大学物理第六章振动和波

合集下载

大学物理-振动和波ppt课件

大学物理-振动和波ppt课件
• a, , x 都是谐振动, 振幅不同,角频率不变
• a, , x 依次超前 /2; a, x 反相(谐振动特点)
可编辑课件PPT
8
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
可编辑课件PPT
22
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
23
四. 谐振系统的能量
1. 谐振系统的动能和势能

d2x dt2
2 x

d2x dt2
d
dt
d
dx
有 d2xdx, 同乘以m
A
o A Ax
2
0.2m 6s1(负号表示速度沿 Ox轴负方向)
可编辑课件PPT
41
(3)如果物体在 x0.05m处时速度不等于零,
而是具有向右的初速度 v00.30ms,1求其运动方程.
解 A' x02v022 0.070m7
tan'v0 1 x0
'π 或3π
44
o π 4 x

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

大学物理知识点总结:振动及波动

大学物理知识点总结:振动及波动
超声治疗
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。

大学物理第6章机械波

大学物理第6章机械波

则合成振动 的振幅最大

2
r2
l
r1

( 0,1,2,
则合成振动 的振幅最小
)时
波程差为零或为波长的整数倍 时,各质点的振幅最大,干涉相长。
波程差为半波长的奇数倍时, 各质点的振幅最小,干涉相消。
两相干波源 同初相, 2 m 振动方向垂直纸面
到定点 P 的距离 50 m
P
当 满足什么条件时 在 P 点发生相消干涉; 在 P 点发生相长干涉。
A1
P点给定,则 A1
sin( j 1
2r1 )
l
A2 sin( j 2
c恒os定(。j故1 空间2l每r1一)点的A合2 c成os振( j幅2A
2r2 )
l
保2持r恒2 定) 。
l
相长与相消干涉
A
A12 A22
2 A1 A2 cos (j 2
j1
2
r2
l
r1
)

j2
j1
2
r2
l
r1

j2
j1
2
r2


ma x
波 节
min 0
正向行波
反向行波
驻波的形成
在同一坐标系 XOY 中
正向波 反向波 驻波
点击鼠标,观察 在一个周期T 中 不同时刻各波的 波形图。
每点击一次, 时间步进
正向波 反向波
驻波形成图解
ttt====t7353=TTTT0T///82488
4
合成驻波
驻波方程
正向波 由
反向波
为简明起见, 设
并用
改写原式得
驻波方程
注意到三角函数关系

大学物理中的波动与振动

大学物理中的波动与振动

大学物理中的波动与振动波动和振动是大学物理中重要的概念,涉及到许多实际应用和现象。

在本文中,将以波动和振动为主题,深入探讨其相关理论和应用。

1. 波动的概念和特征波动是指一种在介质中传播的物理量的周期性变化。

它具有以下几个特征:1.1 频率和周期波动的频率是指在单位时间内波动重复出现的次数,用赫兹(Hz)来表示。

而周期则是指波动完成一次完整振动所需要的时间。

频率和周期之间存在着倒数的关系,即频率 = 1/周期。

1.2 波长和振幅波长是指波动中相邻两个相位相同的点之间的距离,通常用λ表示。

振幅则是波动中物理量变化的最大值。

1.3 传播速度波动在介质中的传播速度与介质的性质有关,例如在空气中的声波传播速度约为343m/s,而在真空中的电磁波传播速度为光速。

2. 波动理论的应用波动理论在现实世界中有着广泛的应用,下面将介绍其中几个典型的应用领域。

2.1 声学声波是一种机械波,通过介质的分子之间的振动传播。

声学研究声波的传播、共振和声音的产生原理等。

它不仅应用于音乐、语言等艺术领域,也广泛应用于声纳、超声波医学成像等技术中。

2.2 光学光是一种电磁波,是波动的重要表现形式之一。

光学研究光的传播、折射、干涉等现象,也包括光的成像原理和光学仪器的设计与制造。

光学在光通信、激光技术、光学仪器等领域都有着重要的应用。

2.3 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象。

电磁波的频率范围很广,包括了射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的应用非常广泛,涉及到电视、无线通信、微波炉、医疗影像等多个领域。

