统计数据的特征描述

合集下载

统计学之数据的描述

统计学之数据的描述
统计学之数据的描述
数据的特征
任何一组计量数据都有两个重要的特征:
中心值
(典型值)
围绕中心值
(典型值)的变
动幅度
数据的标记
如果我们进行一系列的观察,得到 个数,我们可以使用简单的记号标注数据,这样对数据统计与分析大有帮助。
我们可以将数据按如下方式进行标注:
1 , 2 , 3 , … …
标准差:s = 2 =
1
σ=1
−1
2ቤተ መጻሕፍቲ ባይዱ
2
− ҧ
2
和的特性
ҧ
平均数和标准差适合概括没有异类点、完全对称的直方图。如右图所示。
5
8
9
13
200
中位数为:9,平均数为:47
此时用平均数不能体现总
体毕业生的薪资水平,扭
曲了毕业生的平均薪资
异类点(极
端数值)
变动度的测量
变动度是描述数据偏离中心值有多远的量。
例如:调查学校7个学生的体重,恰好都是145斤,那
如果学生重量轻重不一,如下图所示。
就根本没有变动度,用直方图表示会很窄。如下图所
举例:随机调查某大学毕业生中5个人薪资水平,数据如下:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
5
8
9
13
10
中位数为:9,平均数为:9
如果随机调查某大学毕业生中5个人薪资水平,其中C0096号同学薪资为200K,则:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
示。
直方图将会变宽

统计学第4章数据特征的描述

统计学第4章数据特征的描述
优缺点
极差计算简单,但容易受到极端值的影响,不能全面 反映数据的离散程度。
四分位差
定义
四分位差是第三四分位数与第 一四分位数之差,用于反映中
间50%数据的离散程度。
计算方法
四分位差 = 第三四分位数 第一四分位数
优缺点
四分位差能够避免极端值的影 响,更稳健地反映数据的离散
程度,但计算相对复杂。
方差与标准差
统计学第4章数据特征 的描述
https://
REPORTING
• 数据特征描述概述 • 集中趋势的度量 • 离散程度的度量 • 偏态与峰态的度量 • 数据特征描述在统计分析中的应用 • 数据特征描述的注意事项
目录
PART 01
数据特征描述概述
REPORTING
WENKU DESIGN
数据特征描述在推断性统计中的应用
参数估计 假设检验 方差分析 相关与回归分析
基于样本数据特征,对总体参数进行估计,如点估计和区间估 计。
通过比较样本数据与理论分布或两组样本数据之间的差异,对 总体分布或总体参数进行假设检验。
研究不同因素对总体变异的影响程度,通过比较不同组间的差 异,分析因素对总体变异的贡献。
定义
方差是每个数据与全体数据平均数之方根,用于衡量数据的波动大小。
计算方法
方差 = Σ(xi - x̄)² / n,标准差 = √方差
优缺点
方差和标准差能够全面反映数据的离散程度,且计算相对简单,但容易受到极端值的影响。同时,方差 和标准差都是基于均值的度量,对于非对称分布的数据可能不够准确。
适用范围
适用于数值型数据,且数据之间可能 存在极端异常值的情况。
特点
中位数不受极端值影响,对于存在极 端异常值的数据集,中位数能够更好 地反映数据的集中趋势。

