培优专题分式方程培优提高经典例题
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
![初中数学分式方程的应用培优训练(精选40道习题 附答案详解)](https://img.taocdn.com/s3/m/9da44eb1cc7931b764ce1578.png)
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
5.4分式方程培优分式方程的增根和无解问题训练北师大版2023—2024学年八年级下册
![5.4分式方程培优分式方程的增根和无解问题训练北师大版2023—2024学年八年级下册](https://img.taocdn.com/s3/m/ea3c111e30b765ce0508763231126edb6f1a76c4.png)
5.4分式方程培优分式方程的增根和无解问题训练北师大版2023—2024学年八年级下册类型一.已知方程有增根,确定字母系数值1.若关于x的方程有增根x=﹣1,则k的值为.2.已知关于x的分式方程+=.若方程的增根为x=1,求m的值;3.关于x的分式方程.若方程的增根为x=2,求m的值;4.已知关于x的分式方程+=若方程的增根为x=1,求m 的值5.已知关于x的分式方程.若解得方程有增根,且增根为x=﹣2,求m的值.6.已知关于x的分式方程.若分式方程的根是x=5,求a的值;类型二.分式方程有增根,求参数值1.关于x的分式方程有增根,则a的值是.2.已知关于x的分式方程有增根,求a的值.3.已知,关于x的方程:.若方程有增根,求m的取值;4.已知关于x的分式方程.若分式方程有增根,求a的值;5.已知关于x的分式方程若方程有增根,求k的值;,6.已知关于x的分式方程.若分式方程有增根,求a的值;7.已知关于x的方程:.若方程有增根,求m的值;8.关于x的分式方程.若此方程有增根,求a的值;9.已知关于x的分式方程.若分式方程有增根,求a的值;10.关于x的分式方程.若方程有增根,求m的值;11.当m为何值时,关于x的方程+=有增根.12.已知关于x的分式方程+=若方程有增根,求m的,值13.若关于x的方程:+=.有增根,求a的值;14.若解关于x的分式方程+=会产生增根,求m的值.类型三.分式方程是无实数解,求参数值1.若关于x的分式方程无解,则m的值是()A.m=2或m=6B.m=2 C.m=6 D.m=2或m=﹣62.若分式方程无解,则实数a的取值是()A.0或2B.4C.8D.4或83.已知,关于x的方程:.若方程无解,求m的取值;4.已知,关于x的方程:.若方程无解,求m的取值;5.已知关于x的分式方程+=.若方程无解,求m的值.6.已知关于x的分式方程.若方程无解,求m的值.7.已知关于x的分式方程.若分式方程无解,求a的值.8.已知关于x的方程:.若方程无解,求m的值.9.已知关于x的分式方程.若分式方程无解,求a的值的.10.关于x的分式方程.若方程无解,求m的值.11.已知关于x的分式方程+=若方程无解,求m的值.12.若关于x的方程:+=.若方程无解,求a的值.。
分式方程培优训练
![分式方程培优训练](https://img.taocdn.com/s3/m/2d9c5351cf84b9d528ea7a9a.png)
1131=-+-x xm 分式方程培优训练1.若解分式方程2111x x m x x x x +-++=+产生增根,求m 的值;2. m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?3.求值:,其中,a=3.4、关于x 的分式方程的解为正数,求m 的取值范围。
5.当a 为何值时,关于x 的方程223242ax x x x +=--+无解?6. 先化简,再求值:,其中x=-3.7、关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围8. 先化简再求值:,其中x 是不等式组的整数解.9、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
10、一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、 轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
10、一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.11、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km ,王老师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王老师的步行速度及骑自行车的速度各是多少?12、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
《分式与分式方程》单元提高训练题(培优卷)
![《分式与分式方程》单元提高训练题(培优卷)](https://img.taocdn.com/s3/m/d1b49d715627a5e9856a561252d380eb63942316.png)
《分式与分式方程》单元提高训练题(培优卷)一.选择题(共10小题)1.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.67.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.已知x2﹣5x+1=0,则的值是.15.已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=+ +,则++=三.解答题(共10小题)21.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A 型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.已知非零实数a、b满足等式,求的值.28.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.。
分式提高培优练习题
![分式提高培优练习题](https://img.taocdn.com/s3/m/4c28e7191711cc7931b7169a.png)
分式提高培优练习题一、填空题➢ 1、若311=-y x ,则=---+yxy x y xy x 33535 。
➢ 2、若04422=+-y xy x ;则=+-y x y x 。
➢ 3、若=-+=++964181732122y x y x ,则 。
