12.24cm)
光刻胶刻蚀
首先,使光刻胶 层顶部曝光形成 图形。第二步, 将光刻胶暴露在 含硅的气体中使 光刻胶被硅化。 最后一步,用氧等 离子体把光刻胶 各向异性地刻蚀 掉。
1.3 按热力学平衡分类
根据离子温度与电子温度是否达到热平衡,可 把等离子体分为三类:
*完全热力学平衡等离子体:当整个等离子体系统
T> 5000K时,体系处于热平衡状态,各种粒子的 平均动能都相同,这种等离子体称为热力学平衡 等离子体,简称平衡等离子体;
*局域热力学平衡等离子体:就是局部处于热力学
超短波
红外光
2 微波的产生
微波通常由直流电或50Hz交流电通过一特殊的 器件来获得。 产生微波的器件有许多种,但主要分为两大类: 半导体器件和电真空器件。电真空器件是利用电 子在真空中运动来完成能量变换的器件,或称之 为电子管。在电真空器件中能产生大功率微波能 量的有磁控管、多腔速调管、微波三、四极管、 行波管等。在目前微波加热领域特别是工业应用 中使用的主要是磁控管及速调管。
微波激发等离子体原理
微波激发等离子体原理微波激发等离子体是一种常见的无接触式加热和激发等离子体的技术,广泛应用于等离子体物理研究、医疗领域以及工业应用中。
其原理是通过在磁场中加入高频电磁波,使电子加热并获得足够的能量逃逸自原子,从而形成等离子体。
微波激发等离子体的原理是基于电子受到高频电场的驱动而运动形成等离子体的现象。
在一个均匀磁场中,这个系统呈现一个简谐振动的结构。
当加入高频的电磁波时,电子受到电场的驱动,开始在垂直于磁场方向上运动。
在这个运动过程中,电子受到高频电场力的作用,会产生一个哈密顿量在与高频电场频率相同的共振频率上的震荡条件。
这个震荡条件是通过磁场和电场对电子的双重作用实现的。
首先,电子在磁场中受到洛伦兹力的作用,使其沿着磁场方向上的速度不变。
其次,电子在高频电场的驱动下,会有类似于谐振子的运动,其频率与高频电场频率相同。
这两个力的平衡条件可以写成准经典的欧姆&middle分[b+→]轨道方程:m*d2x/dt2 = q*(v×B) - q*E*sin(ωt)其中,m是电子的质量,x是电子在垂直于磁场的方向上的位移,t是时间,q是电子的电荷,v是电子的速度,B是磁场的磁感应强度,E是高频电场的电场强度,ω是高频电场的角频率。
通过解这个方程,可以得到电子在高频电场的驱动下的位移和速度的表达式,其中关键的是电子受到高频电场力的强度,即E*sin(ωt)项。
当电子受到足够强的高频电场力的驱动时,它会获得能量并克服静电能量障壁,逃逸自原子,形成新的自由电子。
这些获得足够能量的电子被称为等离子体电子,它们由于能量的增加而呈现出更高的速度。
与此同时,底层原子失去了电子,形成正离子。
通过适当调节高频电场的频率和磁场强度,可以控制等离子体中电子和离子的数量和能量。
由于微波激发等离子体具有非常高的温度和能量,因此在工业应用中,它可以用于加热和熔化材料、杀菌和干燥物体等。
微波激发等离子体技术有着许多优点,例如高效率、可控性和无接触等。
微波消解电感耦合等离子体
微波消解电感耦合等离子体微波消解电感耦合等离子体(Microwave Plasma Inductively Coupled Plasma,简称MP-ICP)是一种常用于样品消解的技术。
它利用等离子体发生器将气体放电后产生的高温高能量等离子体,用于加热和分解样品中的有机、无机物及重金属等,使其分解成离子。
离子在高温等离子体中被激发,发出光谱线,通过分光光度法检测其中含量,从而实现样品分析。
MP-ICP样品消解技术有以下优点:首先,消解速度快,样品处理时间短。
其次,样品容易处理,能够消解各种类型的样品。
此外,消解获得的溶液纯度较高,能够在低浓度下精确测得目标元素。
最后,消解的过程中减少了实验操作过程对特定元素污染的风险,提高了实验数据的质量和可靠性。
MP-ICP样品消解技术主要应用于环境监测,食品安全检测、地质矿产分析、医学诊断等领域。
以下以环境监测领域为例,介绍MP-ICP的应用。
1. 大气污染检测MP-ICP能够快速、高效地检测大气污染物的元素。
通过样品的消解,可将元素转化为离子,并通过光谱分析获得目标元素的浓度。
这种方法可以分析大气中的重金属和有机化合物元素,为环境污染数据提供依据。
土壤中的重金属、有机化合物等物质的检测一直是环境污染监测领域的难点之一。
使用MP-ICP样品消解技术,可以快速、准确地对土壤中的重金属、半金属、有机化合物进行分析。
MP-ICP同样适用于水体监测。
水中的污染物通常是溶解态的,因此要将其固定到离子态。
通过MP-ICP的消解技术,离子可以被激发发出光谱线,通过光谱线的强度和波长,获得目标元素的定量信息,为水体污染数据提供科学依据。
MP-ICP样品消解技术,是目前化学分析领域中应用较广泛的一种技术,其优点在于快速、准确、检测范围广、样品数量小、操作简便以及绿色、环保。
随着科学技术的发展,MP-ICP样品消解技术将在各领域发挥更大的作用。
微波等离子体化学气相沉积原理
微波等离子体化学气相沉积原理咱们先来说说啥是化学气相沉积。
简单来讲呢,就是让一些气体发生化学反应,然后在某个表面上形成一层薄膜。
就好比你给一个东西穿上一层特制的衣服一样。
这层薄膜可有大用处啦,可以让这个东西变得更耐磨、更耐腐蚀,或者有一些特殊的光学、电学性能。
