航空发动机分类与简介

合集下载

航空发动机原理知识点精讲

航空发动机原理知识点精讲

航空发动机原理知识点精讲航空发动机是现代飞机的关键动力装置,它负责提供足够的推力推动飞机向前飞行。

理解航空发动机的工作原理对于飞行员和工程师而言非常重要,因此本文将对航空发动机的一些关键知识点进行精讲。

一、航空发动机的分类航空发动机主要分为喷气式发动机和涡轮螺旋桨发动机两大类。

1. 喷气式发动机喷气式发动机是目前大多数商用飞机所采用的发动机类型。

它的工作原理是将外界空气经过压缩、燃烧和膨胀等过程,最终喷出高速气流产生反作用力推动飞机前进。

喷气式发动机具有推力大、速度快的优点,适用于中长途航班。

2. 涡轮螺旋桨发动机涡轮螺旋桨发动机通常被用于小型飞机或者区域航班。

它的工作原理是通过一个螺旋桨传递发动机产生的推力,推动飞机前进。

涡轮螺旋桨发动机的优点是起飞距离短、速度慢,适用于短途运输和起降场地受限的情况。

二、喷气式发动机的工作原理喷气式发动机的工作原理可归纳为以下几个步骤:1. 压缩过程进气口将外界空气引入,经过多级压气机的作用,使空气被压缩到更高的压力和温度。

压缩过程有助于提高燃油的燃烧效率和推力输出。

2. 燃烧过程经过压缩后的空气进入燃烧室,在加入适量的燃油后与火花器产生火花点燃。

燃烧产生的高温高压气体通过喷嘴扩张,转化为高速的喷气流。

3. 膨胀过程高速喷气流通过涡轮,驱动压气机和辅助设备的转动,将剩余的能量转化为推力。

同时,喷气流的能量损失也引起了发动机后部的推力反作用,推动飞机向前运动。

4. 排气过程喷气流经过喷嘴排出,形成尾焰。

排气过程中,喷气流的速度也起到了降低飞机空气阻力的作用。

三、喷气式发动机的关键参数1. 推力推力是衡量发动机性能的重要参数,它指的是发动机向后喷出的气流产生的反作用力。

推力的大小与喷气流量、速度和压力等因素相关。

2. 空气压缩比空气压缩比是指进入发动机后,经过压缩阶段压力增加的比例。

较高的压缩比能提高发动机效率和推力输出。

3. 燃油效率燃油效率是指发动机在单位时间内将燃油转化为推力的能力。

航空发动机种类详细介绍

航空发动机种类详细介绍

航空发动机是航空器的“心脏”,负责提供推力和动力,保障了航班的正常进行。

目前,航空发动机已经发展出多种类型,以下是对各种类型的详细介绍:一、活塞发动机作用原理活塞发动机的作用原理是将燃油混合氧气在燃烧室中燃烧,产生的高温高压气体驱动活塞运动,进而带动飞机的运动。