3. 振动的概念和应用振动是指物体在平衡位置附近作往复运动的现象。

它具有以下几个重要特征。

3.1 频率和周期振动的频率是指在单位时间内振动重复出现的次数,用赫兹(Hz)来表示。

周期则是指振动完成一次完整往复运动所需要的时间。

3.2 阻尼和共振振动中存在着阻尼和共振的现象。

阻尼是指振动受到外界阻力的影响而逐渐减小或停止,共振是指在某个特定频率下振幅达到最大值的现象。

大学物理第六章 机械波

大学物理第六章 机械波
x
x 0
t
x /4
t
x /2
t
x 3 / 4
t
3.当 t c(常数)时,
y t 0
o
x
y f (x为) 某一时刻各质
点的振动位移.
y t T /4
o
x
不同时刻波线上各质点的位
y t T /2
移分布,称为波形图。
o
x
y t 3T / 4
o
x
4. 当 u 与 x 轴反向时取 u
y
A
cos
t
x u
③ 在平衡位置时质元具有最大动能和势能,在振幅处 动能和势能为零。在回到平衡位置时从相邻质元吸 收能量,离开时放出能量。
二、能量密度
1、能量密度 单位体积内的能量 w dE
dV
dE (dV )A 22 sin 2 (t x / u )
w A 22 sin 2 (t x / u )
2.平均能量密度 能量密度在一个周期内的平均值。
称为波面。
波前: 某时刻处在最前面的波面。
球面波
波线
平面波
波线
波面
波面
在各向同性均匀介质中,波线与波阵面垂直.
第二节
平面简谐波的 波函数
用数学表达式表示波动----函数y(x,t),称为波函数。
一、平面简谐波的波函数
·································
➢ 简谐波:在均匀的、无吸收的介质中,波源作 简谐运动时,在介质中所形成的波.
波面上的两点,A、B点达到界 面发射子波,
经t后, B点发射的子波到达界
面处D点, A点的到达C点,
i
B
A

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。

发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。

什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。

振动和波大学物理_教案

振动和波大学物理_教案

课程名称:大学物理授课对象:大学本科生授课时间:2课时教学目标:1. 理解振动和波动的概念,掌握简谐振动的基本特征。

2. 掌握波的基本性质,包括波速、波长、频率、相位等。

3. 理解波的干涉和衍射现象,掌握波动方程的应用。

4. 通过实验,加深对振动和波动理论的理解。

教学内容:第一课时一、简谐振动1. 振动的概念和分类2. 简谐振动的定义和特征3. 简谐振动的描述:振幅、周期、频率、相位4. 简谐振动的合成:叠加原理、相位差5. 阻尼振动和受迫振动二、机械波1. 波的定义和分类2. 波的基本性质:波速、波长、频率、相位3. 机械波的产生和传播4. 波的反射、折射和衍射5. 波的能量和动量第二课时一、波的干涉1. 干涉现象的观察和解释2. 干涉条件:相干波、相位差3. 干涉条纹的分布规律4. 波的叠加原理二、波的衍射1. 衍射现象的观察和解释2. 衍射条件:障碍物大小与波长的关系3. 衍射条纹的分布规律4. 波的衍射公式三、实验:弦振动和驻波实验1. 实验目的:观察弦振动和驻波现象,加深对振动和波动理论的理解。

2. 实验原理:利用音叉产生振动,通过调整音叉位置,形成驻波。

3. 实验步骤:a. 将音叉固定在实验台上,调整音叉位置,观察弦振动和驻波现象。

b. 记录不同位置的波腹和波节位置,计算波长和波速。

c. 分析实验数据,验证振动和波动理论。

教学方法:1. 讲授法:讲解振动和波动的基本概念、性质和规律。

2. 讨论法:引导学生讨论波的干涉和衍射现象,加深对理论的理解。

3. 实验法:通过弦振动和驻波实验,让学生观察现象,验证理论。

教学评价:1. 课堂提问:考察学生对振动和波动基本概念、性质和规律的理解。

2. 作业:布置与振动和波动相关的习题,考察学生对知识的掌握程度。

3. 实验报告:评价学生在实验中的操作能力和对实验数据的分析能力。

教学资源:1. 教材:大学物理教材2. 教学课件3. 实验器材:音叉、弦、实验台等通过本节课的学习,使学生掌握振动和波动的基本知识,为后续学习光学、量子力学等课程打下基础。