那微波等离子体又是什么鬼呢?想象一下,微波就像是一种超级能量波。
当我们把它加到一些气体里面的时候,就会发生神奇的事情。
气体里的原子和分子就像是一群被老师点名的小朋友,突然变得超级活跃。
这个时候,这些气体就变成了等离子体。
等离子体可不是一般的东西哦,它里面有很多自由电子、离子,就像是一个充满活力的小宇宙。
在微波等离子体化学气相沉积这个过程里,微波就像是一个超级指挥家。
它指挥着那些气体分子和原子,让它们在一个特定的空间里欢快地跳舞。
那些作为原料的气体,在微波的作用下,原子和分子之间的化学键开始松动,就像小伙伴们之间松开了拉着的小手。
然后呢,这些松动的原子和分子就开始重新组合啦。
它们像是在玩搭积木的游戏,按照一定的规则组合在一起,形成我们想要的物质。
这个过程就像是魔法一样,原本是一些简单的气体,在这个特殊的环境下,就变成了一层漂亮又实用的薄膜,附着在我们预先准备好的基底上。
你知道吗?这个过程里还有很多有趣的小细节。
比如说,微波的功率大小就像是音乐的音量一样,会影响到整个反应的节奏。
如果功率太大,就像是音乐放得太响,那些气体分子可能会被吓得不知所措,反应就会变得很混乱。
要是功率太小呢,就像音乐声音太小,气体分子们又没什么活力,反应就会慢吞吞的。
而且呀,那些作为原料的气体种类也很重要呢。
不同的气体就像是不同性格的小伙伴。
有的气体很活泼,一进入这个微波等离子体的环境,就迫不及待地参与反应。
有的气体就比较害羞,需要别人拉一把才能开始反应。
这个微波等离子体化学气相沉积技术在很多地方都有大用处。
在电子行业里,它可以给芯片穿上一层薄薄的保护膜,让芯片变得更稳定、更可靠。
微波等离子体法合成SrAl2O4:Eu2+,Dy3+中激活剂的浓度猝灭研究
孙 文周 , 王 兵 蒋 亮 韩 非 马建 军 , , ,
绵 阳 6 11 ) 2 0 0
摘要 : 采用微波 等离子体法合成 SA: E “ , y 长余 辉发光材料 , rI :u D ¨ 0 通过对掺杂不同激活剂浓度 的产物 的光谱 性能 、 辉性 能、 组成结 余 相
作者 简介 : 孙文周 ( 9 3一) 18 ,女 , 士 , 硕 助教 ; 研究方 向:功能材料
杂离 子 的浓 度 超 过 某 一 个 范 围后 ,所 合 成 材 料 的
掺杂量的增加对 S 1 E ¨ , y r : :u D 光谱性能 、 A 0 余
辉性 能 、物相 结构 的影 响 , 一步 探讨 浓 度猝 灭 现 进
象 的机 制 。
1 实 验
1 1 样 品 的合 成 .
第2 7卷
第 6期
中 国 稀
土 学 报
20 09年 l 2月
De . 0 C 2 09
u 2 No 6 l 7 ,
J OURNAL OF T I tE C l ENE E RARE EARTH OCI t S S gT
…
微 波 等 离 子 体 法 合 成 SA2 r I04: u +, y +中激 活 剂 的浓 度 E2 D3
收稿 日期 : 0 9— 5—1 ;修订 日期 :20 0 2 20 0 8 09— 6— 0
率 、升 降 速率 、气体 压 力 、加 热 时 间等 工 艺 参数 一 定 的条件 下 , 过 改 变 激 活 剂 E : 的掺 杂 浓 度 , 通 u0
、
基金 项 目: 宁夏自治区国家民委省部共建“ 粉体材料与特种陶瓷” 重点实验室项 目 ( o) 四川省应用基础研究项 目 (4 093 - 资助 o4, 8 0J 2- 0 ) Y 1 2 6
微波与等离子体合成
利用微波能量激发气体分子,形成等离子体,通过调节微波功率和气体压力等参数,实现高效、环保的合成。
激光诱导等离子体合成
利用激光能量将固体材料表面加热至高温,形成等离子体,通过控制激光参数和扫描速度等条件,实现材料表面的改性和合成。
利用等离子体合成技术制备各种功能材料,如陶瓷、复合材料、薄膜材料等。
该技术具有高效、环保、节能等优点,可广泛应用于陶瓷、金属、复合材料等领域。
高功率微波等离子体合成技术的研究重点在于优化微波源、气体流动和反应条件,以提高合成效率和材料性能。
低温微波等离子体合成是指在低温环境下利用微波激发气体,产生等离子体,从而实现材料的合成和改性。
该技术特别适用于对温度敏感的材料,如生物材料、高分子材料等。
03
02
01
微波等离子体的特性
利用微波等离子体的高温、高密度和高活性特性,可实现材料的高效合成。
材料合成
通过微波等离子体处理材料表面,可改善材料的表面性能。
表面处理
利用微波等离子体的强氧化性,可有效去除空气中的有害气体和颗粒物。
环境治理
微波等离子体的应用
03
等离子体合成技术
等离子体合成利用等离子体的热力学和动力学特性,通过加热、电离、活化等过程,将原料转化为所需的物质或材料。
脉冲微波等离子体合成技术的研究重点在于优化脉冲波形、频率和能量,以及反应条件,以提高合成效率和材料性能。
脉冲微波等离子体合成
05
微波等离子体合成的挑战与前景
面临的主要挑战
等离子体稳定性问题:在微波等离子体合成过程中,等离子体的稳定性对合成效率和产品质量具有重要影响。然而,由于各种因素(如电源波动、气体流量变化、反应器结构设计等)的影响,等离子体容易发生不稳定,导致合成过程受阻或产品质量下降。
第十二章,微波、等离子、激光技术!