数据分布特征的三个统计描述维度

数据分布特征的三个统计描述维度

数据分布特征的三个统计描述维度现如今生活处处有数据,而我们接触到的数据可以分为连续型数据或者离散型数据。

连续数据的取值范围是可以取连续值的区间,即连续值可以是区间内的任意值,一般都有度量单位。

离散数据的范围由有限数量的值或序列组成。

对数据集使用合适的描述性指标,可以帮助我们探索庞大无序的数据背后隐藏的事实。

描述数据集的三个维度是指对数据集中趋势的描述、对数据分散程度的描述和对数据分布形式的描述。

一、集中趋势描述1.算术平均数 Arithmetic Mean:所有数值的和除以数值的个数。

用于描述一组数据在数量上的平均水平。

计算公式:优缺点:算术平均数是能够充分运用已有信息的代表性数值,每个数值大小的改变都会引起其变化。

也因此容易受极值的影响,并且会掩盖数据的差异性。

示例:最近更新了2018年度深圳在岗职工的月平均工资,达到了9309元。

这就是一个算术平均值的实际应用。

还是要保持进步,争当排头兵而非吊车尾呀。

2.几何平均数 Geometric Mean:对各数值的连乘积开项数次方根。

一般用于当总成果为各个阶段(环节)的连乘积时,求各个阶段(环节)的一般成果。

计算公式:优缺点:几何平均数受极端值的影响比均值小。

但仅适用于具有等比或近似等比关系的数据。

示例:连续作业的车间求产品的平均次品率。

一个产品的生产由三个环节组成。

每个环节都会产生一定的次品。

次品率依次为5%、2%、6%,求这个产品的平均次品率。

因为每个环节都是依次发生的,需要完成上一个环节的合格产品才能进入下一个环节,所以每个环节的不良率是一个产品关系。

依照上式结果可知,该产品整个生产环节的平均次品率为3.91%。

3.中位数 Median:将数值从小到大依次排列,最中间的数值为中位数。

若数值个数为奇数个时,为中间位置的数值;若数值个数为偶数个时,为中间两个数的算术平均数。

优缺点:不受极值影响,通过丢失一些信息来换取指数的稳定性。

但对极值缺乏敏感性,样本量较小时中位数不稳定。

SPSS统计分析数据特征的描述统计分析

SPSS统计分析数据特征的描述统计分析

SPSS统计分析数据特征的描述统计分析SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,用于对数据进行描述统计分析。