大学物理物理学课件振动与波动

大学物理物理学课件振动与波动
光的折射规律
折射光线、入射光线和法线在同一平面内;折射光线和入射光线分 居法线两侧;折射角与入射角满足斯涅尔定律。
全反射规律
当光从光密介质射向光疏介质时,如果入射角大于或等于临界角,则 会发生全反射现象,即全部光线被反射回原介质中。
现代光学技术应用
激光技术
利用受激辐射原理产生高强度、单色性 好的激光束,广泛应用于科研、工业、 医疗等领域。
超声波的性质
超声波具有高频、高能量、方向性好、穿透力强 等特点。
超声波的应用
超声波在医学、工业、农业等领域有广泛应用, 如超声诊断、超声加工、超声育种等。
次声波简介和危害防范
01
次声波简介
次声波是指频率低于20Hz的声 波,人耳无法听到,但会对人体 产生危害。
02
次声波的危害
03
次声波的防范
次声波会对人体内脏器官产生共 振作用,导致头晕、恶心、呕吐 等症状,严重时甚至危及生命。
虑共振问题,并采取相应的防范措施。
03
波动基本概念与传播特性
波动定义及分类
波动是物质运动的一种形式,指振动在 介质中的传播过程。
机械波:机械振动在介质中的传播,如 声波、水波等。
波动可分为机械波和电磁波两大类。
电磁波:电磁场在空间的传播,如光波 、无线电波等。
机械波产生条件与传播过程
产生条件
波源(振动的物体)和介质(传播振动的媒质)。
04
干涉、衍射与多普勒效应
干涉现象及其条件
03
干涉现象
干涉条件
干涉类型
当两列或多列波的频率相同,振动方向一 致,相位差恒定时,它们在空间某些区域 振动加强,在另一些区域振动减弱,形成 稳定的强弱分布的现象。

大学物理课件波的基本概念

大学物理课件波的基本概念
y(x,t)Aco2s([tx)]
y(x,t)Aco2 s[(xu)t] y (x ,t) A co k (x s u [)t]2/T
u/T
9
2(x x )
y (x x ,tt) A co ( t st) [
0 ]
A co t s2 [x 2 (u t x ) 0 ]
若这两处相位相同,则有:
u
y31 0 4co4st (x')
5
8米
5米 x
C
B
A
u
ox
y3104co4s(tx)米 ( )
BC4 u (xCxB)
u
B点相位落后C点相位 4(13 5) 8
与坐标选取无关。
20
5
15
二、 波的能量,能流密度

媒质中单位体积中的能量
有一行波: yAc
os[(t
x)] u
质元的速度 yAsin[(tx)]
y (x ,t) A co k (x s u [) t0 ]
11
例题:
一条长线的质量线密度为 1.5102kg/m今用
一水平力 F6N将它张紧,并使其上产生横波 向左传播,在t =0的波形如图所示
A 4.0 1 2 0 m , 0.4m
求:振幅,波长,波速和波的周期
波函数及质元振动速度表达式
解:
波线 波面
波线
6.2 波的周期性和波速 一、 波长、波速和频率:
波面
波长——振动相位相同的两个相邻波 阵面之间的距离是一个波长。或振动 在一个周期中传播的距离,称为波长,
用表示。
4
显然,这里波长远大于媒质分子间距离,即假设 弹性媒质是连续的,媒质中一个波长的距离内有 无数分子在陆续振动,宏观上看来媒质就象连续 的一样。如果波长小到等于或小于分子间距离时, 相距约为一波长的两个分子之间,不再存在其它 分子,我们就不能认为媒质是连续的了,这时媒 质就再也不能传播弹性波了。因此有一个频率上 限存在。高度真空中分子间距离极大,不能传播

大学物理2-1第六章(振动与波)习题答案

大学物理2-1第六章(振动与波)习题答案

精品习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm 。

现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时。

求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间。

[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系rad/s 07.74200m 1.0N/m 2001030602=====⨯=-m k A k ω设振动方程为 ()φ+=t x 07.7cos0=t 时 1.0=x φcos 1.01.0= 0=φ故振动方程为 ()m 07.7cos 1.0t x =(2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 2.0200400===k mg x精品因而有 ()N 3005.02.0200=-⨯=F(3)设第一次越过平衡位置时刻为1t ,则()107.7cos 1.00t = 07.5.01π=t第一次运动到上方5cm 处时刻为2t ,则()207.7cos 1.005.0t =- ()07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二经过点B ,若已知该质点在A 、B 两点具有相同的速率,且AB =10cm ,求:(1)质点的振动方程:(1)质点在A 点处的速率。