LOGO
3、微波等离子体烧结陶瓷
微波等离子体烧 结
微波加热和等离子 体加热共同作用。 不受材料介电性能 的影响。 材料分解、挥发 常温常压下大面 积微波等离子体难 以激励
微波加热烧结
特点: 降低烧结温度;
快速、均匀加热; 加热效率高; 细化晶粒
微波—等离子体分 步烧结
克服了各自的缺点 保留了彼此的优点 原则上适用于各种陶 瓷的烧结 实际上仍存在微波等 离子体的一些问题
独特行为与固态、液态、气态都截然不同,故称之为物质第四态。
LOGO
固体 冰
液体 水
气体 水汽
等离子体 电离气体
00C
1000C
100000C 温度
LOGO
普通气体
等离子体
放电
放电是使气体转变成等离子体的一种常见形式 等离子体 电离气体
LOGO
• 等离子体是高度电离的气体.
原子
普 通 气 体
LOGO
LOGO
LOGO
LOGO
LOGO
微波固相合成的应用实例
LOGO
LOGO
LOGO
LOGO
LOGO
微波烧结陶瓷
LOGO
6、微波加热的设备?
LOGO
等离子体合成技术
北极光
星系
LOGO
宇宙中90%物质处于等离子体态
– 天然等离子体:以闪电、极光的形式。 地球表面向外,等离子体是几乎所有可见物质的存在形式 – 日常生活中:日光灯、电弧、等离子体显示屏、臭氧发生器 – 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷涂、烧结、 冶炼、加热、有害物处理 – 高技术应用:托卡马克、惯性约束聚变、氢弹、高功率微波器件、
微波等离子体化学气相沉积法合成纳米碳管
气相沉积法 3 。 类 相对于电弧法和激光蒸发法而言 , 化学气相沉积法因具有合成温度较低、 产量高、 纳米 碳 管 的直径 及螺旋 性 易控 制等 优 点而逐 渐 成为合 成 纳 米碳 管 的一 种主 要方法 。在众 多 的化学 气相沉 积 法 中, 曾经 用于薄膜材料低温合成首选方法的等离 子体增 强 化学气 相 沉积 法也 开始 用于纳米 碳管 的低 温合 成 研 究 。Re ,z F L等 利 用热 丝 等离 子 体化 n . .3 学 气相沉 积法 在 66 6 ℃以 下 合成 了纳米 碳管 。 h i C o, Y.C 一 在 利 用辅 助热 源的情 况 下 利 用微 波 等 离 . 等 子体 化学气 相 沉 积法在 50 0 ℃的温 度范 围 内 2 ~70
该 方法 已成 为纳 米碳 管合 成 的一种 非常 重要 的手段 。本研 究 以 IX 和 1 X分 子 筛 为载 体 , O 3 在 纳 米 钴颗 粒 的催化 作 用 下 , 用微波 等 离子体化 学 气相沉 积 法 在较 低 的温度 条件 下 合 成 j纳 利
米碳 管 。
关 键词
纳米碳 营 微 渡 等离子体 化 学气相 沉积 法 分 子 筛 钴
维普资讯
微波等离子体化 学气相沉 积法合成纳米碳 管
Gr wt fCa b n Na o u e y M ir wa e P a ma Ch mi l p r D p sto o h o r o n t b s b c o v ls e c a Va o e o iin
2 .将原施焊方 向改为相反方向, 焊接时先从涡 流 区开 始 , 流 动 的熔 渣 堆积 在 易清 洗 的散 热器 片 使
微波等离子推力器等离子体形成及其与微波耦合机理分析
子体 , 温 等离 子 体 在 压 强 和 电磁 场 力 作 用 下 从 喷 管 高
高速 喷 出产 生 推力 。而 MP T启 动 工 作 的 成 败 或 性 能 的优 劣 , 取决 于 能否 在 喷管 的 人 口处 形 成 一 个 稳 定 的 、 自由悬 浮 的高温 等 离 子体 。 因此 , 行 MP 进 T等 离 子 体
形成及其与微波耦合的机理分析 , 提高 M T工作 的 对 P 稳定 性 和性 能 是十 分 必要 的。
T ANG Jn ln , n — ig , i—a HE Ho gqn MAO nwa g , Ge — n WAN
We 1 C Hg f s o at s N r w s r o ̄ c n a U i i∥ . oe eo t n u c . ot et nP l eh il n— Ar i h e c
维普资讯
固 体 火 箭 技 术
第2 5卷 第 2期 文 章 编 号 :0 62 9 (0 2 0 - 3 -5 10 —7 3 2 0 ) 20 1 0 0
J u n l fS l c e c n lg o r a oi Ro k t o d Te h o o y
推进 装 置 。它 的基 本 原 理 是 : 波 源 产 生 的 一定 频 率 微
和功 率 的微 波 经 波 导 和 电 缆 传 输 至 圆 柱 形 谐 振 腔 , 通
过 阻抗 匹配 调 节使 微 波 反 射 功 率 至 最 小 , 波 在 谐 振 微 腔 内产 生谐 振形 成 放 电 区 , 当工质 ( He A 等 ) N , ,r 通过 谐 振 放 电区 时 吸收 微波 能 量产 生 电 离 而形 成 高 温 等 离
微波等离子体炬法合成金刚石薄膜的研究