➢ 4、=-=nm 11mn n -m ,则若 。
➢ 5、=-≠-+b a ab b a 11,011则互为倒数,且与若 。
➢ 6、=+=+-2221,015xx x x 则若 。
➢ 7、已知为:的代数式表示则用含y x y y x ,11+-= 。
➢ 8、若=-+•+==4422)(;2006,2005yx y x y x y x 则 。
➢ 9、当x 时,122+-x x 的值为负数。
当x 时,112--x x 的值为0。
➢ 10、当x 时,11-x 有意义。
当x 取何值时,422--x x 的值为零 二、选择题:➢ 1在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、221v v +千米 B 、2121v v v v +千米 C 、21212v v v v +千米 D 无法确定 ➢ 2、甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B.S av b - C. S av a b -+ D. 2S a b+ ➢ 3、如果关于x 的方程2313x m x m -=--有增根,则的值等于() A. -3B. -2C. -1D. 3三、计算:(1))225(262---÷--x x x x (2)aa --+242 (3))1(2x x x x -+÷ (4)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-b a b a a b 11 (5)112122122--÷+++-+x x x x x x (6)⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-n m n m n n m m n 12 四、列方程解应用题:⑴甲地经过乙地到达丙地的距离为132.5千米,某人从甲地步行12.5千米到达乙地,再从乙地改乘汽车到达丙地,共用5小时30分钟,已知汽车的速度是步行速度的8倍,求:此人步行速度及汽车速度各为多少?⑵一水池装有进出水管各一个,同时开放两管,36分钟就能使空池注满,若同时开放6分钟后关上出水管再进10分钟也能使空池注满,单独开进水管要多少时间才能把空池注满?(3). 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。
列分式方程解行程问题训练(培优)
![列分式方程解行程问题训练(培优)](https://img.taocdn.com/s3/m/f41b4d28e97101f69e3143323968011ca300f7df.png)
列分式方程解行程问题训练(培优)1.一列火车从车站开出,预计行程450km,当它开出3h后,因出现特殊情况多停一会,耽误30min时间,后来把速度提高了1.2倍,结果准时到达目的地,求这列火车原来的速度.2.一列火车预计行程900千米,当它开出3小时后,因特殊任务多停一站,耽误了30分钟,后来把速度提高为原来的1.2倍,结果准时到达目的地,求这列火车原来的速度.3.一列火车从车站开出,预计行程450千米,当它开出1小时后,因特殊任务多停一站,耽误1小时,后来把速度提高了1倍,结果准时到达目的地,求这列火车的速度.4.列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.5.一艘轮船在静水中的最大航速为24千米/小时,它沿江以最大航速顺流航行120千米,再以最大航速返航.经过与顺流航行相等的时间,返航行程恰好比顺航行程的一半多20千米.求江水的流速.6.为保证万无一失,抗震指挥部决定用甲、乙两辆卡车将救灾物资运往5.12大地震震中映秀镇,两车同时从成都双流机场出发,甲车从东线行程180公里到达映秀镇,乙车绕道从西线行程720公里到达映秀镇,结果比甲车晚20小时到达映秀镇.已知乙车的速度比甲车的速度每小时快6公里,同时还知道,尽管道路损毁严重,但两车的速度都大于16公里/小时,求甲车的速度?7.张明居住在上海,李亮居住在南京.春节期间这对好友相约各自驾车从家中出发,上沪宁高速公路到无锡某酒店聚会.两人同时出发,碰巧同时到达目的地.已知张明的车速比李亮的车速慢20千米/时,且张明的行程为135千米,李亮的行程为165千米,求两车的速度.8.一列火车从车站开出,预计行程450千米.当它开出3小时后,因抢救一位病危旅客而多停了一站,耽误了30分钟,之后提速20%,准时到达目的地.求火车原来的速度.9.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.10.2014年12月26日,西南真正意义上的第一条高铁(贵阳至广州高速铁路)开始试运行,从贵阳到广州,乘特快列车的行程约为1800km;高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车和高铁列车的平均速度.11.2021年5月22日,“祝融号”火星车安全驶离着陆平台,到达火星表面,开始巡视探测工作.着陆点附近的火星表面照片显示,最佳探测路线有两条,西线地势平坦,行程720米,东线地势稍有起伏,行程180米,走西线比走东线多用2小时,走西线的速度比走东线的速度每小时快60米.同时,为了确保安全,火星车的速度要小于100米/小时,问走东线、走西线的速度各是多少?12.据报道,徐州至连云港铁路的提速改造工程已于2005年4月20日全面开工建设,工程完成后,旅客列车的平均速度比现在提高50千米/时,运行时间将缩短38分钟,徐州站到连云港之间的行程约为190千米,那么提速后旅客列车的平均速度是多少?13.列方程解应用题:一列火车从车站开出,预计行程450千米,当他开出3小时后,因抢救一位病危旅客而多停了一站,耽误了30分钟,为了不影响其他旅客的行程,后来把车速提高了0.2倍,结果准时到达目的地,求这列火车原来的速度?14.一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.15.小明乘坐火车从某地到广州塔参观,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到广州需要的时间.16.长汀的动车时代来了!据报道,2015年11月26日,赣(州)瑞(金)龙(岩)铁路进入试运行阶段.赣州到龙岩,乘快速列车的行程约为290km,动车开通后,动车的行程约为250km,运行时间比快速列车所用的时间减少了2.375h.若动车的平均速度是快速列车平均速度的2.5倍,求动车的平均速度.17.从徐州到某地,若乘坐普通列车,行程为520km;若乘坐高铁,行程为400km.已知高铁的平均速度是普通列车的2.5倍,从徐州到该市乘坐高铁比乘坐普通列车少用3h.求高铁行驶的平均速度.18.王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.19.据报道,广州至河源高速公路工程已全面开工建设,工程完成后,旅客列车的平均速度将提高到现在1.5倍,运行时间缩短40分钟,广州至河源之间的行程约为190千米,那么现在旅客列车的平均速度是多少?20.今年我校准备组织一批骨干教师和优秀学生暑期去上海参加夏令营.在预订车票时,后勤老师建议坐“和谐号”动车比坐火车到上海省时.经了解,温州到上海全程约为615千米,动车组D382的平均速度是普快列车K8402的平均速度的3倍,这样行程可以节省6小时.根据以上信息,求动车组D382的平均速度为多少千米/小时?。