[解] 由旋转矢量图和||||b a v v =可知421=T s精品由于4/2s 8/1,s 81ππνων====-T精品(1) 以AB 的中点为坐标原点,x 轴指向右方。

t =0时, φcos 5A x =-=t =2s 时, φφωsin )2cos(5A A x -=+==由以上二式得 1tan =φ因为在A 点质点的速度大于零,所以43πφ-= cm x A 25cos /==φ所以,运动方程为:)SI ()4/34/cos(10252ππ-⨯=-t x(2)速度为: )434sin(41025d d 2πππ-⨯-==-t t x v 当t =2s 时 m/s 1093.3)434sin(41025d d 22--⨯=-⨯-==πππt t x v6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ; (2)速度为12s cm 时的位移。

大学物理振动和波动ppt课件(2024)

大学物理振动和波动ppt课件(2024)
大学物理振动和波动 ppt课件
2024/1/28
1
目录
2024/1/28
• 振动基本概念与分类 • 波动基本概念与传播特性 • 振动与波动相互作用原理 • 光学中振动和波动现象解析 • 声学中振动和波动现象解析 • 总结与展望
2
01 振动基本概念与分类
2024/1/28
3
振动的定义及特点
振动的定义
振幅
声源振动的幅度用振幅表示,振幅越大,声音的 响度越大。
3
相位
声波在传播过程中,各质点的振动状态用相位描 述。相位差反映了声波在空间中的传播情况。
2024/1/28
25
室内声学环境评价指标体系
响度
音调
人耳对声音强弱的主观感受称为响度,与 声源的振幅和频率有关。
人耳对声音高低的主观感受称为音调,与 声源的频率有关。
物体在平衡位置附近所做的往复运动。
振动的特点
周期性、重复性、等时性。
2024/1/28
4
简谐振动与阻尼振动
2024/1/28
简谐振动
物体在回复力作用下,离开平衡位置 后所做的往复运动,其回复力与位移 成正比,方向相反。
阻尼振动
在振动过程中,由于摩擦、空气阻力 等因素,振幅逐渐减小的振动。
5
受迫振动与共振现象
传播途径控制
在噪声传播途径中采取措施,阻断或减弱噪声的传播。例如设置声屏 障、采用吸音材料等。
接收者防护
对受噪声影响的人员采取防护措施,如佩戴耳塞、耳罩等个人防护用 品。
案例分析
以某工厂噪声控制为例,通过采取上述综合措施,使工厂噪声降低到 国家标准以内,改善了工人的工作环境和周边居民的生活环境。
27

大学物理知识点总结(振动及波动)

大学物理知识点总结(振动及波动)

②已知初速度的大小、正负以及初位置的正负。 1 [例2]已知某质点初速度 v 0 A且y0 0 。 2 v A sin( t ) v0 A si n 1 A 2 5 5 or y0 0 6 6 6
③已知初位置的大小、正负以及初速度的大小。 [例3]已知某质点振动的初位置 y0 0.3 A且 v0 0.95A 。 v0 由tg 的可能值. y0
由旋转矢量法知:
0

4
A

4
y
[例3] 位于 A,B两点的两个波源,振幅相等,频率都是100赫兹, 相位差为π ,其A,B相距30米,波速为400米/秒,求: A,B 连线 之间因干涉而静止各点的位置。 解:取A点为坐标原点,A、B联线为x轴,取A点的振动方程 :
y A A cos( t )
A 2.振动曲线法
y
2
-A 3、旋转矢量法:
4
M
t ( s)
A
t

t
o
t0 A p x
简谐运动的合成 1.同方向、同频率的简谐运动的合成:
A2
2
1
A
x1 A1 cost 1
x2 A2 cost 2
仍然是同频率的简谐振动
由y0的正负确定 的值.
注意!由已知的初条件确定初相位时,不能仅由一个初始 条件确定初相位。 2、已知某质点的振动曲线求初相位: 若已知某质点的振动曲线,则由曲线可看出,t = 0 时刻质点振动的初位置的大小和正负及初速度的正负。 关键:确定振动初速度的正负。
y
o
1
2
t
[例4] 一列平面简谐波中某质元的振动曲线如图。 求: 1)该质元的振动初相。 2)该质元在态A、B 时的振动相位分别是多少? 解:1)由图知初始条件为:

