六年级下册数学试题-奥数专练:排列组合综合应用(含答案)全国通用
六年级下册数学-小升初排列与组合应用题及答案20-人教版
2.老师给小刚出了3道应用题,2道计算题,让小刚各做一道,小刚有几种选择方法?3.小明要往鱼缸里放一些鱼,有三种不同种类的鱼,至少放一种,最多放三种,一共有多少种不同的搭配方法?4.从甲火车站到乙火车站一共有8个车站(包括甲、乙火车站),现在请你为车站设计车票,甲火车站与乙火车站之间一共要设计多少种车票?5.张华有1元和2元的人民币若干张,他要拿出15元(不能只拿一种面值的人民币),有多少种不同的拿法?(用列表法解答)6.小芳上新华书店,选中了三种图书,最少买1本,最多买3本,有多少种不同的购买方法?用画“√”表示购买方法,完成下表。
(每种书只买1本)7.快餐店规定:一份盒饭可以配一个荤菜和一个素菜。
想一想,用下面的菜配盒饭,有多少种不同的配菜方法?8.如下图所示,从儿童乐园经过百鸟园到猴山一共有多少条路线?9.小红有两张20元和两张10元的人民币,她能用这四张纸币组成多少种不同的币值?10.用0、1、7、8能组成哪些没有重复数字的两位数?11.帅帅从家到学校有3条路,从学校到博物馆有4条路,帅帅从家经学校到博物馆,一共有几种不同的走法?12.A、B、C、D四个球队进行比赛,每两队比一场,一共要比多少场?13.恰有两位数字相同的三位数共有多少个?14.用0、1、4、5能组成多少个没有重复的三位数?请写出来。
参数答案1.根据题意连线可知:赛了4场,则分别与B、C、D、E各赛了一场;由于D只赛了一场,所以这场是和A赛的;B赛了3场,所以B分别与A、C、E号各赛了一场,所以此时E与A和B各赛了一场,共2场。
【解析】1.根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键。
2.2×3=6答:小刚有6种选择方法。
【解析】2.老师给小刚出了3道应用题,2道计算题,让小刚各做一道,求小刚有几种选择方法,一道应用题可以有2种搭配方法,3道应用题就有2×3=6种搭配方法。
3.只放一种鱼有3种方法,放两种鱼有3种方法,放三种鱼有1种方法,一共有7种方法。
2019年小学六年级数学下册试题 小升初数学专题 排列组合(含答案解析)
小升初数学思维拓展 排列组合一、知识地图1) 加法原理2) 乘法原理3) 排列a) 信号问题b) 数字问题c) 坐法问题d) 照相问题e) 排队问题4) 组合a) 几何计数问题b) 加乘算式问题c) 比赛问题d) 选法问题二、基础知识(一)加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有m 1种不同做法,第二类方法中有m 2种不同做法,…,第k 类方法中有m k 种不同的做法,则完成这件事共有 N=k m m m +++ 21种不同的方法。
这就是加法原理。
例如:某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津。
那么他在一天中去天津能有多少种不同的走法?解答:分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,并且每种走法都可以直接到达目的地,一步就可以完成任务,可以用加法原理。
如果乘火车,有5种走法,如果乘长途汽车,有4种走法。
上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法。
像这样一步可以完成任务,就用加法原理。
(二)乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,…,做第n 步有m n 种不同的方法,那么,完成这件事一共有N=n m m m ⨯⨯⨯ 21种不同的方法。
这就是乘法原理。
例如:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
问:从两个口袋内各取一个小球,有多少种不同的取法?解答:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,要用乘法原理。
共有3×8=24(种)不同的取法。
1.加法原理和乘法原理有什么区别?1) 加法原理:先把方法分类,每一类的方法都能完成这件事。
最后把这些方法相加。
2) 乘法原理:先把方法分步,每一步都不能独立完成这件事,但是完成这件事,这些步骤缺一不可。
高斯小学奥数六年级下册含答案第13讲_组合综合练习
21. 答案:1006.解答: 每连续 8 个数中, 最多能取 4 个. 2010 8 251L 2 ,所以从 1 到 2008 中,最多可以取出 1004
个数,再加上 2009 和 2010,所以最多能取出 1006 个数.