1完善健全的产品谱系追踪在烟草工业的运用意义 用, 以现代物料跟踪技术结合 4 W+ I H五要素的方式 , 来实现各环节 健全完善的卷烟制造企业产品追溯和跟踪体系 , 是提升产品品 产品物料批次跟踪为主线的产品追溯与跟踪 。 质、 提高客户满意度 的有效方法 。 卷烟生产企业在发现质量缺陷后 , 以生产批 次为主线 , 对产 品生 产过程 中的物料 ( 原 材料 、 半成 可 以通过产品追溯 和跟踪系统准确快速查 明原 因, 并采取有针对性 品 、 产品) 移动情况及其过程数据信息进行批次跟踪 , 以形成全面详 的解决措施 。 既能根据消费者反馈的问题及小盒钢印解析出该包烟 实、 可以逐级追溯上下游工序之 间物料批次对照关系的批次谱系跟 的基本信息 , 进行从下往上的问题追溯 , 找出质量问题造成的原 因, 踪信息 , 从而给企业生产管理带来 重要 支撑 , 便于生产管理人员可 通过生产 日期 、 生产批号等信息 , 可 以通过产品追踪 和追溯准 确快 为产 品冻结 、 回收提供 主要依据 ; 又能从 上往下对卷烟 制造 过程进 行产品追踪 , 即从烟叶投料一切丝一 搀兑加香一装箱一 喂丝机一卷 速查明原 因, 从而找出影响质量的因素以及改进生产制造水平的方 接机一包装机一封箱机一成品批 , 定位 、 冻结问题产 品。 向, 采取针对性 的解决措施 以提升产品品质 、 提高客户满意度。 追溯管理作为质量管理的重要手段 , 能为卷烟制造企业制定和 在厦烟 Mr s的建设中,主要以物料正 向追踪和产品反向追溯 落实质量责任提供可靠依据 , 帮助企业逐层追溯找寻形成卷烟产 品 的两个角度 , 按人 、 机、 料、 法、 环五生产因素来进行全面追溯 。采用 质量缺陷的根本原 因 , 进而通过对相关 因素 的调整和控制 , 达到不 I S A — S P 9 5标准并 结合厦烟 的 4 W+ I H的方式来进行生产过程分 析。 断提高卷烟产品质量和安全性的 目的。 同时可 以稳定提高卷烟加工 4 W+ I H: w h a t用什么 、 Wh e r e用在哪里或在哪里生产 、 w h e n何时生 工艺技术水平 、 工艺管理水平和卷烟产品质量 , 增强在制 品和最终 产 、 w h o谁来生产 、 H o w 是如何生产的。 产品质量的控制水平 。而且也为绩效评估 , 对供应商 、 加工工序质 2 . 1产 品正 向跟 踪 量、 配送过程等进行评价提供参考依据。 卷烟生产的流程和设备之间存在复杂 的物料关系 , 给产品追溯 和跟踪带来 了一定 困难。近两年 , 厦 门烟草工业有 限责任公司通过 应用 ME S 管理理念和技术 , 积极探索构建基于 4 H + 5 W 要素的卷烟 制造产 品追溯和跟踪体系。 2 4 W+ I H五要素的生产全过程谱系追踪 传统的基于人工查询 的追溯 , 存在如下 问题 : 生产 环节 产品追 溯 与跟踪需要人工在不 同系统中查询各个阶段 的数据 , 追溯效率较 低; 部分环节产品追溯只能人工推算 , 许多信息是人工记 录, 不能准 确反映产品制造信息 ; 设备 、 物料 、 质量 、 人员等信息没有集成 关联 , 追溯信息难度大 。 为解决人工查询追溯的问题 , 厦烟在基于 M E S应 图 1产 品正 向 跟踪
微波等离子体化学气相沉积金刚石粉
微波等离子体化学气相沉积金刚石粉微波等离子体化学气相沉积(Microwave Plasma Enhanced Chemical Vapor Deposition,简称MPECVD)是一种常用于合成金刚石薄膜和金刚石粉的技术。
本文将介绍MPECVD合成金刚石粉的原理,过程以及应用。
一、原理MPECVD是一种基于等离子体化学气相沉积的方法,通过在反应室中加入金刚石前体气体,利用微波等离子体激发金刚石前体气体中的原子或分子,使其发生化学反应,从而在衬底上沉积出金刚石薄膜或合成金刚石粉。
在MPECVD中,微波功率和气体流量是两个重要的参数,可以通过调节这两个参数来控制金刚石粉的形貌和性质。
二、合成过程MPECVD合成金刚石粉的过程可以分为以下几个步骤:1. 准备衬底:选择适合的衬底材料,例如硅片或石墨片,并进行表面处理,以提高金刚石粉的附着性。
2. 准备反应室:将衬底放置在反应室中,并确保反应室密封良好。
3. 加入金刚石前体气体:通常使用甲烷(CH4)作为金刚石前体气体,可通过控制甲烷的流量来调节金刚石粉的合成速率。
4. 产生等离子体:利用微波功率激发金刚石前体气体中的原子或分子,产生等离子体。
5. 化学反应:在等离子体的作用下,金刚石前体气体发生化学反应,形成金刚石颗粒。
反应过程中,可以通过控制反应温度和气体流量来调节金刚石粉的尺寸和形貌。
6. 沉积金刚石粉:金刚石颗粒在反应室中沉积在衬底上,形成金刚石粉层。
7. 冷却和卸载:待金刚石粉层冷却后,将衬底从反应室中取出,得到合成的金刚石粉。
三、应用合成的金刚石粉具有优异的硬度和热导率,广泛应用于多个领域:1. 工具制造:金刚石粉可用于制造切削工具、磨料和磨具,具有良好的耐磨性和切削性能。
2. 电子领域:金刚石粉可用于制造高功率电子器件,例如高功率场效应晶体管和二极管。
3. 超硬材料:金刚石粉可以与金属粉末或其他陶瓷粉末混合,制备超硬材料,用于切割、磨削和抛光等领域。
微波等离子体气相沉积
等离子体合成金刚石在20世纪80年代初,一种新的方法出现了,那就是微波等离子体化学气相法合成金刚石薄膜(CVD)制备金刚石薄膜,它成本低,质量高,有利于大规模合成利用,且装置简单,能量集中,反应条件易于控制,产物比较纯净,成为当前研究的主要方向和热点。