大学物理C第六章

大学物理C第六章

F
gSx
ma
d2x dt 2
gS
m
x
0
02
gS
m
T
2
m
gS
例:劲度系数为k,质量为M的弹簧振子静止地放
在光滑水平面上,一质量为m的子弹以水平速度 v1射入M中,与之一起运动。选m和M开始共同运 动的时刻为初始时刻。求固有频率,振幅和初相
位。
0
k M m
mv1
M
mv
p
1 2
kA2
p2
2M
m
m2v12
x2
• 4.3纵波方程
YS
u(t, x x
dx)
u(t, x
x)
dx
S
2u(t, t 2
x)
2u t 2
Y
2u x2
波速 c Y
• 4.4一般介质中的波
2u B 2u 其中B是体变模量,ρ是介质密度。
t 2 x2
以理想气体为例: p n RT m RT
V
MV
在等温过程中有,p
③临界阻尼 x(t) A(1 t)et
• 1.5受迫振动
d2x dt2
2
dx dt
02x
F m
cost
x(t)
F m
02 2 cost 4 2 2 02 2
2
2 sin t 4 2 2 02 2
2
若写成x(t)=Acos(ωt+φ0)的标准形式,则
A
一般椭圆方程:
x2 Ax2
y2 Ay2
2xy Ax Ay
cos
sin2
当频率不相同时,且
x y
为有理数,则能合成

大学物理D-06振动和波-参考答案

大学物理D-06振动和波-参考答案

B 2 ;波的周期为 B C lC ;此质元的初相位为
;波长为
2 C
;离波源距离为 l
lC 。
6.1.5 一平面简谐波沿 ox 轴正向传播,波动方程为 y A cos[ (t 振动方程为 为 2 1 二、选择题
x ) ] ,则 x L1 处质点的 u 4
y A cos[ (t
由 t=0 和 t=0.25 时的波形图,得
O
t
x
2 x x 2 10 (t ) ] 0.2 cos[2t x ] (2)波动表式为 y A cos[ ( t ) 0 ] 0.2 cos[ 1 0.6 2 3 2 u
O 点的振动表式为
y 0 | t 0 A cos 0 0 , v 0 | t 0 A sin 0 0 , 0
3 , 4
x1 x3振幅最大 。
2
0 20 , 0 20
5 3 (或 )时, x2 x3振幅最小 4 4
0 , 0 20 84 o 48时, x1 x 2 x3振幅最大 0 0
6.4.2
2
o

4

2
3

4

2
6.2.6 两相干平面简谐波沿不同方向传播,如图所示,波速均为 u 0.40m / s ,其中一列波在 A 点 引 起 的 振 动 方 程 为 y 1 A1 cos( 2 t

2
) ,另一列波在 B 点引起的振动方程为
y 2 A2 cos( 2 t
[ A ] (A)0; (B) /2; (C) ; (D)3 /2。 三、简答题

大学物理复习纲要〔振动和波〕

大学物理复习纲要〔振动和波〕

振 动 学 基 础内容提要一、振动的基本概念1、振动 某物理量随时间变化,如果其数值总在一有限范围内变动,就说该物理量在振动;2、周期振动 如果物理量在振动时,每隔一定的时间间隔其数值就重复一次,称为周期振动;3、机械振动 物体在一定的位置附近作往复运动称为机械振动;4、简谐振动 如果物体振动的位移随时间按余(正)弦函数规律变化,即:()0cos ϕω+=t A x这样振动称为简谐振动;5、周期T 物体进行一次完全振动所需的时间称为周期,单位:秒。

一次完全振动指物体由某一位置出发连续两次经过平衡位置又回到原来的状态。

6、振动频率ν 单位时间内振动的次数,单位:次/秒,称为赫兹〔Hz 〕;7、振动圆频率ω 振动频率的π2倍,单位是弧度/秒〔rad /s 〕,即Tππνω22== 8、振幅A 物体离开平衡位置〔0=x 〕的最大位移的绝对值; 9、相位ϕ0ϕωϕ+=t 称为相位或相,单位:弧()rad 。