描述统计分析旨在帮助研究人员对数据进行简单的整理、描述和总结,以便更好地理解数据的特征和趋势。

下面将说明几种常用的描述统计分析方法。

1.频数统计频数统计是指对数据中各个变量的不同取值进行计数。

通过统计每个取值出现的次数,可以了解数据的分布情况和变量的特点。

SPSS提供了多种方式来进行频数统计,包括直方图、饼图等。

通过这些图表,可以清晰地看到变量的取值分布。

2.中心趋势测量中心趋势测量是描述数据集合中心位置的统计方法,常用的测量指标包括平均数、中位数和众数。

平均数是所有数据的算术平均值,中位数是将数据按大小排列后处于中间位置的数值,众数是出现次数最多的数值。

SPSS提供了计算这些测量指标的功能,以便更好地了解数据的中心位置。

3.离散程度测量离散程度测量是描述数据变异程度的方法,常用的度量指标包括标准差、方差和极差。

标准差是数据与平均数之间的平均偏差,方差是标准差的平方,表示数据的离散程度,极差是最大值与最小值之间的差异。

通过这些指标,可以判断数据的离散程度,以及是否存在异常值等问题。

4.偏度和峰度测量偏度和峰度是描述数据分布形态的指标。

偏度测量的是数据分布的偏斜程度,正偏斜表示分布右侧的极端值较多,负偏斜表示分布左侧的极端值较多。

峰度测量的是数据分布的尖峰程度,正峰度表示尖峰较高且尾巴较短,负峰度表示尖峰较低且尾巴较长。

通过偏度和峰度的测量,可以判断数据的分布形态是否符合正态分布。

5.相关分析相关分析旨在研究两个或多个变量之间的关系。

相关系数是用来衡量变量之间线性相关程度的指标,取值范围从-1到+1、接近-1的相关系数表示负相关,接近+1的相关系数表示正相关,接近0的相关系数表示无相关。

通过相关分析,可以了解不同变量之间的关系,以及它们对研究问题的影响程度。

第3章统计学数据分布特征的描述

第3章统计学数据分布特征的描述

第3章统计学数据分布特征的描述统计学是一门研究收集、分析和解释数据的学科。

在统计学中,数据分布特征的描述是指通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。

数据的集中趋势描述了数据的平均水平或中心。

常用的统计量有平均值、中位数和众数。

平均值是将所有观测值相加然后除以观测值的总数,它能够反映数据的总体平均水平。

然而,当数据包含异常值时,平均值的计算结果可能会受到影响。

因此,中位数和众数在这种情况下被认为是更稳健的集中趋势度量。

中位数是将数据按大小排序,然后找出中间位置的观测值。

众数是数据中出现次数最多的观测值。

数据的离散程度描述了数据的变异程度或分散程度。

常用的统计量有方差、标准差和四分位差。

方差是观测值与均值之间差异的平方的平均值,它反映了数据的总体离散程度。

标准差是方差的平方根,用于衡量数据的波动性。

四分位差是数据的上四分位数和下四分位数之差,它描述了数据的中间50%的变异程度。

数据的分布形态描述了数据的形状和对称性。

常用的分布形态有正态分布、偏态分布和峰态分布。

正态分布是最常见的分布形态,其特点是对称、钟形曲线。

偏态分布是指数据分布不对称的情况,主要分为正偏态和负偏态。

正偏态分布意味着数据的尾部偏向右侧,负偏态分布则意味着数据的尾部偏向左侧。

峰态分布用于描述数据的峰值的尖锐程度,主要分为正态分布、高峰态和低峰态。

除了统计量,还可以使用图表来对数据分布特征进行描述。

常用的图表包括直方图、箱线图和散点图。

直方图是通过将数据分组并在坐标轴上绘制各组的频率或相对频率来展示数据的分布形态。

箱线图通过绘制数据的分位数和异常值来展示数据的中位数、四分位数和离群观测值。

散点图用于展示两个变量之间的关系,特别适用于发现变量之间的相关性和异常值。

综上所述,统计学中的数据分布特征描述是通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。

这些描述能够帮助我们更好地理解数据,并对数据进行分析和解释。

统计学第3章数据分布特征描述

统计学第3章数据分布特征描述

xi fi i1
xf
f1 f2 ... fn
n
fi
f
x x f
i 1
f
举例
表3-3 节能灯泡使用寿命数据
使用寿命 组中 数量 (小时) 值x f
xf
频率 f /Σf
xf/Σf
1000以下 900 2 1800 0.020 18
1000-1200 1100 8 8800 0.080 88
n(xi x) 0
i1
(3)各变量值与算术平均数的离差平方之总和最小。 (从全 部数据看,算术平均数最接近所有变量值)
n(xi x)2 min
i1
性质(3)证明:
(三)调和平均数(Harmonic mean)
➢ 调和平均数,也称倒数平均数。 ➢ 各变量值倒数(1/xi)的算术平均数的倒数。 ➢ 计算公式为:
➢由一组数据的总和(总体标志总量)除以 该组数据的项数(总体单位总量)得到; 算术平均数=总体标志总量/总体单位总量
➢是最常用的数值平均数;
➢根据掌握资料不同,其有多种计算公式。
1.简单算术平均数 ➢对未分组数据,采用简单算术平均数公式。即 把各项数据直接加总,然后除以总项数。 ➢计算公式:
N
xi x i1
例如,改变教师职称结构,而不改变各种职 称教师课时费标准,会改变平均课时费水平。
权数实质
➢权数的实质在于其结构,即结构比例形式(比重 权数)。
➢其更能清晰表明权数之权衡轻重的作用。
权数形式有2种:
➢ 绝对数形式
Mp
➢ 结构比例形式
k
N
xik wi
i 1
N
wi
i 1
k
N
i 1