分类活塞发动机主要有两种类型:往复式活塞发动机和转子式发动机。

前者通过活塞上下往复运动来产生推力,后者则通过转子的旋转来产生推力。

应用活塞发动机主要应用于小型飞机和私人飞机。

二、涡轮螺旋桨发动机作用原理涡轮螺旋桨发动机将燃油喷入燃烧室燃烧,产生高温高压气体驱动涡轮旋转,进而带动螺旋桨运动。

分类涡轮螺旋桨发动机主要分为两种类型:涡轮螺旋桨发动机和涡轮轴发动机。

前者的螺旋桨通过涡轮驱动,后者则直接通过涡轮驱动飞机的轴。

应用涡轮螺旋桨发动机主要应用于小型客机和区域航班。

三、涡轮喷气发动机作用原理涡轮喷气发动机将压缩空气加燃油喷入燃烧室,产生高温高压气体驱动涡轮旋转,进而带动喷气发动机产生的推力。

分类涡轮喷气发动机主要分为两种类型:低涵道比涡轮喷气发动机和高涵道比涡轮喷气发动机。

前者推力大、噪音小,后者则可以提供更高的推力。

应用涡轮喷气发动机主要应用于商用客机和军用飞机四.涡扇发动机涡扇发动机是一种将空气加速并喷出产生推力的发动机。

其工作原理基于伯努利原理,将高速气流推出发动机后方,产生反作用力,从而推动飞机前进。

涡扇发动机结构复杂,由多个部件组成,包括压气机、燃烧室、涡轮等。

涡扇发动机广泛应用于商用客机和军用飞机中,其中最著名的是波音公司的737和747系列客机。

五.螺旋桨发动机螺旋桨发动机是一种将空气吸入发动机,经由压缩后,通过螺旋桨将高速气流推出产生推力的发动机。

螺旋桨发动机工作原理基于牛顿第三定律,以螺旋桨的旋转将气流推出发动机后方,产生反作用力,从而推动飞机前进。

螺旋桨发动机结构简单,耗能少,适用于低速飞行,如小型飞机、直升机等。

螺旋桨发动机在航空领域的历史悠久,早期航班和军用运输机都使用了螺旋桨发动机。

航空发动机分类与简介

航空发动机分类与简介

飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。

自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。

飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。

按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。

一般所说的航空发动机即指这类发动机。

如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。

火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。

它也可用作航空器的助推动力。

按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。

按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。

直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。

直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。

间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。

这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。

而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。

航空发动机

航空发动机

涡扇发动机
• 涡扇发动机全称为涡轮风扇发动机,英文为Turbofan),是指有管道 的高速风扇,由燃气涡轮驱动。它是航空发动机最常使用的一种,由 涡轮喷气发动机(Turbojet)发展而成,和所有燃气涡轮机一样,动 力都是来自由空气压气机压缩,再与油料一起燃烧后的高能气体,用 涡轮把高温高压的气体中部份的动能化为机械能,再用这机械能驱动 前端的压气机继续吸入空燃气涡轮机的操作过程基本就是这样循环着。 同时涡轮也驱动着高速风扇带来更多的推动力。与涡轮喷气比较,主 要特点是首级压缩机的面积大很多,同时被用作为空气螺旋桨,将部 分吸入的空气通过喷射引擎的外围向后推。发动机核心部分空气经过 的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。 涡扇引擎最适合飞行速度400至1,000公里时使用,因此现在多数的飞 机引擎都采用涡扇作为动力来源。
பைடு நூலகம்
活塞式发动机 涡轮喷气发动机 燃气涡轮发动机 涡轮风扇发动机 涡轮螺旋桨发动机 桨扇发动机 涡轮轴发动机
吸气式发动机
航 空 发 动 机
冲压喷气发动机 飞行器发动机 脉冲喷气发动机 化学火箭发动机 火箭喷气式发动机 固体火箭发动机 液体火箭发动机 固液混合火箭发动机 核火箭发动机
电火箭发动机
二、涡扇发动机
工作原理
工作过程
带动 空气 导流 压缩 燃烧 涡轮
进气 装置
压气 机
燃烧 室
尾喷 管
驱动
涡扇发动机
一、航空发动机及其分类
• 航空发动机(aero-engine),是一种高度复杂和精密的热力机械, 为航空器提供飞行所需动力的发动机。作为飞机的心脏,被誉为 “工业之花”“工业皇冠上的明珠”,它直接影响飞机的性能、可 靠性及经济性,是一个国家科技、工业和国防实力的重要体现。目 前,世界上能够独立研制高性能航空发动机的国家只有美国、俄罗 斯、英国、法国、中国等少数几个国家,技术门槛非常高。