它是时间的单值增函数,每经历一个周期T ,相位增加π2,完成一次振动; 10、初相位0ϕ 开始计时时刻的相位;11、振动速度v 表示振动物体位移快慢的物理量,即:()⎪⎭⎫ ⎝⎛++=+-==2cos sin 00πϕωωϕωωt A t A dt dx v 说明速度的相位比位移的相位超前2π; 12、振动加速度a 表示振动物体速度变化快慢的物理量,即:()()πϕωωϕωω++=+-===020222cos cos t A t A dtx d dt dv a加速度的相位比速度的相位超前2π,比位移的相位超前π; 13、初始条件 在0=t 时刻的运动状态〔位移和速度〕称为初始条件,它决定振动的振幅和初位相,即:⎪⎩⎪⎨⎧-======000000sin cos ϕωϕA v v A x x t t 则可求得: ⎪⎪⎩⎪⎪⎨⎧-=+=00022020x v tg v x A ωϕω二、旋转矢量法简谐振动可以用一旋转矢量在x 轴上的投影来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dv 2 a 0.05 cos t m/s 2 dt 3 2
dv 4 2 a 0.05 cos 0.493 m/s 2 dt 2 3 3
dx v 0.1 sin t m/s dt 3 2
k 2 令 m
微分方程的解
d x 2 x 0 2 dt
2
x Acos(t 0 )
这样的运动规律符合简谐函数形式,叫做简谐振动 (simple harmonic vibration ) 。
5
★简谐振动的运动方程
x Acos(t 0 )
三个重要的特征量
A — 振幅(amplitude) 离开平衡位置的最大位移
5 / 6 5 t s /2 3
24

4. 简谐振动的能量
k
0vBiblioteka mxx振子动能
振子势能
2
1 2 1 Ek mv m 2 A2 sin 2 ( t 0 ) 2 2 1 2 1 2 Ep kx kA cos 2 ( t 0 ) 2 2
m k
y
A
t 0
xP A cos( t 0 )
矢量端点在 x 轴上的投 影点作简谐振动!
0
P
x
旋转矢量的某一位置对应简谐振动的一个运动状态
19
例 一物体沿Ox轴作简谐振动,振幅为A=0.2m,周期为T=4s。 当t=0时,物体的位移为0.1m,且向Ox轴负向运动。求: (1)振动的表达式; (2) t=T/3时物体的位置、速度和加速度; (3)物体从x=0.1m处向Ox轴正向运动,第一次回到平衡位置需
2
x0 Acos0
v0 Asin0
在0~2π内为多值函 数,注意取舍!
10
v0 arctg( ) x0
������0 ∈ [0,2������)或������0 ∈ [−������, ������)
2. 线性回复力 作用力的形式为F = kx ,k 为常系数。具有特点:
k
m F
x
x
0 k 为劲度系数(coefficient of stiffness)
小幅振动满足胡克定律:F
kx
物体所受的合外力与和位移成正比,方向始终指向平衡 位置,称为线性回复力。 由牛顿第二定律: kx
ma
4
即:
ma k x 0
d2 x k 或: 2 x 0 dt m
d2 y 物体m应用牛顿第二定律: m 2 mg T1 dt 滑轮应用转动定律: J T1R T2 R
绳子无质量且不可伸长: 绳子在滑轮上不打滑: 由上述四式化简,可得:
2 d y 2 (m J / R ) 2 ky dt
T2 k (a y)
d2 y R 2 dt
1 若将滑轮当做匀质圆盘,则: J MR 2 2
1 d2 y 故: (m M ) 2 ky 2 dt

k / (m M / 2)
d2 y 2 y0 2 dt
2
则:
表明物体m作简谐振动,周期 T

2 (m M / 2) / k
3. 旋转矢量图法 旋转矢量的模为A, t =0 时, 旋转矢量与 x 轴的夹角为0, 旋转矢量的角速度为 。
2)开始振动时的初始条件为木块的位移在负方向最大处 ������ = ������ cos(������������ + ������0 ) ������ = −������������ sin ������������ + ������0 − ������ − ������ = ������������������������(������0 ) 0 = ������������sin(������0 )
E p r Sx g
2
分析可知所有质元的总动能为: E 1 r lS dx k
2
2
dt
系统机械能守恒,则:
1 dx 2 rlS r Sx g Const. 2 dt
两边同时对时间求导,整理后得:
2
d2 x 2g x 0 2 dt l
要多少时间。