现在该领域的最新进展是用微波化学气相合成法合成纳米级的金刚石薄膜,纳米级金刚石薄膜除了有普通微米级金刚石薄膜的性质外,还具有高光洁度,高韧性,低场放射电压,是具有广阔应用前景的新材料。
摩擦系数低,光洁度高,颗粒极细,硬度高,耐磨度高,可广泛应用医疗,交通,航空航天,工业制造领域的涂料,涂层,钻头,更可为微型机电领域带来革命性的飞跃.许多科学家纷纷预言:21世纪将是金刚石的时代。
合成与机理:等离子态是物质的第四态,之所以把等离子体视为物质的又一种基本存在形态,是因为它与固、液、气三态相比无论在组成上还是在性质上均有本质区别。
即使与气体之间也有着明显的差异。
首先,气体通常是不导电的,等离子体则是一种导电流体而又在整体上保持电中性。
其二,组成粒子间的作用力不同,气体分子间不存在净电磁力,而等离子体中的带电粒子间存在库仑力,并由此导致带电粒子群的种种特有的集体运动。
第三,作为一个带电粒子系,等离子体的运动行为明显地会受到电磁场的影响和约束。
需说明的是,并非任何电离气体都是等离子体。
只有当电离度大到一定程度,使带电粒子密度达到所产生的空间电荷足以限制其自身运动时,体系的性质才会从量变到质变,这样的“电离气体”才算转变成等离子体。
否则,体系中虽有少数粒子电离,仍不过是互不相关的各部分的简单加合,而不具备作为物质第四态的典型性质和特征,仍属于气态。
按热力学分析只要压力适当,石墨转变成金刚石在低温下并非不能自发进行,问题在于反应速率太低,以致必须提供苛刻的高温高压条件。
但若借助非平衡等离子体,情况就不同了。
如用微波放电把适当比例的CH4和H2气激发成等离子体,便可在低于1.0133×104Pa,800—900℃条件下以相当快的生长速率(1μm/h)人工合成金刚石薄膜。
微波激发等离子体原理
微波激发等离子体原理等离子体在物理学领域中被定义为一种不均匀热化合物,它是一种经过热分解和电场激发的由带负电荷的电子和带正电荷的离子组成的有机物质。
由于其灵活的物理和化学特性,等离子体被大量应用于各种科学研究和工程领域中,其应用范围涵盖从显微到宏观和从太空到地球等等。
在等离子体研究中,微波激发等离子体是一个重要而受广泛关注的研究领域。
微波激发等离子体是指给等离子体施加微波能量使其产生等离子体现象的过程。
经过微波激发后的等离子体具有特殊的光谱特性、提高了反应效率和具有重要的实用价值。
因此,研究微波激发等离子体的原理和利用非常重要。
微波激发等离子体的原理简单来说就是将微波能量转化为电离能量,从而使等离子体产生。
一般来说,在等离子体中有一个基础的能量水平,称为能级;在电离过程中,电子被从低能级转移到高能级,从而产生等离子体。
现实中,微波能量可以通过电场、磁场和声压等方式直接激活电子,使其从低能级转移到高能级,从而产生等离子体。
微波激发等离子体在生物学、化学和物理学众多领域中均有重要应用。
在生物学领域,研究者使用微波激发等离子体来研究抗菌特性,研究蛋白质结构以及研究病原菌细胞壁结构。
在化学领域,研究者使用微波激发等离子体来研究催化反应以及其他重要的反应过程。
此外,在物理学领域,研究者利用微波激发等离子体来研究气体物质和多种物质的物理特性及其相互作用,以及流体动力学等研究领域。
从以上可以看出,微波激发等离子体原理的研究和应用对众多学科具有重要的意义。
这一领域的研究将有助于改善目前的研究成果,并可能促进更多的新发现和应用,创造更多的发展机会。
因此,微波激发等离子体原理的研究将为全球科学研究和应用开拓新的天地。
微波等离子体化学气相沉积制备金刚石薄膜
微波等离子体化学气相沉积制备金刚石薄膜
• 量激励将工作物质激发到等离子体态从而引发化 学反应生成固体,具有沉积温度低、能耗低、无 污染等优点,因此等离子体化学气相沉积法得到 了广泛的应用化学气相沉积是使几种气体(多数场 合为2种)在高温下发生热化学反应而生成固体的 反应。化学气相沉积法制备金刚石薄膜有多种方 法,有热丝法(HFCVD),等离子体炬法(PTCVD) ,射频等离子体法(RFCVD),微波等离子体法 (MPCVD)。
微波等离子体化学气相沉积制备金刚石薄膜
本实验采用JSM一70 00F型扫描电子显微镜 (SEM)观察了薄膜样品的袁面形貌。在xR口 表面形貌。。在xRD6000型x射线衍 (XRD)仪E使用波长^一 仪上使用波长0.15406 nm的Cu靶Ka辐射线对薄 nm的Cu靶辐射线膜样品进行 • 品进行了XRD测试。 • • • • • •
微波等离子体化学气相沉积制备金刚石薄膜
• 集在一起形成一十球形的大的半径1um左右有的 颗粒。虽然没有形成连续的膜,但比较样品1#可 以得m结论:在沉积参数完全相同的情况下,研 磨对促进金剐石形桉起着至戈重要的作用。根据 成棱理论.成棱是在摹片袁面的缺陷位置,所以 基片表面必须有足够的徽缺陷才能沉积出多晶金 刚石薄膜,过于光滑的表面(像样品1#)是很 • 难使金刚石成核的。
微波等离子体化学气相沉积制备金刚石薄膜
• • • •
2011 机电学院 周宗志
微波等离子体化学气相沉积制备金刚石薄膜