航空发动机总资料

航空发动机总资料

第一章概论航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。

P3空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。

不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。

涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。

在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。

P4燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。

由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。

涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。

按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。

P5航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。

对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。

介绍各类型飞机发动机

介绍各类型飞机发动机

介绍各类型飞机发动机各类型飞机发动机的介绍一、涡轮喷气发动机涡轮喷气发动机是目前商用飞机上最常见的一种发动机类型。

它采用压气机和涡轮来产生推力。

压气机将大量空气压缩,然后将其注入燃烧室,与燃料混合并燃烧,产生高温高压的气体。

这些气体通过涡轮推动涡轮喷气发动机的压气机,产生推力。

涡轮喷气发动机具有推力大、燃油效率高、速度快等特点,适用于大型商用飞机。

二、涡扇发动机涡扇发动机是一种改进型的涡轮喷气发动机。

它在压气机后面增加了一个多级涡扇,使得发动机的推力更大。

涡扇发动机在提供主要推力的同时,还通过涡轮推动额外的空气流过涡扇,起到降低噪音和提高燃油效率的作用。

涡扇发动机广泛应用于中型和大型商用飞机,具有推力大、燃油效率高、噪音低的特点。

三、活塞发动机活塞发动机又称为内燃机发动机,是一种利用气缸和活塞运动产生动力的发动机。

它使用汽油或柴油作为燃料,经过压缩和点火后,燃料燃烧产生高温高压气体,推动活塞运动,从而产生动力。

活塞发动机广泛应用于小型飞机和私人飞机,具有结构简单、维护方便、成本低等特点。

四、涡轮螺旋桨发动机涡轮螺旋桨发动机是一种将涡轮喷气发动机的推力转化为旋转动力的发动机。

它在涡轮喷气发动机的尾部安装了一个螺旋桨装置,通过涡轮推动螺旋桨旋转,产生推力。

涡轮螺旋桨发动机具有推力大、燃油效率高、起飞和降落距离短等特点,适用于小型和中型飞机。

五、火箭发动机火箭发动机是一种利用排气喷出高速气体产生推力的发动机。

它不依赖于周围空气,通过燃烧推进剂产生的高温高压气体喷出,从而产生巨大的推力。

火箭发动机广泛应用于航天器和导弹等领域,具有推力大、速度快、适应性强等特点。

六、涡轮电动发动机涡轮电动发动机是一种将涡轮喷气发动机与电动机结合的发动机。

它通过涡轮推动发电机产生电能,并驱动电动机产生推力。

涡轮电动发动机具有燃油效率高、环保节能的特点,适用于小型和中型飞机。

以上是各类型飞机发动机的简要介绍。

不同类型的发动机在结构和工作原理上有所差异,但都能为飞机提供动力,使其能够安全、稳定地飞行。

航空发动机概述

航空发动机概述
根据采用的燃料不同,分为固体燃料火箭 发动机和液体燃料火箭发动机两种。
(1)固体燃料火箭发动机
发动机采用黑色火药、无烟火药等固体燃 料。
固体燃料火箭发动机能产生巨大的推力, 但工作时间段且不易控制。
(2)液体燃料火箭发动机
发动机通常以煤油、酒精或液态氢作为燃 料,以液态氧、硝酸等作为氧化剂。
第二节 典型燃气涡轮动力装置的一般介绍
发动机的主要部件:进气道、压气机、燃 烧室、涡轮和尾喷管。
一、各部件的作用
进气道:用来引导足够数量的空气顺利进 入发动机,在飞行中还可通过冲压作用提 高气体压力。
压气机:用来提高气体的压力,它通过高 速旋转的叶轮,对进入压气机的气体做功, 达到增压目的。
飞机的螺桨是发动机的主要推进器。 飞行高度低飞行速度慢是使用涡轮螺桨发动机的
主要缺点。飞行高度不超过5000米,飞行速度一 般不超过700公里/小时。 图
3、涡轮风扇发动机
➢ 涡轮风扇发动机有内外两个涵道,在内涵燃气发 生器出口增加动力涡轮,将燃气发生器产生的一 部分或大部分可用功,通过动力涡轮传递给外涵 通道中的压气机,大多数情况下,外涵压气机叶 片是将内涵压气机叶片向外延伸,习惯上将内外 涵共用的压气机称为风扇。
注:2---压气机入口,2.5---低压压气机出口,3---燃烧室入 口,4---涡轮入口,4.5---高压涡轮出口,5---尾喷管入口, 8---尾喷管临界截面,9---尾喷管出口
各类发动机简图
➢ 涡扇发动机截面划分
➢ 对于涡扇发动机,其内涵截面标注方法与涡喷发 动机相同。其外涵截面标注方法在相应截面后加2。 如风扇压气机出口3截面写为32截面,尾喷管出 口9截面写为92截面。
燃烧室:用来组织燃油与空气混合、燃烧, 释放化学能,不断给气体加热,以提高气 体温度。

民航客机发动机种类

民航客机发动机种类

民航客机发动机种类
民航客机发动机是支撑飞机飞行的核心部件之一,其种类不同,具有的性能也各有千秋。

本文将就民航客机发动机的种类进行介绍,为广大航空爱好者提供指导意义。

1.涡轮风扇发动机
涡轮风扇发动机是民航客机常用的一种发动机,也是当今最为先进的民航客机发动机。

它采用了涡轮增压技术,以大量的冷气流与少量的燃料混合燃烧,使发动机的输出功率大大提高。

同时,涡轮风扇发动机的效率高、噪音小,成为现代民航客机的主流发动机。

2.涡轮螺旋桨发动机
涡轮螺旋桨发动机是一种将涡轮增压技术应用到螺旋桨发动机上的发动机。

它提高了螺旋桨发动机的输出功率和运转效率,使得速度和燃油效率都比常规螺旋桨发动机有所提高。

由于涡轮螺旋桨发动机的体积相对小,噪音较低,被广泛应用于地区性运输、通勤型客机等领域。

3.涡喷发动机
涡喷发动机是一种依靠高速喷射气流来推动飞机前进的发动机。

它采用涡轮增压和高速喷射气流的组合,具有噪音小、动力强、维修简单等特点,被广泛应用于军用和商业航空领域。

4.活塞发动机
活塞发动机是一种通过往复活塞运动将化学能转化为机械能的发动机。

虽然它的体积相对较大,噪音较高,但它具有结构简单、可靠性高的优点,被广泛应用于私人飞机和轻型运输飞机等领域。

综上所述,不同种类的民航客机发动机各具特点,应根据航空器的类型、任务和运营环境来选择适合的发动机。

在选择之前,需要对各类发动机的性能进行全面比较和评估,以确保飞行的安全和效率。

航空发动机分类及用途

航空发动机分类及用途

航空发动机分类及用途
航空发动机是指用于飞机、直升机等航空器的动力装置,它们的分类有以下几种:
1. 涡轮喷气发动机:也称为涡喷发动机,是目前主流的航空发动机类型。

它通过将空气压缩并与燃油混合燃烧,产生高温高压的气流来推动飞机飞行。

2. 活塞发动机:也称为内燃机,是一种使用燃油和空气混合物燃烧产生能量的发动机。

它通过活塞来将能量转化为机械能,推动飞机飞行。

3. 涡轮螺旋桨发动机:也称为涡桨发动机,它结合了涡轮发动机和螺旋桨的优点,可以在低空和较短跑道上起降。

它通过将空气压缩并与燃油混合燃烧,推动旋转的螺旋桨来推动飞机飞行。

4. 喷气螺旋桨发动机:也称为涡喷螺旋桨发动机,它结合了涡轮喷气发动机和螺旋桨的优点,可以在低空和较短跑道上起降。

它通过将空气压缩并与燃油混合燃烧,推动旋转的螺旋桨来推动飞机飞行。

航空发动机的用途包括商业航空、军事航空、私人飞行等。

不同类型的发动机在不同的航空领域有着不同的应用,例如涡轮喷气发动机主要用于商业航空,而活塞发动机主要用于私人飞行。

航空发动机的分类和用途对于航空领域的发展有着重要的作用。

- 1 -。

航空发动机研究与制造

航空发动机研究与制造

航空发动机研究与制造一、航空发动机的概述航空发动机是航空器中进行燃油燃烧或者其他能源转换为机械能的设备,是飞机能够安全、稳定的起飞、飞行和降落的核心装备。

航空发动机的种类多种多样,但是大致上可以分为以下几种:1.涡轮喷气发动机:利用压气机将空气压缩,形成高温高压气体,通过喷油系统向气流中加入燃料,然后通过燃烧室将燃料完全燃烧,释放出大量能量,推动涡轮转动,再通过涡轮将机械能转化为飞机需要的动力。