(完整版)分式经典培优竞赛题
![(完整版)分式经典培优竞赛题](https://img.taocdn.com/s3/m/80be25cea417866fb94a8e4b.png)
1. 若,试判断是否有意义。
ab a b +--=101111a b -+,2. 计算:a a a a a a 2211313+-+--+-3、解方程:11765556222-++=-+-+x x x x x x 4. 已知与互为相反数,求代数式a a 269-+||b -1的值。
()42222222222a b a b ab a b a ab b a b ab b a -++-÷+-++5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。
6. 已知,试用含x 的代数式表示y ,并证明。
x y y =+-2332()()323213x y --=6、中考原题: 例1.已知,则M =__________。
M x y xy y x y x y x y 222222-=--+-+ 例2.已知,那么代数式的值是_________。
x x 2320--=()x x x --+-111321. 当x 取何值时,分式有意义?2111x x+-3. 计算:4. 解方程:x y y x y x y y x ++-+-242442222x x x x x x x x ++-++=++-++214365875. 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。
现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。
问规定日期是多少天?6. 已知,求的值。
43602700x y z x y z xyz --=+-=≠,,x y z x y z+--+29、(6分)已知,求的值.02=-a a 1112421222-÷+--∙+-a a a a a a 21、(6分)设,当为何值时,与的值相等?23111x A B x x ==+--x A B 3、计算(1) (2)⎪⎭⎫ ⎝⎛--++-y x x y x y x x 21214214121111x x x x ++++++-6、若,试求A 、B 的值.25452310A B x x x x x -+=-+--16、已知,求的值c b a -=+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+b a c c a b c b a 11111117、已知=0,则= 12--x x 5412x x x ++18、设,则1=abc =++++++++111c ca c b bc b a ab a 19、已知,,,且,求20032=+x a 20042=+x b 20052=+x c 6012=abc 的值cb a abc ac b bc a 111---++20、已知,,,求的值31=+b a ab 41=+c b bc 51=+c a ac acbc ab abc ++1.若的值为,则的值是( )73212++y y 8196412-+y y (A ) (B ) (C ) (D )21-171-71-712.已知,则的值为( )x z z y x +=+=531z y y x +-22(A )1 (B ) (C ) (D )2323-413.若对于以外的一切数均成立,则的值是( 3±=x 98332-=--+x x x n x m mn )(A )8 (B ) (C )16 (D )8-16-4.有三个连续正整数,其倒数之和是,那么这三个数中最小的是( )6047(A )1 (B )2 (C )3 (D )45.若满足,则的值为( )d c b a ,,,a d d c c b b a ===2222d c b a da cd bc ab ++++++(A )1或0 (B ) 或0 (C )1或(D )1或1-2-1-6.设轮船在静水中的速度为,该船在流水(速度为)中从上游A 驶往下游v v u <B,再返回A ,所用的时间为T,假设,即河流改为静水,该船从A 至B 再返回0=u A,所用时间为,则( )t (A ) (B ) (C ) (D )不能确定T 与的大小关系t T =t T <t T >t 二、填空题(每题5分,共30分)7.已知:满足方程,则代数式的值是_____.x 20061120061=--x x2007200520062004+-x x 8. 已知:,则的值为_____.b a b a +=+511ba ab +9.方程的正整数解是_____.71011=++zy x ()z y x ,,10. 若关于的方程的解为正数,则的取值范围是_____.x 122-=-+x a x a 11. 若,则_____.11,11=+=+zy y x =xyz12.设是两个不同的正整数,且,则y x ,5211=+y x ._____=+y x 三、解答题(每题10分,共40分)13. 已知与的和等于,求之值.2+x a 2-x b 442-x x b a ,14.解方程:.708115209112716512311222222-+=+++++++++++++x x x x x x x x x x x x 15. 为何值时,分式方程无解?a ()01113=++++-x x a x x x 16. 某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?。
人教版数学八年级培优竞赛 分式方程的解 专题课件
![人教版数学八年级培优竞赛 分式方程的解 专题课件](https://img.taocdn.com/s3/m/459c6b3ea88271fe910ef12d2af90242a895abbc.png)
=1
得
y= 10+a
2
,∵y≠2,∴a≠-6,又
y=
10+a 2
有
整数解,∴a=-8 或一 4,所有满足条件的整数 a 的值之和为-12.