• • 引言 金刚石薄膜具有非常优异的物理、化学性质 ,如高导热率、高硬度、低摩擦系数、良好的光 学透射性、化学稳定性以及较高的半导体掺杂性 ,使得金刚石在机加工、微电子、光学等许多领 域有着广阔的应用前景。 • 金刚石薄膜的制备通常可分为物理气相沉积 (PVD)和化学气相物质激发到等离子体 态从而引发化学等离子体化学气相沉积是通过能
等离子体的生成方式
本章主要内容第6章 等离子体的生成方法6.1 6.2 6.3 6.4 6.5 各种直流放电方法与放电模式 辉光放电与低温等离子体 电弧放电与热等离子体 高频放电产生等离子体 微波放电产生等离子体6.1 各种直流放电方法与放电模式•直流放电法– 冷阴极放电 – 热阴极放电 – 空心阴极放电 – 磁场辅助放电(磁控管放电)" 直流放电的特征:1. 电极上所加电压在极性上是恒定的,正电位端为阳极、负电位为阴极; 2. 等离子体的生成与维持主要通过阴极鞘层中的电子加速和等离子体中的 焦耳加热来实现;• 冷阴极放电与热阴极放电的区别– 冷阴极放电依靠阴极的二次电子发射来维持放 电,热阴极依靠阴极本身的热电子发射来维持放 电; – 热阴极放电需要较高的阴极温度 (1000‾3000oC),但在低气压(如0.1Pa)下 仍能维持放电; – 冷阴极放电需要较高的着火电压与放电维持电压 (用于加速离子),而热阴极放电的放电维持电 压较低; – 冷阴极放电器件不需要加热灯丝有较长的寿命, 且节能,热阴极放电器件有较高的功率;• 空心阴极放电的原理与优点– 阴极面积大,易于产生较高的电流密度,从而 得到高密度等离子体; – 空心阴极放电的阴极属冷阴极,依靠二次电子 发射维持放电; – 空心阴极有利于提高电离效率• 径向电子运动在一定条件下可以维持很长的寿命, 从而增加其参与电离的次数(条件:平均自由程大 于圆筒半径,阴极表面的鞘层厚度小于圆筒半径, 电子在另一侧鞘层内被反射) • 阳极面积小,可以减少阳极对电子的吸收,加强放 电;• 利用磁场的潘宁电离规– PIG, (Penning ionization gauge); – 磁场(~0.1T)辅助放电器件适合用于压强很低 情况下(10-4Pa)放电; – 磁场起引导作用,使其在两端阴极之间来回运 动,增长其寿命,加强放电; – 属冷阴极放电,二次电子维持放电;• 磁控管放电– 属冷阴极放电,二次电子维持放电; – 阴极表面的磁场与正交电场使电子产生E×B漂移,电子作旋 转式摆线运动,增长了电子的寿命; – 主要应用:磁控 溅射 – 参数范围:气压 mTorr,放电电 压几百伏 – 高能离子撞击阴 极溅射出阴极材 料,堆积到对面 基板形成薄膜三耙磁控溅射仪• 直流放电模式– 标准直流放电模式(V-I关系,伏-安特性)提示:电压可调节,电阻会分压• 直流放电模式分析– a‾b: 放电开始阶段,电流随电压的升高而增加,形成 的微弱电流不稳定(暗流); – b‾c: 着火阶段,到达着火电压后,电流迅速增大,c点 即放电着火状态; – c‾d: 前期辉光放电阶段,电流增大,电压却下降,产 生负阻(原因:等离子体密度的增加使等离子体电阻 变小); – d‾e: 正常辉光放电阶段,增大电流,电压一定(原因: 电流密度一定,导电面积增加); – e‾f: 反常辉光放电阶段,电压随电流增大(导电面积 饱和); – f‾g: 过渡到弧光放电;" c~f过程可以看到等离子体的辉光现象,故称这种放电为辉光放电(glow discharge)6.2 辉光放电与低温等离子体•辉光(glow)明亮、温暖而又稳定的光;•是直流放电中的一种形态,常见于低温冷等离子体(低温、非平衡);•日光灯、PDP中的放电都属于辉光放电;•近年半导体加工工艺中用到的高频放电也会产生类似现象,称为射频(RF)辉光放电•辉光放电的放电特征–发光区域的划分–外加直流电压主要加在阴极到负辉区之间(d c )–p d c 对应帕邢曲线最小着火电压处的值–负辉区和法拉第暗区出现的理由–正柱区是准中性的等离子体区域–阳极附近存在阳极暗区,是阳极鞘层(电子鞘层)6.3 电弧放电与热等离子体•电弧放电–气体放电中最强烈的一种自持放电,当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温,这就是电弧放电;–电弧是一种常见的热等离子体(T=T i,平衡);e–电弧放电最显著的外观特征是明亮的弧光柱和电极斑点,电弧分短弧和长弧;–在外力作用下,如气流、磁场,电弧会迅速移动、拉伸或蜷曲;–电弧放电中阴极电子的发射方式一般为热电子发射或场致发射用于生成碳纳米管的100A电弧体育场用弧光照明系统汽车的氙气灯电弧形貌电弧照明160kV下的强电弧,电极间距30cm电弧喷涂电弧焊接•热电子发射电弧放电–在辉光放电中,随着放电电流的增大,大量高能量等离子体碰撞阴极使其温度上升–阴极热电子发射满足Richardson-Dushman方程,其饱和电子发射流随温度升高而增大–当放电的V-I特性曲线与外电路的负载直线相交时,放电电流趋于稳定–阴极材料选择对实现弧光放电很重要,常见的有钨、钼等Richardson-Dushman方程•场致发射弧光放电–在常温状态下,对阴极表面施加强电场,由于隧道效应,电子从阴极发射出来;–当等离子体电位达到100V以上时,接地等离子体容器内的污染表面容易出现许多闪烁辉点,这也是一种场致发射引起的电弧放电-微电弧;–在很多场合下,热电子发射和场致发射兼有;–典型应用:水银电弧。
微波等离子体原理