统计数据特征的主要指标

统计数据特征的主要指标

统计数据特征的主要指标一、引言统计数据特征是指在一定时间和空间范围内,对某一现象或事物进行量化、统计和描述的结果。

统计数据的特征可以通过不同的指标来衡量和评估。

本文将介绍常用的统计数据特征指标,包括中心位置、离散程度、偏态和峰态等。

二、中心位置指标中心位置指标是用来描述数据集中趋势的指标,主要包括均值、中位数和众数等。

1. 均值均值是所有数据之和除以样本数量得到的平均值。

均值可以反映整个数据集的平均水平。

但是,当数据存在极端值时,均值容易被拉高或拉低,导致失真。

2. 中位数中位数是将所有数据按照大小排序后,处于中间位置的数值。

中位数不受极端值影响,更能反映整个数据集的典型水平。

3. 众数众数是出现次数最多的数值。

众数适用于描述离散型变量的分布情况。

三、离散程度指标离散程度指标是用来描述数据分布范围广泛程度的指标,主要包括极差、方差和标准差等。

1. 极差极差是数据最大值与最小值之间的差值。

极差越大,数据分布范围越广泛。

2. 方差方差是各数据与均值之间距离平方和的平均数。

方差可以反映数据集中每个数据点与整个数据集中心位置的距离。

3. 标准差标准差是方差的正平方根。

标准差比方差更容易理解,因为它与原始数据具有相同的单位,而且可以通过标准化后进行比较。

四、偏态指标偏态指标是用来描述数据分布对称程度的指标,主要包括偏度和峰度等。

1. 偏度偏度是描述分布对称性的指标。

当偏度为0时,表示分布完全对称;当偏度为正数时,表示分布右侧尾部更长;当偏度为负数时,表示分布左侧尾部更长。

2. 峰度峰度是描述分布峰态(尖锐程度)的指标。

当峰度为0时,表示分布呈现正常曲线形状;当峰度大于0时,表示分布比正常曲线更尖锐;当峰度小于0时,表示分布比正常曲线更平缓。

五、总结本文介绍了常用的统计数据特征指标,包括中心位置、离散程度、偏态和峰态等。

这些指标可以帮助我们了解数据集的分布情况,从而更好地进行数据分析和决策。

在实际应用中,需要根据具体问题选择合适的指标进行分析。

数据分布特征的统计描述

数据分布特征的统计描述

数据分布特征的统计描述数据分布是指一组数据值在数值上的分布情况。

统计描述是用数学统计方法对数据分布进行概括和描述的过程。

通过对数据分布的统计描述,可以揭示数据的一些基本特征和规律,从而帮助我们更好地理解和分析数据。

常见的数据分布特征的统计描述包括:中心趋势、离散程度和形态特征。

中心趋势是指一组数据值的集中或平均水平。

常用的统计量有均值、中位数和众数。

均值是一组数据值的算术平均值,通过将所有数据值相加然后除以数据个数得到。

均值可以很好地反映数据的集中程度,但对于有离群值的数据分布,均值可能会受到影响。

中位数是一组数据值按照大小排列后中间的那个值。

中位数的计算不受数据的具体取值影响,适用于有离群值的数据分布。

中位数可以用来描述数据的集中程度,同时还可以提供关于数据的排序信息。

众数是一组数据值中出现次数最多的值,可以用来描述数据的集中程度。

众数可以存在多个或不存在。

离散程度是指一组数据值的分散或变异程度。

常用的统计量有极差、方差和标准差。

极差是一组数据值的最大值和最小值之间的差异。

极差不能提供关于数据的分布形态的信息,但可以描述数据的全局离散程度。

方差是一组数据值与其均值之间的差异的平方和的均值。

方差可以反映数据的整体离散程度,但由于计算中使用了平方运算,所以方差的单位与原数据不一致。

标准差是方差的平方根,具有与原数据相同的单位。

标准差可以更直观地度量数据的离散程度,且方便与均值进行比较。

形态特征是指数据分布的形态或形状。

常用的统计描述包括偏度和峰度。

偏度是数据分布的对称性的度量。

偏度为0表示数据分布呈现对称分布,大于0表示数据分布右偏,小于0表示数据分布左偏。

偏度可以帮助我们了解数据的偏斜程度,从而选择合适的数据分析方法。

峰度是数据分布的尖峰或平坦程度的度量。

峰度大于3表示数据分布具有尖峰形态,峰度小于3表示数据分布具有平坦形态。

峰度可以帮助我们判断数据是否存在异常值或是否符合正态分布的假设。