1.分式方程 x 1 4 的解为( B)
x 1 (x 1)(x 2)
A.x=1
B.x=2
C.x=-1
D.x=-2
2.若分式方程 6 x 5 有增根,则增根是( A )
x
(2)x+ n n+1 =n+(n+1)得 x=n 或 x=n+1;
x
(3)解 x+ n2+n =2n+4,则(x-3)+ n2+n =2n+1,(x-3)+ nn+1 =n+
x-3
x-3
x-3
(n+l),由(2)得 x-3=n 或 x-3=n+1,故原方程的解为 x=n+3 或 x=n
+4.
谢谢观赏
x 1
10.若解关于 x 的分式方程 2 mx 3 会产生增根,则 m 的值为
x 2 x2 4 x 2
_____-__4__或__.6
11.若分式方程 1 3 ax 无解,求 a 的值.
x2
x2
去分母得 1+3(x-2)=ax,整理得(a-3)x=-5,当 a=3 时,该方程无解;
当 a≠3 时,若 x=2,则分式方程也无解,此时 a= 1 ,综上,a=3 或 a= 1 .
≠-3
时,方程的解为负数,解得
m<4
或
m≠2.
13.阅读材料:
关于 x 的方程:
x
1 x
c
1 c
的解为:
x1
c
,x2
=
1 c
;
x
1 x
c
初二上数学培优专题(10)分式方程提优专题
![初二上数学培优专题(10)分式方程提优专题](https://img.taocdn.com/s3/m/ff5f81167fd5360cbb1adb63.png)
分式方程提优专题增根问题:1、关于x 的分式方程2133x mx x -=--会产生增根.求增根及m 的值2、若关于x 的分式方程311x a x x--=-会产生增根,求a 的值.无解问题: 1、若关于x 的方程2213m x x x+-=- 无解,则m 的值为( ) A .-1.5 B .1C .-1.5或2D .-0.5或-1.52、当a 为何值时,关于x 的分式方程311x a x x--=-无解。
3、当m 为何值时,关于x 的方程223242mx x x x +=--+无解?有解问题:1、(齐齐哈尔)关于x 的分式方程=有解,则字母a 的取值范围是( )A . a=5或a=0B . a ≠0C . a ≠5D . a ≠5且a ≠0 2、关于x 的分式方程2133x mx x -=--有解.求m 的取值。
3、当m 为何值时,关于x 的方程223242mx x x x +=--+有解?4、已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是 ( ) A .a ≤一1 B .a ≤一1且a ≠一2 C .a ≤1且a ≠2 D .a ≤15、已知关于x 的方程3221x nx +=+的解是负数,则n 的取值范围为 . 6、若方程1312x x a=--的解为正数,求a 的取值范围.7、当a 为何值时, )1)(2(21221+-+=+----x x ax x x x x 的解是负数?期末复习 班级 姓名一、选择题1、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A.SSS B.SAS C. ASA D .AAS2.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB = BC = CD = DE = EF ,若∠A =18°,则∠GEF 的度数是( )A .108°B .100°C .90°D .803.如图,∠B 、∠C 的平分线相交于F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的是( )①△BDF 、△CEF 都是等腰三角形; ②DE =BD +CE ;③△ADE 的周长为AB +AC ; ④BD =CE ;A .③④B .①②C .①②③D .②③④4.下列多项式中不含因式(x -1)的是( )A .x 3-x 2-x +1B .x 2+y -xy -xC .x 2-2x -y 2+1D .(x 2+3x )2-(2x +2)25.下列可使两个直角三角形全等的条件是( )A .一条边对应相等B .斜边和一直角边对应相等C .一个锐角对应相等D .两个锐角对应相等6.化简()()()()131********++++得( ) A .()2813+B .()2813-C .1316-D .()132116- 7.下列计算正确的是 ( )A .x 2·x 2=2x 4B .(-2a)3= -8a 3C .(a 3)2=a 5D . m 3÷m 3=m 8.如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC (2)AD=BD=BC (3)△BDC 的周长等于AB+BC (4)D 是AC 的中点. 其中正确结论的个数有: ( )A.4个B.3个C.2个D.1个9.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°10.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE⊥AB 于E ,且AB=6cm , 则△DEB 的周长是( ) A 、6cm B 、4cm C 、10cm D 、以上都不对11.若一个n 边形n 个内角与某一个外角的总和为1350°,则n 等于( ) A.6 B.7 C.8 D.912.如图,∠MON=36°,点P 是∠MON 中的一定点,点A 、B 分别在射线OM 、ON 上移动.当△PAB的周长最小时,∠APB 的大小为( ) A .100° B .104°C .108°D .116°二、填空题1.观察下列各式:(x -1)(x +1)=x 2―1; (x ―1)(x 2+x +1)=x 3―1; (x ―1)(x 3+x 2+x +1)=x 4-1……;根据前面各式的规律可得到(x -1)(x n +x n -1+xn -2+…+x +1)=______.2.若多项式b ax 12-可分解为(3x +51)(3x -51),则a =_______,b =__________. 3.已知122+=n m ,)2(142n m m n ≠+=.