2.涡轮螺旋桨发动机:结合了涡轮喷气发动机和螺旋桨的优点,将输出的动力通过转动螺旋桨形成飞机的推进力,因为螺旋桨的叶片较宽,所以速度较慢的飞机更适合使用这种发动机。

3.活塞式发动机:将燃料燃烧后,通过活塞的运动将燃料转化为机械能,产生飞行所需要的动力,由于输出的动力较小,所以多数用于小型或低速飞机上。

二、航空发动机的研究航空发动机的研究可以追溯到20世纪初,那时的发动机主要是涡轮喷气发动机,但是发动机的推进力和效率都不够理想,因此科学家们对发动机进行了多次研究和改进。

在研究过程中,科学家们发现减小涡轮叶片尺寸可以提高发动机的效率,并且增加燃料喷射的速度和质量可以提高推力,且降低排放量,这成为了航空发动机研究的重要方向。

不仅如此,还有许多的研究方向,例如:利用复合材料制造涡轮叶片等精细机械零组件,利用数值仿真和模拟技术研究新型发动机结构,优化燃料喷射系统等等,这些都有望使发动机在性能、经济性、环保性方面得到进一步提高。

三、发动机的制造目前,全球上市的航空发动机制造商主要有通用电气、普惠、罗尔斯·罗伊斯等大企业。

航空发动机制造不仅技术难度高,成本也非常昂贵,因此,全球范围内的航空发动机市场一直是通用电气、普惠和罗尔斯·罗伊斯共同垄断的。

在发动机制造过程中,首要的任务是精细加工和平衡校验,任何一个环节的不严谨都会对产品的品质带来危害,甚至直接影响安全。

例如:发动机的旋转部件必须保持平衡,否则将会摇晃,在高速旋转时会产生极大的振荡,威胁航空器的安全。

对航空发动机的认识和理解

对航空发动机的认识和理解

对航空发动机的认识和理解
航空发动机是飞机上用于产生推力的关键装置。

它将燃料和空气混合并通过燃烧过程将其转化为气体能量,然后利用喷气原理产生推力,推动飞机进行前进。

航空发动机通常分为喷气发动机和螺旋桨发动机两大类。

喷气发动机包括涡轮喷气发动机和喷气推进发动机,是目前商用飞机最常用的发动机。

螺旋桨发动机则主要用于小型飞机和直升机。

喷气发动机的工作原理是先将大量空气通过进气口引入发动机内部,然后经过压缩后,再与燃料混合燃烧。

燃烧产生的高温高压气体通过涡轮叶轮的转动,最终通过喷气口排出,产生推力。

喷气推进发动机在燃烧过程中产生的高温气体通过喷气喷管喷出,推动飞机前进。

这些发动机具有较高的推力、高效率和较大的速度。

螺旋桨发动机的工作原理是将燃料燃烧后产生的高温高压气体通过涡轮传递给螺旋桨,使其转动。

螺旋桨叶片的转动产生了推力,推动飞机前进。

螺旋桨发动机具有较大的扭矩、较高的升力和较低的速度,适用于需要在低速和垂直起降的场景。

航空发动机需要具备高可靠性、高功率和经济性的特点。

它们的设计需要考虑到提供足够的推力、降低燃料消耗、减少噪音和污染,同时还要满足航空安全和环境保护的要求。

航空概论-9发动机全

航空概论-9发动机全
,功率达到130 kW,耗油率0.23 kg/(kW·h)。
燃气涡轮发动机
空气喷气发动机
原理
牛顿第三定律 -- 作用力等于反作用力
喷气发动机在工作时,从前端吸入大量的空气, 燃烧后高速喷出。在此过程中,发动机向气体施加力 ,使之向后加速,气体也给发动机一个反作用力,推
动飞机前进。
喷气发动机的推重比
航空工程与技术概论
第九章 航空发动机
活塞式发动机 涡轮喷气发动机
涡桨发动机 涡轮风扇发动机
涡轴发动机 桨扇发动机
❖ 航空发动机(aero-engine),是为航空器提供推动力或支持力的 装置,是航空器的心脏。
❖ 自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期 的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的 喷气式发动机,航空发动机已经形成了一个种类繁多,用途各不相同
国别 苏联
发动机型号 BK-1F
类型 涡轮喷气
装备的飞机 推力/重量比
米格15
~2.0
美国 苏联
J47 РД-9Б
涡轮喷气 加力涡轮喷气
F86 米格19
3~4
美国
J57
加力涡轮喷气
F100
20世纪40年代末到50年代中
国别 苏联 苏联 美国 美国
第二代航空燃气轮发动机
发动机型号
类型
装备的飞机 推力/重量比
下几个: (1)发动机功率
(2)功率重量比
(3)燃料消耗率
活塞式航空发动机发展阶段
喷气时代
两次世界 大战期间
逐步退出主要航空领 域,广泛应用在轻型低
速飞机和直升机上。
气冷发动机发展迅速
,发动机的性能提高很快