22. 答案:7.解答:不妨设是按竖直方向剪开(剪开线为图
开了.剪开后,得到 7 块长方形.
第十三讲 组合综合练习
【学生注意】 本讲练习满分 100 分,考试时间 70 分钟.
一、填空题 Ⅰ(本题共有 8 小题,每题 6 分)
1. 箱子里有 7 个红球、 8 个白球和 9 个蓝球,从中摸出 ______个球,才能保证每种颜色的球都至少有 一个.
2. 三位老师对四位同学的竞赛结果进行了预测. 邹老师说:“墨莫第一, 卡莉娅第四. ”李老师说:“萱 萱第一,小高第三. ”杨老师说: “卡莉娅第二,萱萱第三. ”结果四位同学都进入了前四名,而三 位老师的预测各对了一半,那么萱萱是第 ________名..
萱萱第四;情形二: “卡莉娅第四”是对的,则萱萱第三,于是李老师说的两句话都是错的,矛盾.所以只能是情
形一,萱萱是第四名
3. 答案: 13.解答:所得的和数一定是 3 的倍数,最小是 6,最大是 42,中间的 3 的倍数也都能得到,所以一共有
42 6 3 1 13 个不同的和.
4. 答案: 111.解答:“ 5 啤酒瓶 =1 啤酒瓶 +1 酒”,所以“ 1 酒 =4 啤酒瓶”.由 89 4 22L 1 ,说明 89 个啤
4 升的水,那么至少要从河中取水
_______ 次.
10. 邮递员送信件的街道如图所示, 每一小段街道长 1 千米. 如果邮递员从邮局出
发,必须走遍所有的街道,那么邮递员最少需要走
六年级下册数学奥数课件-第13讲《组合综合练习》全国通用
极限挑战
mathematics
三、填空题Ⅲ(本题共3小题,每题8分) 13.小高,小娅,墨莫和萱萱4个小朋友郊游回家时天色已晚,他们来到一条河的东岸要通过 一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次最多只能过 2人,因此必须先由2个人拿手电筒过桥……直到4人都通过小桥;已知:小高单独过桥要2分 钟,小娅独过桥要3分钟,墨莫单独过桥要5分钟,萱萱单独过桥要9分钟;如果两人同时过 桥,则过桥所花时间按较慢的人的过桥时间计算,那么4个人都通过小木桥,最少要 __________分钟. 答案:20
例题讲解
mathematics
二、填空题Ⅱ(本题共4小题,每题7分) 9.有两个桶,大容量13,小桶容量7升,如果想从中打4升的水,那么至少要从河中取水 ____________次. 答案:3
例题讲解
mathematics
10.邮递员送信件的街道如右图所示,每小段街道长1千米,如邮递员从邮局出发,必须走遍
例题讲解
mathematics
5.把100个橘子分装在6个篮子里,每个篮子里装的橘子数都含有6,每个篮子里的橘子 数由多到少分别是________、________、________、________、________、________. 答案:60;16;6;6;6;6
例题讲解
mathematics
极限挑战
mathematics
14.有8个整数克的砝码(允许码重量相同),将其中一个或几个放在天平的右边,待称的物品 放在天平的左边,能称出1、2、3、…、100的所有整数克的物品来;那么这8个砝码中第二 重的砝码最少是__________克. 答案:12
极限挑战
mathematics
六年级下册数学试题-小升初排列与组合应用题及答案14-人教版
六年级下册数学-小升初排列与组合应用题及答案-人教版2.用2、6、4可以组成几个不同的三位数?分别是多少?(每个数中的数字不能重复)3.从写有4、5、8、9的四张卡片中任意选出2张,做一位数的乘法计算。
共能组成多少个不同的乘法算式?共有多少个不同的积?写出这些算式。
4.妈妈为小红准备的早餐是:一块面包、一盒牛奶、一个鸡蛋,小红要把它们吃完,可以有多少种不同顺序的吃法?5.一种小彩灯,由红、黄、绿三种颜色组成。
用灯的亮灭表示不同的信号。
一共可以表示多少种不同的信号?6.有5把锁和5把钥匙,但不知道哪把钥匙开哪把锁,最多试多少次,就一定能把锁和钥匙配套起来?7.在京沪高铁线上某次动车从北京发车,依次停靠济南、徐州、蚌埠、南京、无锡、上海,一共有多少种车票? 多少种票价?8.学校乒乓球队有男队员4名,女队员3名。
(1)男队举行比赛,每两名队员要比赛一场,一共要比赛多少场?(2)选1名男队员和1名女队员参加混合双打比赛,共有多少种不同的选法?9.每两个人只能握一次手,5个人我握几次手?10.往返于A、B两地的动车组,沿途要停靠三站。
铁路部门要为动车组的列车准备多少种车票?11.用0、1、3、5能组成多少个没有重复数字的两位数?(提示:十位上的数字不能是0)分析与解答:我们可以采取列表的方法来分析和解答。