则n m 2+= ;2324n mn n +-= .4.多项式964mx 2x 2++是完全平方式,则______m =.5.直接写出因式分解的结果:分解因式:__________222=-y y x分解因式⑵__________3632=+-a a 分解因式:6xy 2―9x 2y ―y 3=6、已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,… 若b ab a ⨯=+21010(a 、b 为正整数),则______=+b a ;7.分式方程111=--+x mx x 有增根,则增根可能是8. 分式方程111=--+x mx x 的解为负数,则m 的取值范围是 (9题)9. 如上图,在Rt△ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长取最小值时,P 的位置是 三、解答题1.先化简,再求值:(2a +b )(2a -b )+b (2a +b )-4a 2b ÷b ,其中a =-21,b =22.由12)4)(32-+=+-x x x x (,可以得到4)3()12(2+=-÷-+x x x x ,这说明 122-+x x 能被3-x 整除,同时也说明多项式122-+x x 有一个因式3-x .另外,当3=x 时,多项式122-+x x 的值为0.根据上面材料回答下列问题: (1)如果一个关于字母x 的多项式A ,当a x =时,A 值为0,那么A 与a x -有何关系? (2)利用上面的结果求解:已知3+x 能整除182-+kx x ,求k 的值.3.如图,△ABC 是边长为4的等边三角形,以BC 为底边作一个顶角为120°的等腰三角形△DBC ,以D 为顶点作∠EDF=60°,使点E ,F 分别在边AB ,边AC 上运动,G 在AC 延长线上且CG=BE ,连接EF ,GD .(1)求证:△BED ≌△CGD ;(2)试判断当E ,F 点的位置变化时,是否影响△EAF 周长的大小?若有影响,试说明怎样影响;若无影响,请求出△EAF 的周长.4.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =; (2)求证:12CE BF =;5.已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1、h 2、h 3,△ABC 的高为h .“若点P 在一边BC 上(如图1),此时h 3=0,可得结论h 1+h 2+h 3=h ”.请直接应用上述信息解决下列问题:(1)当点P 在△ABC 内(如图2),(2)点P 在△ABC 外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h 1、h 2、h 3与h 之间的关系如何?请写出你的猜想,不需证明.6.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB= ______ ;如图2,若∠ACD=90°,则∠AFB= ;如图3,若∠ACD=120°,则∠AFB= ______ ;(2)如图4,若∠ACD=α,则∠AFB= _________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.7.如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),的值是否变化?如果变化,说明理由;如果不变,试求出其值.。
初中数学分式方程的应用培优训练题(附答案详解)
![初中数学分式方程的应用培优训练题(附答案详解)](https://img.taocdn.com/s3/m/6fd22f666137ee06eef91878.png)
初中数学分式方程的应用培优训练题(附答案详解)1.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?2.已知一个长方形的面积为6,它的一边为x ,它的另一边长为y ,周长为p .(1)填空:(用含x 的代数式表示)① y=__________;② p=__________;(2)当x 值从2增大到a+2时,y 的值减少了2,求增量a 的值;(3)当x=m 时,p 的值为1p ;当1x m =+时,p 的值为2p ,求21p p -的值,并化成最简分式.3.在Rt△ABC 中,∠B=90°,AB=3cm ,BC=4cm.(1)如图1,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿CB 匀速运动.两点同时出发,在B 点处首次相遇.设点P 的速度为xcm/s. 表示点Q 的速度是多少cm/s (用含x 的代数式表示);(2)在(1)的条件下,两点在B 点处首次相遇后,点P 的运动速度每秒提高了2 cm ,并沿B→C→A 的路径匀速运动;点Q 保持原速度不变,沿B→A→C 的路径匀速运动,如图2.两点在AC 边上点D 处再次相遇后停止运动.又知AD=1cm.求点P 原来的速度x 的值.4.广州市中山大道快速公交(简称BRT )试验线道路改造工程中,某工程队小分队承担了300米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路20%,结果提前5天完成了任务,求原计划平均每天改造道路多少米?5.如果一辆汽车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上行驶的平均速度是多少千米∕小时?6.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度.7.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的1 3后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米?(2)求原计划每小时修建道路多少米?8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.9.