(1).设位移表达式为:
x A cos( t 0 )
已知 A = 0.2 m , T = 4s
2 rad s 1 T 2
x 0.2cos(

2
t 0 ) m
20
由初始条件用旋转矢量法求初相 0
当 t = 0 时, 位移为 0.1m ,且向 x 轴负方向运动
������0 = ������
������ − ������ = ������
������ ������ + ������ ������
15
������ = ������ − ������ cos
例 如图所示,劲度系数为k的轻质弹簧一端固定在地面上,另一端
系一轻绳,绳子绕过匀质定滑轮连接一质量为m的物体,绳子在滑
d s mg sin m 2 dt d 2 mg sin ml 2 s l dt
在小幅振动时:
2
2
O

l T s
mg
sin
d g 0 2 dt l

g l
T 2
l g
12
例2:复摆(complex pendulum)
M mgl
1 1 2 2 2 kA cos (t 0 )dt kA 4 2
1 Ep T

T
0
简谐振动系统的势能和动能的平均值,皆等于总能量的一 半。
27
例 如图所示,截面积为S的U型管,内装有密度为r、长度为l的液体 柱受到扰动后管内液体发生无阻力振荡,试分析液柱的运动。

由于液体不宜简化为一个质 点,而液体受到扰动后,在振动 过程中没有机械能损失,因此用 能量法来分析。 取U型管两边液体等高的位置 为坐标原点,向上为正建立坐标系 Ox。设t时刻,右面液面升高x,此 时左侧液面下降x,以U型管两边 液体等高的位置为势能零点,则此 时的势能为:
7
★振动的相位(phase)
x Acos( t 0 )
t 0 称为振动的 相位,t = 0 时刻的相位为初相
1、用“相位”描述物体的运动状态。 2、用“相位”来比较两个同频率简谐振动的“步调”。 ★振动曲线 x
A
o
-A T
t
8
★简谐振动的动力学方程
d x 2 x 0 2 dt
2
物体作简谐振动的动力学方程
判别简谐振动的依据:
1、运动表达式为������ = ������cos(������ ������ + ������0 ) ,其中 A 、 和 是常数。
2、作用力的形式为������ = −������������ ,k 为常系数。
d ������ 3、动力学方程可写成 2 + ������2 ������ = 0,2为常系数,其平 d������ 方根即为角频率。
1
简谐振动的描述
2 简谐振动的判断 3 同方向同频率简谐振动的合成 4 简谐波的描述 简谐波的叠加和波的干涉
5
2
第一节
简谐振动
振动一个物理量随时间 t 作周期性变化:
y( t ) y( t T )
“周期性”是这种运动形式的典型特征 机械振动:物体在一定位置附近作来回往复的运动。
3
1. 弹簧振子模型 弹簧振子(spring oscillator)的例子 一根轻弹簧连接 一个质点,置于 光滑水平面上。
dx 4 v 0.1 sin 0 dt 2 3 3
23
(3)物体从x=0.1m处向Ox轴正向运动,第一次回到
平衡位置需要多少时间。 质点从 x = 0.1m 向 x 轴 正方向运动可知此时的相 位为-π/3。
第一次回到平衡位置时 的相位为π/2。 第一次回到平衡位置所 需要的时间:
d 2 mgl J 2 dt
o
d 2 2 dt
2
mgl 令 J
2
l
*C

mgl J
T 2π
J
mgl
mg
(C点为质心)
m cos(t )
13
例3 一长方体木块静止浮于水中,其浸入水中部分高度为a。现 将其轻轻下压至浸入水中部分高度为b,如图所示,然后放手让 其进行自由振动。(1)若不计水的黏滞阻力,试证明木块是作 简谐振动。(2)从放手时刻开始计时,写出木块的振动方程
1 2 E Ek EP kA 2
——振子的总能量为常量!
25
x
x A cos t
t
Ep Ek
E
1 2 E kA 2
t
1、简谐振动系统的机械能守恒。 2、简谐振动系统的总能量与振幅的平方成正比。
26
★势能和动能的平均值
1 Ek T

T
0
1 2 1 2 2 kA sin (t 0 )dt kA 4 2
大小与离开平衡位置的位移成正比,而方向永远指向平衡 位置。
这样的力叫做线性回复力(linear restore force)。 系统(概念更为广泛)在类似的线性回复力作用下,一定 是做简谐振动。
注意到系统总是在平衡位置附近做振动的,因此分析系统 的运动时选取平衡位置做坐标零点更为方便。
11
例1:单摆(simple pendulum)
— 角频率 (或称圆频率)(angular frequency)
在 2π 秒时间内完成全振动的次数
相关文档
最新文档