在实际应用中,以上的统计描述方法常常是结合使用的。

统计 统计数据的数字特征

统计 统计数据的数字特征
⑶这里的 是对抽样数据而言的.有时即使 ,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.
题型一.数字特征的计算
【例1】(2010海淀二模)
某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图). , 分别表示甲、乙两班各自5名学生学分的标准差,则 .(填“ ”、“ ”或“ ”)
回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
2.最小二乘法:
记回归直线方程为: ,称为变量 对变量 的回归直线方程,其中 叫做回归系数.
是为了区分 的实际值 ,当 取值 时,变量 的相应观察值为 ,而直线上对应于 的纵坐标是 .
设 的一组观察值为 , ,且回归直线方程为 ,
统计量的两个临界值: 、 ;当 时,有 的把握说事件 与 有关;当 时,有 的把握说事件 与 有关;当 时,认为事件 与 是无关的.
独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的.
1.独立性检验的步骤:统计假设: ;列出 联表;计算 统计量;查对临界值表,作出判断.
抽出办法:从元素个数为 的总体中抽取容量为 的样本,如果总体容量能被样本容量整除,设 ,先对总体进行编号,号码从 到 ,再从数字 到 中随机抽取一个数 作为起始数,然后顺次抽取第 个数,这样就得到容量为 的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.
A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近

第三章统计数据分布特征的描述

第三章统计数据分布特征的描述

第三章统计数据分布特征的描述统计数据分布特征的描述是统计学中非常重要的一个概念,它用于对数据进行系统化的描述和分析。

统计数据分布特征的描述包括位置参数、散布参数和形状参数。

位置参数描述了数据集中心位置的特征。

最常用的位置参数是均值和中位数。

均值是指所有数据值的总和除以数据个数,它能够反映数据集的平均水平。

中位数是将数据值按大小排序后的中间值,它能够反映数据集的中心位置。

均值对异常值比较敏感,中位数能够较好地排除异常值的干扰。

散布参数描述了数据集的离散程度。

最常用的散布参数是方差和标准差。

方差是指每个数据值与均值之差的平方和的平均值,它能够反映数据集的离散程度。

标准差是方差的平方根,它与数据的单位相一致,常用于衡量数据的波动性。

方差和标准差越大,表示数据的离散程度越大。

形状参数描述了数据集的分布形状。

常用的形状参数包括偏度和峰度。

偏度是指数据分布的不对称程度,大于0表示右偏,小于0表示左偏,等于0表示对称。

偏度能够反映数据集的分布形态。

峰度是指数据分布的尖锐程度,大于0表示尖锐,小于0表示平坦,等于0表示与正态分布相似。

峰度能够反映数据集的尖峰或扁平程度。

除了这些常见的参数之外,还有其他一些描述统计数据分布特征的方法,如四分位数和箱线图。

四分位数是将数据分为四等分的值,它包括上四分位数、下四分位数和中位数。

上四分位数是四分之三分位数,下四分位数是四分之一分位数。

箱线图是以箱子和线段的形式展示数据分布特征,箱子的上边界和下边界分别代表上四分位数和下四分位数,箱子的中线代表中位数,箱子的长度代表数据的离散程度。

统计数据分布特征的描述对于研究数据的特征、提取有效信息以及进行统计推断都非常重要。

了解数据的位置、散布和形状特征能够帮助研究者更好地理解数据集的性质和规律。

在实际应用中,统计数据分布特征的描述还可以帮助决策者进行决策,例如对于质量控制的判断和产品的质量评估等。

综上所述,统计数据分布特征的描述是对数据集进行系统化描述和分析的重要工具。

对统计数据的分布特征,主要从哪几个方面进行描述?

对统计数据的分布特征,主要从哪几个方面进行描述?