微波等离子体原理微波等离子体技术是一种利用微波能量来产生和维持等离子体的技术。
等离子体是一种由离子和自由电子组成的物质状态,通常存在于高温、高能量的环境中。
微波等离子体技术在材料加工、能源利用、环境保护等领域具有广泛的应用前景。
本文将介绍微波等离子体的原理及其在各个领域的应用。
首先,微波等离子体的产生是通过微波能量与气体分子相互作用而实现的。
当微波能量作用于气体分子时,会使得分子内部的电子受激跃迁到高能级,从而产生激发态的分子。
这些激发态的分子会与其他分子碰撞,将能量传递给其他分子,最终导致气体分子的电离和形成等离子体。
因此,微波能量的频率和功率对于等离子体的产生起着至关重要的作用。
其次,微波等离子体技术在材料加工领域有着重要的应用。
通过微波等离子体可以实现对材料表面的改性处理,例如表面硬化、表面合金化、表面涂层等。
此外,微波等离子体还可以用于材料的表面清洁和粗糙度调控,提高材料的表面性能和附着力。
在能源利用方面,微波等离子体技术可以应用于等离子体点火、等离子体燃烧等领域,提高能源利用效率和减少污染排放。
另外,微波等离子体技术在环境保护领域也有着广泛的应用前景。
例如,可以利用微波等离子体技术进行废气处理,将有害气体转化为无害的物质,减少对环境的污染。
此外,微波等离子体还可以用于固体废物的处理和资源化利用,例如垃圾焚烧、废弃塑料的裂解等,减少对环境的负面影响。
总的来说,微波等离子体技术作为一种新型的等离子体产生和维持技术,具有着广泛的应用前景。
在材料加工、能源利用、环境保护等领域都有着重要的应用价值。
随着科学技术的不断进步,相信微波等离子体技术将会在更多领域展现出其独特的优势和潜力。
我们期待着微波等离子体技术能够为人类社会的可持续发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.
累积电离:分子先被激励成激发态,再经自由电子撞击而电离的
过程。
A e A*e
A*e A e e
b) 亚稳态粒子的作用及Penning电 离
• 亚稳态粒子的生成机制: 亚稳态
X e X m e
基态
X * X m hv(辐射跃迁)
X * e X m e( 无辐射跃迁)
基元过程,包括: a) 电子碰撞电离 b) 亚稳态粒子的作用及Penning电离 c) 离子碰撞电离 d) 光电离
a) 电子碰撞电离
• 根据电离机制,可以分为:
1. 直接电离:分A子 e受 (高高速速自) 由电子A撞 击e 而 e电 (离低的速过) 程;
2.
离解电离:多原子分子受到撞击发生离解电离的过程;
-
1.2 沸石分子筛的合成
• 沸石分子筛:
水热法 —— 能耗多,反应条件苛刻,周期长,回收率低;
微波辐射晶化法 —— 反应条件温和,能耗低,反应速率快, 粒径均一细小。
• 合成方法
NaA沸石的合成
• A型沸石:吸附剂,用于脱水、脱氨等等,可用于制备无磷洗衣
粉。
• 微波辐射合成条件:2450 MHz,65 ~ 325 W,5 ~ 20 min;
3. 正负离子碰撞复合 电荷交换复合:X Y X *Y *
三体复合: X Y M XY M KE
2.1.4 附着和离脱
电子
• 放电等离子体中的荷电粒子
正离子 负离子
• 附着:原子或分子捕获电子生成负离子的过程;
• 离脱:附着的逆过程。
• 附着机制:包括电子附着,辐射附着,三体附着,离解附着,等等。
1. 节省时间; 2. 降低能耗。
APO-5和APO-C的微波合成
• 磷酸铝分子筛:
• 合成方法:
在一定原料配比范围,可得到水热法不能得到的纯APO-5产物;
1. 水热法;
降低模板剂量及微波功率,缩短微波辐射时间,可获得APO-C。
2. 微波法
1.3 沸石分子筛的离子交换
1. 在微波作用下,水分子和稀土离子比使用一般
• 加热
微波与材料的相互作用
• 根据材料对微波的反射和吸收的情况不同可以分为四种类型:
1. 良导体 —— 金属物质,能反射微波,可用作微波屏蔽,也可用于传播微波能量
(如黄铜或铝波导管);
2. 绝缘体 —— 玻璃,云母,部分陶瓷材料等,可以被微波穿透,几乎不吸收微波
能量;
3. 微波介质 —— 能够不同程度地吸收微波能而被加热,特别是含水物质吸能升温
• 等离子体类型:
1. 热等离子体(高温等离子体)—— 焊弧,电弧炉,等等; 2. 冷等离子体(低温等离子体)—— 辉光放电,微波等离子体,等等。
2.2 等离子体中主要基元反应过程
1. 电离; 2. 激发; 3. 复合过程; 4. 附着和离脱。
2.1.1 电离过程
• 电离是形成微波等离子体(低温等离子体)必不可少的
效果明显;
4. 磁性化合物 —— 微波加热效果主要来自交变电磁场对材料的极化作用。交变电
磁场使材料内部的偶极子反复调转,产生更强的振动和摩擦,使材料升温。
1. 微波辐射法在无机合成中的应用
• 1986年,Gedye等人首次将微波技术应用于有机
合成;
• 1988年,Baghurst和Mingos等人首次用微波法进
(晶态 / 非晶态 / 玻璃体)
1.5 多孔晶体材料上无机盐的高度 分散
• 目的:使催化剂在高比表面积的载体上充分分散。
• CuCl2 / NaZSM-5的制备:
• 常规方法:在某温度下加热数小时或数十小时完成反应; • 微波法:家用微波炉6 ~ 10 min。