某单位在疫情期间用3000 元购进A、B 两种口罩1100 个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B 种口罩单价的1.2 倍求A,B 两种口罩的单价各是多少元?10.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?11.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.12.工程队在完成某项工程的过程中,因提高了工作效率从而缩短了工作时间.经测试:工作时间缩短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原来工作量的0.88倍.若完成原来工作量的时间为3小时,求提高工作效率后完成工作量所花的时间.13.A市到B市的距离约为210km,小刘开着小轿车,小张开着大货车,都从A市去B市,小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.14.阅读材料:一般情形下等式11x y+=1不成立,但有些特殊实数可以使它成立,例如:x=2,y=2时,1122+=1成立,我们称(2,2)是使11x y+=1成立的“神奇数对”.请完成下列问题:(1)数对(43,4),(1,1)中,使11x y+=1成立的“神奇数对”是;(2)若(5﹣t,5+t)是使11x y+=1成立的“神奇数对”,求t的值;(3)若(m,n)是使11x y+=1成立的“神奇数对”,且a=b+m,b=c+n,求代数式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.15.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.16.小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?17.某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.18.列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x平方米,把下表补充完整:第二届330 000(2)根据以上分析,列出方程(不解..方程). 19.如图,“主收1号”小麦的试验田是边长为am(a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a ﹣1)m 的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的3a a+(kg)倍,求a 的值 (3)利用(2)中所求的a 的值,分解因式x 2﹣ax ﹣108=_____.20.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于14,求这个分数. 21.设231,24x A B x x =-=--,当x 为何值时A 与B 的值相等. 22.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程ab x a b x+=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程p x q x+=的两个解分别为12x =-,23x =,则p =_________,q =_________; (2)方程23x x -+=的两个解分别为1x a =,2x b =,求44a b +的值; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为()1212x x x x <、,求122122x x +-的值.23.列分式方程解应用题:从甲地到乙地的路程是15千米,小明骑自行车从甲地到乙地先走,40分钟后,小亮骑自行车从甲地出发,结果同时到达,已知小亮的速度是小明速度的3倍,求小明,小亮两人的速度。
分式方程拓展训练培优提高
![分式方程拓展训练培优提高](https://img.taocdn.com/s3/m/cf440878ff4733687e21af45b307e87101f6f8c2.png)
分式方程拓展训练培优提高分式方程拓展训练一、分式方程的特殊解法1.交叉相乘法例1:解方程:$\frac{1}{x}=\frac{3}{x+2}$解法:交叉相乘得到$x(x+2)=3$,化简后得到$x^2+2x-3=0$,解得$x=1$或$x=-3$,但$x=-3$不符合原方程的定义域,所以解为$x=1$。
2.化归法例2:解方程:$\frac{12}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}$解法:通分得到$\frac{10}{x-1}=\frac{1}{x-1}$,解得$x=11$。
3.左边通分法例3:解方程:$\frac{x-8}{x-7}-\frac{1}{x+7-x}=\frac{8}{x-7-x}$解法:左边通分得到$\frac{(x-8)-(x+7)}{(x-7)(x+7)}=\frac{8}{-2x}$,化简得到$-x^2+2x-15=0$,解得$x=3$或$x=-5$,但$x=-5$不符合原方程的定义域,所以解为$x=3$。
4.分子对等法例4:解方程:$\frac{1}{a}+\frac{1}{a-1}=\frac{b}{x}+\frac{1}{x-1}$,其中$a\neq b$解法:分子对等得到$\frac{x-1+a-1}{ax(a-1)}=\frac{bx+1+abx-ab}{x(x-1)ax(a-1)}$,化简得到$abx^2+(a+b-2)bx+a-1=0$,由于$a\neq b$,所以系数$a+b-2=0$,解得$a=1$,代入原方程得到$x=2$。
5.观察比较法例5:解方程:$\frac{4x}{5x-2}+\frac{17}{5x-2}=\frac{5x+24}{4x}$解法:观察到分母都含有$5x-2$,设$5x-2=t$,则原方程化为$\frac{4}{t}+\frac{17}{t}=\frac{t+24}{4(t+2)}$,化简得到$t^2-50t+76=0$,解得$t=2$或$t=48$,代回得到$x=\frac{4}{5}$或$x=\frac{50}{9}$,但$x=\frac{50}{9}$不符合原方程的定义域,所以解为$x=\frac{4}{5}$。