世界航空发动机手册

世界航空发动机手册

世界航空发动机手册一、航空发动机概述1.定义与作用航空发动机,又称航空动力装置,是飞机的心脏,为飞机提供所需的推力。

它将燃料的化学能通过燃烧转化为高温高压气体的动能,进而推动涡轮旋转,最终输出推力。

2.分类与发展历程航空发动机按照用途可分为涡喷发动机、涡扇发动机、涡轮螺旋桨发动机等。

随着科技的进步,航空发动机不断更新换代,性能不断提高,燃油消耗降低,环保性更强。

二、航空发动机的主要部件与工作原理1.进气道进气道负责将空气引入发动机,其设计要考虑到气流的速度、压力和流向,以满足压气机对气流的要求。

2.压气机压气机负责提高空气的密度,通过级间压缩,将高速气流转化为高压气流。

压气机的性能直接影响到发动机的推力。

3.燃烧室燃烧室将燃料与空气混合并点燃,产生高温高压气体。

燃烧室的設計要保证燃料的充分燃烧,减少排放污染。

4.涡轮涡轮旋转并将高温高压气体的动能转化为机械能,推动压气机和喷口。

涡轮的寿命和可靠性对发动机的整体性能至关重要。

5.喷口喷口将高温高压气体排放到空气中,产生推力。

喷口的设计要考虑到气流的扩散角度、速度分布等因素,以提高推力性能。

三、航空发动机的性能指标与评价1.推力与功率推力是航空发动机最基本的性能指标,决定了飞机的飞行速度和载荷能力。

功率则是发动机产生推力的能力,与燃油消耗和效率密切相关。

2.燃油消耗与效率燃油消耗直接影响到飞机的续航能力和运营成本。

发动机的效率是指输出功率与输入燃油能量之间的比值,越高表示发动机的能量利用越充分。

3.寿命与可靠性航空发动机要在高温、高压、高速等极端环境下工作,因此寿命和可靠性至关重要。

长寿命、高可靠性的发动机有助于降低维修成本和确保飞行安全。

四、世界航空发动机产业现状与趋势1.主要制造商与竞争格局世界航空发动机市场主要由美国通用电气(GE)、普拉特·惠特尼(P&W)、英国罗罗(Rolls-Royce)和法国赛峰(Safran)等制造商主导。