对统计数据的分布特征,主要从哪⼏个⽅⾯进⾏描述?
数据分布特征可以从集中趋势、离中趋势及分布形态三个⽅⾯进⾏描述。

1、平均指标是在反映总体的⼀般⽔平或分布的集中趋势的指标。

测定集中趋势的平均指标有两类:位置平均数和数值平均数。

位置平均数是根据变量值位置来确定的代表值,常⽤的有:众数、中位数。

数值平均数就是均值,它是对总体中的所有数据计算的平均值,⽤以反映所有数据的⼀般⽔平,常⽤的有算术平均数、调和平均数、⼏何平均数和幂平均数。

2、变异指标是⽤来刻画总体分布的变异状况或离散程度的指标。

测定离中趋势的指标有极差、平均差、四分位差、⽅差和标准差、以及离散系数等。

标准差是⽅差的平⽅根,即总体中各变量值与算术平均数的离差平⽅的算术平⽅根。

离散系数是根据各离散程度指标与其相应的算术平均数的⽐值。

3、矩、偏度和峰度是反映总体分布形态的指标。

矩是⽤来反映数据分布的形态特征,也称为动差。

偏度反映指数据分布不对称的⽅向和程度。

峰度反映是指数据分布图形的尖峭程度或峰凸程度。

数据特征的描述范文

数据特征的描述范文

数据特征的描述范文数据特征是指在数据集中用来描述和区分不同观察对象的属性或变量。

数据特征可以是数值型、分类型或者是其他类型的。

在数据分析和机器学习领域,了解和理解数据特征的性质和特点是非常重要的,因为它们对于数据预处理和特征工程的选择和设计有很大的影响。

首先,数值型特征指的是具有连续数值或离散数值的特征。

这种特征主要用于度量或计量一种数量,如年龄、身高、体重等。

数值型特征的常见统计描述包括平均值、中位数、标准差、最小值和最大值等。

这些统计描述可以帮助我们了解数值型特征的分布情况、集中趋势和离散程度。

此外,时间型特征指的是具有时间戳或时间周期的特征。

这种特征主要用于描述事件发生的时间、顺序或周期性。

在时间序列分析中,时间型特征的统计描述可以帮助我们识别趋势、周期和季节性等模式。

常见的时间型特征包括年、月、日、季度、小时等,可以通过日期函数和时间序列算法进行处理和分析。

另外,文本型特征指的是具有自然语言文本的特征。

这种特征主要用于描述文本内容、主题和情感等。

常见的文本型特征处理方法包括词袋模型、TF-IDF、词嵌入等。

文本型特征通常需要进行文本清洗、分词和向量化等预处理操作,以便于机器学习算法的应用。

除了上述常见的数据特征类型,还有一些其他类型的特征可以进行描述。

例如,图像型特征可以用于描述图像的颜色、纹理和形状等;地理型特征可以用于描述地理位置和区域属性;网络型特征可以用于描述网络拓扑和关系等。

总之,数据特征的描述是指根据特征的类型和属性,通过统计指标、分布图表和描述性方法等获取特征的概括和表达。

理解数据特征的性质和特点,对于数据挖掘、机器学习和决策分析等任务有着重要的指导作用。

通过对数据特征的描述和分析,可以为后续的数据预处理、特征选择和特征工程提供有力的支持。

统计数据分布特征的描述

统计数据分布特征的描述
6.86 184.90 518.94 817.96
3100.5
(三)标准差的用途
◆广泛用于表明数据的离散程度或离中趋势。
◆标准差是进行相关分析和统计推断的必须 量数。
(四)离散系数
1.标准差与其相应的均值之比 2.消除了数据水平高低和计量单位的影响 3.测度了数据的相对离散程度 4.用于对不同组别数据离散程度的比较 5.计算公式为
数据分布的特征
集中趋势 (位置)
离中趋势 (分散程度) 偏态和峰度 (形状)
第1节:数据分布集中程度的描述指标 —平均指标
一、数值平均数 (一)、简单算术平均数 1、平均数的计算方法 (1)、原始数据
(2)、分组数据(见加权均数)
▪ 原始数据: 10 5 9 13 6 8
2、均数的性质 3、平均数应用中的优缺点
较小的一半中间位置的那个数值。
2、性质:
3、计算 (1)原始数据:
(2)分组数据:
4. 该公式假定中位数组的频数在该组内均匀分布
4、用途:
(1)用于顺序数据集中趋势的度量。 (2)用于数值型数据中出现离群数值时。 (3)用于数值型数据中两端数值或个别数
据不清楚时。
(二)众数
1、定义:指一组数据中出现次数最多的那 一个数值。
2. 相邻两组的频数相等时,众数组的组中值
即为众数
Mo
3. 相邻两组的频数不相等时,众数采用下 列近似公式计算
Mo
4. 该公式假定众数组的频数在众数组内均匀分布 Mo
3、众数的用途: (1)用于分类数据集中趋势的度量。 (2)用于数值型数据中需要快速而粗略地
寻找代表值时。
(3)用于粗略地估计频数分布的形态。
2、众数的求法: (1)未分组数据:出现次数最多者。