2023初中数学培优竞赛例题+练习 专题39 分式方程(学生版+解析版)
![2023初中数学培优竞赛例题+练习 专题39 分式方程(学生版+解析版)](https://img.taocdn.com/s3/m/16996e2d5e0e7cd184254b35eefdc8d376ee1493.png)
专题39分式方程一、解复杂分式方程【典例】怦(l)云-x + y:1 1 1(2)++…x(x+l) (x+l)(x+Z)(x+ZOOS)(x+Z006f 阳答】解:(I )是-x + Y•2 2_、,2xx ·-v · x +y x +y ’2-yx +y ’(2)---2一+一�一一+…+一一一---2x(x+1) (x+1)(x+Z) (x +ZOOS)(x+2006)1 1 . 1 1=王一ill +芥I-x百+…+言丰布前-x丰苟宿1 1-x x +2006’2006 -x(x +2006)'x 【巩固】实数x 与y使得x +y,x-y, xy ,一四个数中的三个有相同的数值,求出所有具有这样性质的数对y(x, y).二、求分式方程的取值范围1α2(α+1) 【典例】若以x 为未知数的方程一一-?一=气一二?无解,则。
=x-1 z -x x ι-3x 2【解答】解:去分母得:x -2+a (x -I) =2 (肘。
3a+4解得:x =一一一a+l吨。
+1=01-lfJ a = -I 时,方程无角丰..qJ -q4= O H 寸,4, 解3α+4--一=I l 时,α+1根据题忘得:3α+4 当一一-=2时,解得:a =-2α+1攸答案是-I 成-;或-2.k(x-1) 2k+l 2k【巩固】若关于x的方程一一一-+-一-=!+一一有且只有一个实数恨,求实数k的所有可能值.x x2+x x+l三、分式方程的应用【典例】为增加学生阅读盘,某校购买了“科普类”和“文学类”两种书稽,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(I)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种倒书共.IOO本,且总费用不超过1600元,求最多能购买“科普类”图书多少水?【f�丰答】解:(I)设“文字:类”图书的单价为λ兀木,则"f斗1自1类”图书的单价为(I +2(满).r兀木,3600 2700依题应::-20=一一,(1+200/o)x解之得:x=15.经检驳,x=15是所列方程的根,且符合题怠,所以(1+20%)x=18.答:科普类书单价为18元本,文学类书单价为15元;本;(2)设“利将类”书购α木,则“文学类”书购(JO O-a)木,依题意:18时15(JO O-a)主主1600,100解之得:a�丁-因为。
分式方程及其应用培优训练(3)(含答案)
![分式方程及其应用培优训练(3)(含答案)](https://img.taocdn.com/s3/m/fe0eac601eb91a37f1115c5d.png)
分式方程及其应用培优训练(3)例1. 解方程:xx x--+=1211例2. 解方程xxxxxxxx+++++=+++++ 12672356例3. 解方程:121043323489242387161945 xxxxxxxx --+--=--+--例4. 解方程:6124444442222yy yyy yyy+++---++-= 2例5.若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或 B. -12或 C. 12或D. 12或- 例6. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?例7. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。
求这艘轮船在静水中的速度和水流速度例8. m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?变式训练:1. 甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A. S a b+ B.S av b - C. S av a b -+ D. 2S a b+ 2. 如果关于x 的方程2313x m x m -=--有增根,则的值等于() A. -3B. -2C. -1D. 3 3. 解方程: ()…111011212319102x x x x x x x ++++++++++=()()()()()()()2112141024x x x x x x x x-++++++=4. 求x 为何值时,代数式293132x x x x++---的值等于2?5. 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。
培优专题分式方程培优提高经典例题
![培优专题分式方程培优提高经典例题](https://img.taocdn.com/s3/m/ca2343e477a20029bd64783e0912a21614797f89.png)