世界航空发动机手册

世界航空发动机手册

世界航空发动机手册一、航空发动机概述1.定义与作用航空发动机,作为飞机的“心脏”,是为飞行器提供动力的核心部件。

它将燃料的化学能转化为气流的动能,推动飞行器前进。

发动机的性能直接影响着飞机的飞行速度、高度、航程等各项性能指标。

2.发展历程与现状自从1903年美国莱特兄弟发明飞机以来,航空发动机就进入了人们的视野。

经过一百多年的发展,航空发动机技术不断革新,性能不断提高。

目前,世界上的航空发动机主要有涡喷、涡扇、涡轮螺旋桨、涡轮轴等类型。

二、航空发动机类型及特点1.涡喷发动机涡喷发动机是一种轴流式发动机,具有结构简单、重量轻、推力大等特点。

它广泛应用于战斗机和部分民用飞机上。

2.涡扇发动机涡扇发动机是一种高效率、低噪音、大推力的发动机,分为小涵道比和大涵道比两种。

它主要用于大型客机和军用运输机。

3.涡轮螺旋桨发动机涡轮螺旋桨发动机是一种涡轮轴发动机的变种,具有较高的燃油效率和较低的噪音。

它主要应用于小型飞机和直升机。

4.涡轮轴发动机涡轮轴发动机是一种高速、高功率的发动机,主要用于直升机和部分军用飞机。

三、航空发动机关键技术1.高压比、高效率的压气机设计压气机是航空发动机的核心部件之一,其高压比和高效率对于提高发动机的整体性能至关重要。

设计师们需要不断优化压气机的气流布局、叶片形状等参数,以实现更高的压缩比和效率。

2.高效低污染的燃烧室设计燃烧室的设计关系到发动机的燃油消耗、排放污染物和噪音水平。

为了实现高效低污染的燃烧,设计师们需要研究新型燃烧过程、喷嘴结构和燃烧室形状。

3.高温材料及冷却技术随着航空发动机性能的提高,涡轮前温度不断升高,对高温材料和冷却技术提出了更高的要求。

研发新型高温材料和高效的冷却系统,是提高发动机寿命和可靠性的关键。

4.高精度、高可靠性的控制系统航空发动机控制系统是发动机正常运行的保证。

采用高精度、高可靠性的传感器和执行器,以及先进的控制算法,可以确保发动机在各种工况下的稳定运行。

中小型航空发动机分类

中小型航空发动机分类

中小型航空发动机分类
中小型航空发动机一般指的是推力在1000马力以下的发动机。


种类型的发动机广泛应用于一些小型飞机、直升机以及通用航空领域,如喷气飞机、螺旋桨飞机等。

从技术分类上看,中小型航空发动机主要分为活塞发动机和涡轮
发动机两大类。

活塞发动机通常适用于小型飞机,操作简单,维护成
本低,但推力不如涡轮发动机强大。

而涡轮发动机则具有更高的功率
和推力,适用于速度更快、负载更重的飞机。

涡轮发动机又可根据不同的原理和结构来进一步分类,包括涡轮
喷气发动机、涡轮传动发动机、涡轮螺旋桨发动机等。

这些发动机在
工作原理和应用领域上有所区别,用户可以根据实际需求选择适合的
类型。

另外,中小型航空发动机在设计上也越来越注重环保和节能方面
的考虑,以满足当今人们对环境友好和资源节约的需求。

例如,一些
新型涡轮发动机采用了先进的燃烧技术和材料,减少了废气排放,提
高了燃烧效率,从而实现了更高的经济性和环保性能。

总的来说,中小型航空发动机在现代航空工业中扮演着举足轻重
的角色,其分类和设计上的不断创新和进步,为航空业的发展带来了
更多的可能性和机遇。

希望未来在这一领域中能够看到更多创新的技
术和产品,为航空业的可持续发展贡献力量。

航空发动机原理知识点精讲

航空发动机原理知识点精讲

航空发动机原理知识点精讲航空发动机是飞机的核心动力装置,它通过将燃料和空气混合并在燃烧室中燃烧,产生高温高压气体,从而驱动飞机前进。

本文将深入探讨航空发动机的基本原理和相关知识点。

一、航空发动机的分类根据工作原理和结构特点,航空发动机可分为喷气发动机和涡扇发动机两大类。

1. 喷气发动机喷气发动机是通过向后排放高速喷射的气流来产生推力,从而推动飞机前进。

其基本构造包括压气机、燃烧室、涡轮和喷管。

压气机负责将空气压缩成高压气体,燃烧室将燃料燃烧与高压气体混合,涡轮则由燃烧室排出的高温高压气体驱动,最后喷管将高速喷射的气流排出。

2. 涡扇发动机涡扇发动机是在喷气发动机的基础上发展而来的,它在喷气发动机的喷管外面增加了一圈风扇。

这个风扇由一个或多个大型的鼓风机构成,它能够将外界空气吸入并向外推出。

涡扇发动机通过喷气推力和风扇推力的叠加,提高了推力和效率。

二、航空发动机的工作循环航空发动机的工作循环指的是发动机在一个完整工作周期内的各个阶段。

1. 吸气阶段在吸气阶段,压气机通过旋转的叶片将天然空气吸入发动机内部,并通过压缩使其压力增加。

通过吸气口、进气道和引气道,空气被引导进入压气机。

2. 压缩阶段在压缩阶段,空气经过压气机的多级压缩,压力逐渐增加。

这样做的目的是为了提高燃烧室内气体的温度和密度,从而提高燃烧效率。

3. 燃烧阶段在燃烧阶段,燃料被喷入燃烧室,与高压空气混合并燃烧。

然后,燃烧释放的高温高压气体驱动涡轮旋转,同时通过引射式喷嘴喷出来产生喷气推力。

4. 排气阶段在排气阶段,高温高压气体驱动涡轮运动后,剩余的高温高压气体被喷出喷管,产生喷气推力。

在喷气过程中,喷气推力作用于飞机,推动其向前运动。

三、航空发动机的性能参数航空发动机的性能参数主要包括推力、燃油消耗率和高空性能指标。

1. 推力推力是航空发动机最重要的性能参数之一,它决定了飞机的加速度和速度。

推力大小与发动机工作时喷气速度和气流量有关,一般通过推力试验来测量。

航空发动机分类

航空发动机分类

航空发动机分类航空发动机是飞机上最重要的部件之一,它将燃料燃烧产生的能量转化为推力,驱动飞机飞行。

根据不同的分类标准,航空发动机可以分为多种类型,包括涡轮喷气发动机、涡轮螺旋桨发动机、柱塞发动机等。

本文将对这些不同类型的航空发动机进行分类和介绍。

1. 涡轮喷气发动机涡轮喷气发动机是目前民用飞机和大多数军用飞机所采用的发动机类型。

它利用压气机将大气中的空气压缩后送入燃烧室,然后将燃料喷入燃烧室与空气混合并燃烧,产生高温高压的燃气,最终通过涡轮驱动压气机和飞机的推进器,产生推力推动飞机前进。