第三章统计数据分布特征的描述

第三章统计数据分布特征的描述

第三章统计数据分布特征的描述统计数据分布特征的描述是统计学中的重要概念之一、它是通过对数据进行整理、组织和分析来了解数据的分布情况,帮助我们更好地理解数据的特点和趋势。

一、数据分布特征的描述方法在统计学中,数据分布特征主要通过以下两种方法进行描述:1.图形描述法:通过绘制图表来展示数据的分布情况。

常见的图形描述方法有直方图、条形图、饼图、箱线图等。

直方图是一种用于展示数据分布的图形。

它将其中一范围内的数据分成若干个等宽的区间,并统计每个区间中数据的频数或频率,然后绘制柱状图来表示。

箱线图是一种用于展示数据分布和异常值的图形。

它将数据划分为四个部分:最大值、上四分位数、中位数、下四分位数和最小值,并通过画出盒子和须来表示数据的分布情况。

2.数值描述法:通过使用统计指标和参数来描述数据的分布情况。

常见的数值描述方法有均值、中位数、众数、标准差、方差等。

均值是指将所有数据相加后再除以数据的总个数的得到的值,代表了数据的平均水平。

中位数是指将数据按大小排序后,处于中间位置的值,代表了数据的中心位置。

众数是指数据集中出现次数最多的值,代表了数据的集中趋势。

标准差是指数据在均值附近的波动程度,代表了数据的离散程度。

方差是指数据与均值之间的平均差的平方的平均值,代表了数据的离散程度。

二、数据分布特征的描述步骤要进行数据分布特征的描述,一般需要进行以下步骤:1.数据的整理和搜集:搜集所需的数据,并将其整理成适合进行分析的形式。

2.确定描述方法:根据数据的特点和目标,选择适当的图形描述法或数值描述法。

3.进行描述分析:根据所选的描述方法,对数据进行分析和计算,得出相应的描述结果。

4.解释和应用:根据描述结果,解释数据的分布特征,并根据需要进行相应的应用。

三、数据分布特征的描述应用数据分布特征的描述在实际应用中有很多用途,以下是几个常见的应用:1.判断数据是否符合其中一种分布:通过对数据的分布特征进行描述,可以判断数据是否符合正态分布或其他特定的分布形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融广告
9
0.045
4.5
房地产广告 16 0.080
8.0
招生招聘广告 10 0.050
5.0
其它广告
集中趋势 (central tendency) 是指一组数据向某一中 心值靠拢或集中的程度
用途:是为了表示社会经济现象总体各单位某一 标志在一定时间、地点和条件下达到的一般 水平,经常被作为评价事物和决策的数量标 准或参考。
主要测度值:平均数、众数、中位数、分位数
3.1.1 平均数
平均数常用 x 来表示。是数据集中趋势的最主要测度值。
2) 加权几何平均数
计算公式:
n
G


i 1
fi
x1
f1
x2
f2
...xn
fn
fi xi fi
例题见P46
平均值计算结果的说明
(1)根据原始数据和分组资料计算的结果一般不 会完全相等,根据分组数据只能得到近似结果。
(2)只有各组数据在组内呈对称或均匀分布时, 根据分组资料的计算结果才会与原始数据的计算 结果一致。
2.调和平均数(harmonic mean)
1)简单调和平均数 简单调和平均数是各观测值倒数ห้องสมุดไป่ตู้算术平均数的倒数
适用:未经分组整理的原始数据资料
计算公式:
1
n
n
H


1 1 ... 1 1 1 ... 1 n 1
x1 x2
xn x1 x2
xn i1 xi
n
2) 加权调和平均数
0.027
0.298
1.236
0.848
0.610
0.468
x =0.027+0.298+1.236+0.848+0.610+0.468=3.487
即职工的平均家庭人口数是3.487人
已整理的组距式分组数据平均数算例
根据第2章中的表2-7中的数据资料计算某单位某种 产品平均销售量的近似值。(见课本P43)
加权算术平均数:是通过各组标志值与各组频数相乘 的总和除以各组频数之和得到的。
适用:已经分组整理并编制出频数分布的数据资料。
计算公式为
n