十位111333555个位12.用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?13.小青把自己的鞋袜颜色统计如下。
袜子红色白色蓝色运动鞋白色黑色黄色绿色(1)小青有________种颜色的袜子,她有________种颜色的运动鞋。
(2)从袜子和运动鞋中各选一双进行搭配,一共有多少种不同的搭配方法?(3)小青还有2把不同颜色的雨伞,和搭配好的鞋袜再进行搭配,一共有多少种不同的搭配方法?14.三(1)班星期一上午的四节课分别是语文、英语、数学、美术。
已知第三节课是美术,这天上午的课程表有多少种排法?请你写出来。
六年级奥数专题 排列组合综合(学生版)
排列组合综合,掌握几种基本的排列组合相关问题的方法:特殊位置特殊元素优先分析法、捆绑法、插空法、隔板法我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.特殊位置特殊元素优先分析法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
捆绑法在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
隔板法隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。
【题目】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法【试题来源】(1)(迎春杯决赛)(2)(兴趣杯少年数学邀请赛决赛)【题目】(1)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(2)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?【试题来源】【题目】大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?【试题来源】【题目】把13拆成三个数的和,请问有几种拆法?【试题来源】【题目】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数?【试题来源】【题目】用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.【试题来源】【题目】数3可以用4种方法表示为1个或几个正整数的和,如3,1+2,2+1,1+1+1。
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——数字谜
【例 10】如图,相同字母表示相同的数字,不同字母表示不同的数字,问 两位数EF ______.
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——抽屉原理
【例2】从2、4、6、…、30这15个偶数中,任取9个数,证明:其中一定有两 个数之和是34.
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——抽屉原理
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——统筹与优化
【练一练】在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数 字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里, 如果每吨货物运输1千米需要运费1元,问集中到哪个仓库运费最少?
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——统筹与优化
【练一练】星期天妈妈要做好多事情,擦玻璃要20分钟,收拾厨房要15分钟, 洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣 服要10分钟,妈妈干完所有这些事情最少用多长时间?
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
六年级下册数学练习 小学奥数组合模块综合练习 全国通用 张
组合——统筹与优化
【例8】理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理 的发型,分别需要10、12、15、20和24分钟,问怎样安排他们理发的顺序, 才能使这五人理发和等候所用时间的总和最少?最少时间为多少?