涡轮喷气发动机具有推力大、效率高、功率密度大等优点,适用于大型喷气客机和喷气式战斗机等。

2. 涡轮螺旋桨发动机涡轮螺旋桨发动机是一种将涡轮与螺旋桨相结合的发动机类型,它将燃料燃烧后的高温高压气体通过涡轮传动螺旋桨旋转,产生推力推动飞机前进。

涡轮螺旋桨发动机适用于一些需要低速高扭矩的飞机,如运输机、直升机等。

它具有起飞和着陆性能好、燃油效率高等优点。

3. 柱塞发动机柱塞发动机是一种内燃机,通过活塞在气缸内往复运动来完成吸气、压缩、燃烧和排气等工作。

柱塞发动机适用于一些小型飞机和通用航空飞机,如轻型飞机、教练机等。

它具有结构简单、维护成本低等优点,但功率密度较低,适用于低速低高度飞行。

4. 滑油涡桨发动机滑油涡桨发动机是一种将滑油与涡轮相结合的发动机类型,通过滑油传动涡轮来产生推力推动飞机前进。

滑油涡桨发动机适用于一些需要高高度高速飞行的飞机,如高空侦察机、高空救援机等。

它具有高高度高速性能好、燃油效率高等优点。

5. 水冷柱塞发动机水冷柱塞发动机是一种采用水冷系统来冷却发动机的柱塞发动机类型,通过水冷系统来降低发动机的工作温度,提高发动机的可靠性和寿命。

水冷柱塞发动机适用于一些需要长时间高功率运行的飞机,如军用飞机、运输机等。

它具有工作温度低、寿命长等优点。

总的来说,航空发动机根据不同的分类标准可以分为多种类型,每种类型的发动机都有其特点和适用范围。

航空发动机发展型谱

航空发动机发展型谱

航空发动机发展型谱
航空发动机发展型谱是指航空发动机不同技术代表作的分类和发展历程。

根据不同的技术特点和发展阶段,航空发动机可以分为以下几个主要类型:
1. 活塞发动机:活塞发动机是最早的航空发动机,主要应用于轻型飞机和直升机。

它们通过活塞在气缸内上下运动,产生压缩空气,然后喷入燃料并点燃,产生推力。

2. 涡轮螺旋桨发动机:涡轮螺旋桨发动机是一种将涡轮增压器与螺旋桨相结合的发动机。

它们在设计上更加节能高效,适用于中型负载和地区航班。

3. 喷气式发动机:喷气式发动机是航空发动机的主要类型,适用于大型客机和军用飞机。

它们通过将高速喷出的燃料与压缩空气混合并点燃,产生高压高温的气体喷出,从而产生推力。

4. 高涵道比涡扇发动机:高涵道比涡扇发动机是喷气式发动机的一种进化型。

它们使用了更长的风扇和更多的涡轮级别,以提高推力效率和减少燃油消耗。

这种发动机广泛应用于现代商用飞机。

5. 超高涵道比涡扇发动机:超高涵道比涡扇发动机是最新一代的喷气式发动机,采用了更长的风扇和更多的涡轮级别,涵道比超过了10:1。

它们具有更高的推力效率和更低的燃油消耗,适用于大型宽体客机和远程飞行。

发动机发展型谱展示了航空发动机技术的进步和演变,从传统的活塞发动机到现代的高涵道比涡扇发动机,每一代发动机都具有更高的推力效率、更低的燃油消耗和更好的环境性能。

这种发展为航空产业的发展提供了强大的动力支持。

航空发动机总资料

航空发动机总资料

第一章概论航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。

P3空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。

不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。

涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。

在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。

P4燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。

由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。

涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。

按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。

P5航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。

对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。

航空发动机结构-第二章几种典型的发动机

航空发动机结构-第二章几种典型的发动机

航空发动机结构-第二章几种典型的发动机在航空领域中,发动机是飞机的“心脏”,是飞机能够获得推进力和提供动力的关键组成部分。

发动机的结构和种类多种多样,下面将介绍几种典型的航空发动机。

1.活塞发动机活塞发动机是最早应用于飞机的内燃机,也是最常见的发动机类型之一、活塞发动机可分为直列式、对夹式和星型式等多种形式。

其原理是通过往复运动的活塞来吸入和压缩燃油和空气混合物,然后在燃烧室中点燃并释放能量,推动飞机前进。

活塞发动机结构简单,维护方便,但功率相对较低,适用于小型飞机。

2.涡轮发动机涡轮发动机是目前应用最广泛的一种航空发动机。

涡轮发动机分为涡轮螺旋桨发动机和喷气发动机两大类。

涡轮螺旋桨发动机是通过将燃油燃烧释放的热能转化为机械能,驱动传动系统旋转,带动螺旋桨旋翼,产生推力。

喷气发动机则是通过将压缩空气与燃料混合后点燃并喷出高速气流,产生后向推力。

涡轮发动机功率大,燃油效率高,适用于各种类型的飞机。

3.涡扇发动机涡扇发动机是喷气发动机的一种特殊形式,由于其具有较高的推力、较低的噪音和较好的燃油经济性,目前已成为商业航空领域中最主要的发动机类型。

涡扇发动机通过将前后两个涡轮连接在同一轴上,形成高压涡轮和低压涡轮,从而实现高效的推力产生。

涡扇发动机具有高推力、高燃油效率和低噪音等优点,适用于中长途商业飞机。

4.激光发动机激光发动机是一种高科技发动机,利用激光束对高温等离子体进行加热,产生推进力的原理。

激光发动机具有结构简单、燃料消耗少和推力大等优势,但目前仍处于实验阶段,尚未实现商业应用。

以上是几种典型的航空发动机,每种发动机都有其独特的优点和适用范围。

随着科技的进步和航空领域的发展,未来可能还会出现更多新型的发动机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。

自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。

飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。

按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。

一般所说的航空发动机即指这类发动机。

如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。

火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。

它也可用作航空器的助推动力。

按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。

按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。

直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。

直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。

间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。

这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。

而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。

活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。

所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。

(一)活塞式发动机的主要组成主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。

(二)活塞式发动机的工作原理活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个工作循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀冲程和排气冲程。