xi fi
x i1
n
fi
i 1

n
xi
fi
n
i 1
fi
i 1
式中,x i是单项式分组形式下第i组的变量值或组距式
分组形式下第i组的组中值;f i是第i组的频数;n为
适用:未经分组整理的原始数据资料。
计算公式:直接将各个数据相加,再除以数据个数。 其计算公式为

x

1 n
n i 1
xi
式中,xi 是一组样本数据的观测值,n为样本容量。
【例3.1】 某班级20名学生的期末数学成绩是67、 78、49、56、98、87、62、100、73、45、70、 44、96、80、49、61、60、88、93、60(分),求 该班学生的数学成绩的平均数。
第3章 统计数据的特征描述
3.1 集中趋势的描述 描述集中趋势的几个统计量及相互关系 3.2 离散程度的描述 描述离散程度的几个统计量 3.3 分布形态的描述 描述分布形态的几个统计量
数据的特征和测度
集中趋势
数值平均值
均值
位置代表值
众数 中位数
离散程度
分布的形状
方差和标准差
偏度
全距
峰度
§3.1 集中趋势的描述
适用:数值型数据(不适用于分类数据和顺序数据)
算术平均数
简单算术平均值 加权算术平均值
常用形式:调和平均数
简单调和平均数 加权调和平均数
几何平均数
简单几何平均数 加权几何平均数
简单 平均数
加权 平均数
1.算术平均数(mean)
1) 简单算术平均数
简单算术平均数就是全部数据的算术平均数。
算术平均数的若干数学性质 (1)平均数与总体单位数的积等于总体标志总量 (2)若每个变量值 (X )加减一任意常数α,则平均数也 加减这个任意值α 。 (3)若每个变量值 (X)乘以一任意常数α,则平均数也乘 以这个任意值α 。 (4)若每个变量值( X)除以一任意常数α,则平均数也除 以这个任意值α 。 (5)各个变量值(X)与算术平均数的离差和为零。 (6)各个变量值(X)与算术平均数的离差平方和为最小值。
适用:已经分组整理并编制出频数分布的数据资料。
计算公式:
H
m1 m2 ... mn
m1 m2 ... mn
x1
x2
xn
n
mi

i 1
n mi
x i1 i
mi
表示第i个单位或第i组标志值对应的标志总量, L
当各组标志总量相等,即m1=m2=…=mn= m时,即
n
mi
组数。
已整理的单项式分组数据平均数算例
表 3-1 职工家庭平均人口数的辅助计算表
家庭人口数
xi
1 2 3 4 5 6
频数(职工户数)
fi
7 38 105 54 31 20
频率 fi n fi i 1
0.027 0.149 0.412 0.212 0.122 0.078
xi
fi
n
fi
i 1
解:由公式(3.1)
x
=
1 (67 + 78 + 49 + 56 + 98 + 87 + 62 20
+ 100 + 73 + 45 + 70 + 44 + 96 + 80
+ 49 + 61+ 60 + 88 + 93 + 60)分
= 70.8分
该班学生的数学平均成绩是70.8分。
2) 加权算术平均数
H i1
n mi
x i1 i
nm
n 1
m x i1 i
n
n 1
x i1 i
例题见课本P44
3.几何平均数(geometric mean)
适用:计算平均比率和平均速度,即用于时间上有
联系或有先后顺序关系的比率求平均。
1) 简单几何平均数
计算公式:
1
G n x1x2...xn (xi ) n
数值平均值 总结
特点: •最常用的测度值 •均值利用了全体数据 •易受数据中极端值的影响 •用于数值型数据,而不能用于分类数据和顺序数据
3.1.2 众数 众数(mode)是数据中出现次数最多的那个观测值,也 就是是频数分布中频数或频率最大的数值,一般用M0 表示。 适用:分类数据、顺序数据以及数值型数据。
1.根据品质型和单项式分组数据计算众数
2.根据组距式分组数据计算众数
① 要确定众数所在组,即众数组。 ② 通过下面的下限公式或上限公式来计算众数。
品质数列的众数(算例)
某城市居民关注广告类型的频数分布
广告类型 人数 比例 频率(%)
商品广告 112 0.560
56.0
服务广告 51 0.255
25.5
相关文档
最新文档