培优专题分式方程培优提高经典例题分式方程专题例1:去分母法解分式方程1、$63x-216x^{\frac{2}{3}}-2=12$,解得$x=3$2、$\frac{1}{x-1}+\frac{1}{x+2}-\frac{4}{x-4}-\frac{1}{x-2}=\frac{x^2+3x+2}{(x-1)(x+2)(x-4)(x-2)}=\frac{1}{1}$,解得$x=-\frac{1}{2},1,3$3、$\frac{2x-7}{x-4}+\frac{4-x}{x+2}-\frac{x+6}{x-2}-\frac{x+5}{x-3}=\frac{1}{x^2+3x+2}=\frac{1}{(x+1)(x+2)}$,解得$x=-3,-1,2,3$例2:整体换元与倒数型换元:1、设$y=x+\frac{1}{x}$,则原方程化为$y+2=6y^2$,解得$y=\frac{1}{2},2$,带回原式得$x=-1,\frac{1}{3}$2、设$y=x-\frac{1}{x}$,则原方程化为$y+\frac{1}{y}=2$,解得$y=1,-1$,带回原式得$x=\frac{1\pm\sqrt{5}}{2},0$3、设$y=\frac{x-1}{x}$,则原方程化为$3y-y^2=2$,解得$y=1,-\frac{1}{2}$,带回原式得$x=2,3$例3:分式方程的增根的意义1、若分式方程$\frac{a_1}{x-2}+\frac{2}{x-4}+2=\frac{x+1}{x}$有增根,则$a_1=6$2、关于x的分式方程$\frac{x}{x-1}-\frac{a}{x}=1$无解,则$a=2$3、若关于x的分式方程$\frac{36x+m}{x(x-1)}-1$有根,则$m=0$例4:一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙两车单独运这批货物分别运$2a$次、$a$次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了$180t$;若乙、丙两车合运相同次数运完这批货物时,乙车共运了$270t$.问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运$1t$付运费$20$元计算)解:设甲车每次运货物量为$x$,则乙车每次运货物量为$mx$,丙车每次运货物量为$y$,则有$\begin{cases}2ax=180\\ay=2a-x\\my=270\end{cases}$,解得$x=20,m=3,y=8$,故乙车每次所运货物量是甲车每次所运货物量的$3$倍,运费分别为$3600$元、$5400$元和$1600$元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程专题
例1:去分母法解分式方程
1、
()()113116=---+x x x 2、2
2416222-+=--+-x x x x x
3、22412212362x
x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x
例2:整体换元与倒数型换元:
1、用换元法解分式方程:(1)
6151=+++x x x x (2)12221--=+--x x x x
变式练习: (11上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x
-=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-=
B .2310y y -+=
C .2310y y -+=
D .2310y y --=
例3:分式方程的(增)根的意义
1、 若分式方程:
024122=+-+-x x a 有增根,求a 的值。
2、关于x 的分式方程131=---x
x a x 无解,则a=_________。
变式练习:当m 为 时,分式方程
()01163=-+--+x x m x x x 有根。
例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t .
问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;
⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算)
课堂总练习
1关于x 的分式方程
1131=-+-x x m 的解为正数,则m 的取值范围是
2.关于x 的方程
223242mx x x x +=--+会产生增根,则m 为____________
3.若关于x 的方程
2111
x m x x ++=--产生增根,则 m =____________;
4.k 取何值时,方程x x k x x x x +=+-+211
2会产生增根?
5.当a 为何值时,关于x 的方程223242
ax x x x +=--+无解?
6/某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.
(1)今年甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?
练习
一、填空题:
1、(12盐外)关于x 的方程
4
332=-+x a ax 的解为x=1, 则._____=a 2、(12成外)若关于x 的分式方程3
232
-=--x m x x 有增根,则m 的值为__________。
3、(12萧山) 若关于x 的分式方程3131+=-+x a x 在实数范围内无解,则实数=a 。
4、 当x _____ 时,分式42-x x 有意义。
当x= ____时,分式x
x --112的值为零。
5、若关于x 的分式方程3
232-=--x m x x 无解,则m 的值为__________。
6、(天府前沿)若方式方程4
24-+=-x a x x 产生增根,则 a= _。
7、(12 邵阳)请你选择一个合适的值,使方程2
112-=-x x 成立,你选择的x= 。
8、(11 淮安)已知实数x 满足01442=+-x x ,则代数式x
x 212+的值是_________。
9、(成外)如果b a =2,则2222b a b ab a ++-=________. 若1=ab ,则2
21111b a +++的值为 。
10、(11 培优班)已知:分式
9
1862---a a 的值为正整数,则整数a 的值为__________。
11、m 取_________________整数值时,分式172-+m m 的值是正整数。
二、解答题:
1、
2若分式方程
x
a x a x +-=+-321有增根,则a 的值是多少?
3、 关于x 的方程
的解为非负数,求m 的取值范围是.
4、关于x 的方程
的解为非正数,求m 的取值范围.
5、若关于x 的方程233x k x x =+--无解,求k 的值
6、.已知方程
无解,求k 的值.
7、已知关于x 的方程3)1(212
2-=+++x x x x ,求11++x x 的值。