发动机开始工作时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。

于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。

混合气体中汽油和空气的比例,一般是 1比 15即燃烧一公斤的汽油需要15公斤的空气。

进气冲程完毕后,开始了第二冲程,即“压缩冲程”。

这时曲轴靠惯性作用继续旋转,把活塞由下死点向上推动。

这时进气门也同排气门一样严密关闭。

气缸内容积逐渐减少,混合气体受到活塞的强烈压缩。

当活塞运动到上死点时,混合气体被压缩在上死点和气缸头之间的小空间内。

这个小空间叫作“燃烧室”。

这时混合气体的压强加到十个大气压。

温度也增加到摄氏4OO度左右。

压缩是为了更好地利用汽油燃烧时产生的热量,使限制在燃烧室这个小小空间里的混合气体的压强大大提高,以便增加它燃烧后的做功能力。

当活塞处于下死点时,气缸内的容积最大,在上死点时容积最小(后者也是燃烧室的容积)。

混合气体被压缩的程度,可以用这两个容积的比值来衡量。

这个比值叫“压缩比”。

活塞航空发动机的压缩比大约是5到8,压缩比越大,气体被压缩得越厉害,发动机产生的功率也就越大。

压缩冲程之后是“工作冲程”,也是第三个冲程。

在压缩冲程快结束,活塞接近上死点时,气缸头上的火花塞通过高压电产生了电火花,将混合气体点燃,燃烧时间很短,大约0.015秒;但是速度很快,大约达到每秒30米。

气体猛烈膨胀,压强急剧增高,可达6O到75个大气压,燃烧气体的温度到摄氏2000到250O度。

燃烧时,局部温度可能达到三、四千度,燃气加到活塞上的冲击力可达15吨。

活塞在燃气的强大压力作用下,向下死点迅速运动,推动连杆也门下跑,连杆便带动曲轴转起来了。

这个冲程是使发动机能够工作而获得动力的唯一冲程。

其余三个冲程都是为这个冲程作准备的。

第四个冲程是“排气冲程”。

工作冲程结束后,由于惯性,曲轴继续旋转,使活塞由下死点向上运动。

这时进气门仍旧关闭,而排气门大开,燃烧后的废气便通过排气门向外排出。

当活塞到达上死点时,绝大部分的废气已被排出。

然后排气门关闭,进气门打开,活塞又由上死点下行,开始了新的一次循环。

活塞航空发动机要完成四冲程工作,除了上述气缸、活塞、联杆、曲轴等构件外,还需要一些其他必要的装置和构件。

(三)活塞式航空发动机的辅助工作系统发动机除主要部件外,还须有若干辅助系统与之配合才能工作。

主要有进气系统、燃油系统、点火系统、起动系统、散热系统和润滑系统等。

冲压喷气发动机冲压喷气发动机是一种利用迎面气流进入发动机后减速,使空气提高静压的一种空气喷气发动机。

它通常由进气道、燃烧室、推进喷管三部组成。

冲压发动机没有压气机,所以又称为不带压气机的空气喷气发动机。

这种发动机压缩空气的方法,是靠飞行器高速飞行时的相对气流进入发动机进气道中减速,将动能转变成压力能。

冲压发动机的构造简单、重量轻、推重比大、成本低。

但因没有压气机,不能在静止的条件下起动,所以不宜作为普通飞机的动力装置,而常与别的发动机配合使用,成为组合式动力装置。

如冲压发动机与火箭发动机组合,冲压发动机与涡喷发动机或涡扇发动机组合等。

冲压发动机或组合式冲压发动机一般用于导弹和超音速或亚音速靶机上。

按应用范围划分,冲压发动机分为亚音速、超音速、高超音速三类。

一、亚音速冲压发动机亚音速冲压发动机使用扩散形进气道和收敛形喷管,以航空煤油为燃料。

飞行时增压比不超过 1.89,飞行马赫数小于 O.5时一般不能正常工作。

亚音速冲压发动机用在亚音速航空器上,如亚音速靶机。

二、超音速冲压发动机超音速冲压发动机采用超音速进气道和收敛形或收敛扩散形喷管,用航空煤油或烃类燃料。

超音速冲压发动机的推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。

三、高超音速冲压发动机这种发动机燃烧在超音速下进行,使用碳氢燃料或液氢燃料,飞行马赫数高达5~16。

由于超音速冲压发动机的燃烧室入口为亚音速气流,也有将前两类发动机统称为亚音速冲压发动机,而将第三种发动机称为超音速冲压发动机。

脉动喷气发动机脉动喷气发动机是喷气发动机的一种,可用于靶机,导弹或航空模型上。

它的前部装有单向活门,之后是含有燃油喷嘴和火花塞的燃烧室,最后是特殊设计的长长的尾喷管。

脉动式发动机在原地可以起动,构造简单,重量轻,造价便宜。

这些都是它的优点。

但它只适于低速飞行,飞行高度也有限,单向活门的工作寿命短,加上振动剧烈,燃油消耗率大等缺点,使得它的应用受到限制。

火箭发动机同空气喷气发动机相比较,火箭发动机的最大特点是:它自身既带燃料,又带氧化剂,靠氧化剂来助燃,不需要从周围的大气层中汲取氧气。

目前发射的人造卫星、月球飞船以及各种宇宙飞行器所用的推进装置,都是火箭发动机。

一、固体火箭发动机固体火箭发动机为使用固体推进剂的化学火箭发动机。

固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。

二、液体火箭发动机液体火箭发动机是指液体推进剂的化学火箭发动机。

常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。

氧化剂和燃烧剂必须储存在不同的储箱中。

液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。

三、其他能源的火箭发动机(一)电火箭发动机电火箭发动机是利用电能加速工质,形成高速射流而产生推力的火箭发动机。

与化学火箭发动机不同,这种发动机的能源和工质是分开的。

电能由飞行器提供,一般由太阳能、核能、化学能经转换装置得到。

工质有氢、氮、氩、汞、氨等气体。

电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器组成。

二)核火箭发动机核火箭发动机用核燃料作能源,用液氢、液氦、液氨等作工质。

核火箭发动机由装在推力室中的核反应堆、冷却喷管、工质输送系统和控制系统等组成。

涡轮喷气发动机现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。

从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。

空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。

在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。

进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。

在亚音速时,压气机是气流增压的主要部件。

从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。

燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。

经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。

从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。

这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。

随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。

喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流。

涡轮风扇发动机自从惠特尔发明了第一台涡轮喷气发动机以后,涡轮喷气发动机很快便以其强大的动力、优异的高速性能取代了活塞式发动机,成为战斗机的首选动力装置,并开始在其他飞机中开始得到应用。

相关文档
最新文档