• 微波法的优势:
1. 可以获得高负载量的CuCl2; 2. 制备时间显著缩短; 3. 工艺过程简单。
行无机化合物和超导陶瓷材料的合成,以及之 后进行的有机金属化合物、配合物、嵌入化合 物的合成。
1.1 微波加热和加速反应机理
• 微波加热原理:介质材料一般可分为极性材料和非极性材料。在
微波电磁场作用下,极性分子从原来的热运动状态转向依照电磁场 的方向交变而排列取向,产生类似摩擦热,在这一微观过程中交变 电磁场的能量转化为介质内的热能,使介质温度出现宏观上的升高, 这就是对微波加热,即微波加热是介质材料自身损耗电磁场能量而 发热。
备
产业化应用与发展前景
• 新材料加工 • 微电子技术 • 航空航天工业
小结:无机合成制备方法
• 高温合成 • 低热固相合成 • 低温合成与分离 • 水热与溶剂热合成 • 高压合成
• 电解合成 • 无机光化学合成 • 化学气相沉积合成 • 微波与等离子体无机合成
微波辐射法:PbO2,500 W,30 min
• Pb3O4的制备 ——
• 碱金属偏钒酸盐的制备:
• 传统方法:碱金属碳酸盐200℃预热2h,混料,700~950℃,12~14h; • 微波辐射法:200~500 W,数分钟;
CuFe2O4的制备
CuO +
Fe2O3
研磨混合
微波辐射 (350 W,30 min)
样品质量、压紧密度、微波功率、反应物颗粒大小、添加剂种类和数量
2 微波等离子体化学
• 等离子体 —— 物质的第四态
加热
直流放电
放电
射频放电
光激励
• 获得方法
微波放电
微波等离子体的优势
• 属于无电极放电,不存在电极污染问题;
• 电动高能离温很度物大高质而,的气电制体子备分浓,子度 在温大 温度, 和较电 条低子 件和 下—气 完—体 成适的 通合温 常于度 需非比 要若高T稳e温/定T高g物压很种的大的反,合应即成;电,子
跃迁
光学允许跃迁 光学禁阻跃迁 —— 亚稳跃迁
2.1.3 复合过程
• 复合是电离的逆过程 —— 电离产生的正负荷电粒
子重新结合成中性原子或分子的过程,包括:
1. 三体碰撞复合
A e e A*e A* A hv
A*e A e hv
2. 辐射复合
e A A hv
辐射复合:
X Y XY hv
B A B A e
• 在辉光放电等离子体中该过程较不重要。
d) 光电离
• 分子受光照而电离的过程。
• 发生条件:设某种粒子的电离能为Ei,要求光子能
量满足
入射光 等离子体辐射
• 激发源
hv > Ei。
2.1.2 激发过程
• 在弱电离等离子体中,中性粒子的激发主要由
电子碰撞引起。
自由电子
基态原子 非弹性碰撞
CuFeO4 (四方或立方结构)
传统方法:23 h
La2CuO4的制备
CuO +
La2O3
研磨混合
微波辐射 (500 W,9 min)
La2CuO4
传统方法:12 ~ 24 h
YBa2CuO7的制备
CuO +
Y2O3 +
Ba(NO3)2
研磨
微波辐射
(500 W,5 min)
研磨
微波辐射
(130 ~ 500 W,15 min)
加热方法时运动速率更快,动能更大,离子能 够进入到较难交换的位置,离子交换更为充分;
2. 微波作用下,离子交换量更大;
3. 微波作用下,离子交换速率更快。
1.4 微波辐射法在无机固相反应中 的应用
• 微波辐射法:直接穿透样品,实现体加热 —— 热能利用率50 ~
70%
传统方法:PbO,470℃,30 h;
激发态
X
m
2X
X
m 2
X
亚稳态粒子参与的电离过程
• 亚稳态粒子的累积电离:
X m e X e e
• Penning电离:中性粒子与亚稳态粒子撞击而电离的过
程;
X m Y X Y e
• 亚稳态粒子间的碰撞电离:
X m X m X X e
c) 离子碰撞电离
• 分子受粒子撞击而电离的过程:
1. 合成产物相与原料配比密切相关; 2. 提高微波功率可以缩短辐射时间; 3. 原料化合物的搅拌和陈化对产物相有关键影响。
NaX沸石的微波合成
• NaX沸石:低硅铝比八面体结构,一般在低温水热条件下合成,
晶化时间为数小时至数十小时。
• 微波辐射合成条件: 2450 MHz,65 ~ 195 W,30 min; • 优势:
热惯性极小,配用微机控制特别适宜于加热过程的 热惯性大,操控精度差 自动化控制
无污染微波能自身不会对食品污染,在保持食品营
-
养成份的同时能在较低的温度下杀死细菌
对不同性质的物料有不同作用,非常适合于干燥
-
(注意有些物质温度愈高吸收性愈好,造成恶性循
环,出现局部温度急剧上升造成过干甚至炭化的情
况)
无废水、废气、废物产生,无辐射遗留物存在
研磨
排除NO2
微波辐射 (25 ~ 50 min)
YBa2Cu3O7-x (正交结构 —— 超导特性)
缓慢冷却
YBa2Cu3O7-x (四方结构)
稀土磷酸盐发光材料的微波合成
• 原料:以稀土离子磷酸盐为基质,某些稀土元素为激活
剂;
• 合原成料:
微波辐射7 ~ 10 min
稀土磷酸盐发光体
(溶液 / 凝胶)
等离子体的反应类型
A(s) B(g) C(g)
A(g) B(g) C(s) D(g)
集成电路中的等离子体刻蚀; 等离子体灰化去除光刻胶;
分析化学中的有机物样品低温灰 化; 等离子体化学气相输运,等等。
等离子体化学气相沉积; 溅射制膜,等等。