小学六年级下册数学《排列组合》习题及答案
排列组合(一)1、用0、1、2、3、4五个数字,一共可以组成多少个没有重复数字的三位数?答:可以组成48个,用排列组合的方法计算即可:百位数不能为0,所以可以选择的数字只有4位,即C4取1=4十位数除了不能用百位数出现的数字以外都可以,即C4取1=4个位数除了十位数和百位数出现的数字以外都可以,即C3取1=3可以实现的组合有:4*4*3=482、幼儿园里的6个小朋友去坐3个不同的椅子,有多少种坐法?6×5×4=120(种)答:有120种坐法.答:一共120种坐法,先从6名同学中抽出3个不排序,是20种然后吧选出来来得3人进行排列,是6种两个步骤方法数相乘就是120种3、某信号兵用红、黄、蓝三种颜色的小旗各一面,用它们挂在旗杆上作信号(顺序不同时表示的信号也不同),总共可以作出多少种不同的信号?答:3×2×1=6,一共6种信号。
最上面位置可以从3种颜色中选1种,中间位置可以从剩余2种颜色中选1种,下面位置只能从剩余1种颜色种选1种,就是3×2×1=6种。
4、有4个同学去拍照,照相时,必须有一名同学为其他3人拍照,一共有多少种拍照形式?(照相时3人站成一排)根据分析可知:4×3×2×1=24(种),答:共有24种拍照情况.故答案为:24.5、北京到天津的铁路线有10个车站,需要准备多少种不同的车票?方法一:车站1到2,3,4,5,6,7,8,9,10有9种,车站2到3,4,5,6,7,8,9,10有8种,一次类推,车站9到10 有1种。
一共有1+2+3+4+5+6+7+8+9=45,如果有反程有45*2=90种,方法二:9╳10,10为10个站,9为每个站可以有9个目的地。
6、一次乒乓球比赛,最后有6名选手进入决赛,如果赛前写出冠亚军名单,一共可以写出多少种?冠亚军名单一共有30种可能。
设6名选手分别为A、B、C、D、E、F。
小学数学《排列组合的综合应用》练习题(含答案)
小学数学《排列组合的综合应用》练习题(含答案)例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2C47+6C37+3C27+C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.习题六解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.五点共线有4组,四点共线的有9组,三点共线的有8组,利用排除法:C320-4C35-9C34-8C33=1140-4×10-9×4-8=1056.6.因为任一张人民币的币值都大于所有币值比它小的人民币的币值的和,例如1角的大于1分、2分、5分的和,因此不论取多少张,它们组成的币值都不重复,所以组成的币值与组合总数一致,有C110+C210+……+C1010=210-1=1023种.因为由这些人民币能组成的最小的币值是1分,最大的币值是十张币值的和,即1888分,而1023<1888,可见从1分到1888分中间有一些币值不能组成.。
六年级下册数学-小升初排列与组合应用题及答案24-人教版
-人教版2.用2、6、4可以组成几个不同的三位数?分别是多少?(每个数中的数字不能重复)3.用4、6、8、0四个数字组成多少个没有重复的四位数?4.4个同学要进行一场乒乓球比赛,每2个人打一场球。
一共要打多少场?5.妈妈为小红准备的早餐是:一块面包、一盒牛奶、一个鸡蛋,小红要把它们吃完,可以有多少种不同顺序的吃法? 6.小芳上新华书店,选中了三种图书,最少买1本,最多买3本,有多少种不同的购买方法?用画“√”表示购买方法,完成下表。
(每种书只买1本)7.有5把锁和5把钥匙,但不知道哪把钥匙开哪把锁,最多试多少次,就一定能把锁和钥匙配套起来?8.如下图所示,从儿童乐园经过百鸟园到猴山一共有多少条路线?9.在京沪高铁线上某次动车从北京发车,依次停靠济南、徐州、蚌埠、南京、无锡、上海,一共有多少种车票? 多少种票价?10.周六乐乐要打电话约明明出去玩,明明家的电话号码是:832617XX。
后两位数字是0、9、4、2中任意不同的两个数字,明明家电话号码的后两位数字有几种可能?11.明明家冰箱里有4种饮料,明明想从中任意选出2种,他有几种不同的选法?12.用1、3、4、6组成没有重复数字的两位数,能组成多少个个位是双数的两位数?请把它们列举出来。
13.用2、5、8这三个数字排成一个三位数,使它是2的倍数,共有几种排法? 14.小红有一辆变速自行车,车子的前齿轮分别有40、48个齿,后齿轮分别有15、20、24、30个齿.他的前后齿轮共可以调出多少种不同的组合?蹬同样的圈数,哪种组合使自行车走得最远?哪种组合蹬起来最省力?参数答案1.2×4=8,2×5=10,4×5=20;所以得数有3种可能。
【解析】1.运用穷举法写出所有的可能,写出算式即可。
2.264、246、426、462、624、642答:用2、6、4可以组成6个不同的三位数,分别是264、246、426、462、624、642。
小学数学《排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)小学数学《排列组合》练习题(含答案)加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用.排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+共个数.其中!(1) (1)nnP n n n==?-??.【例1】4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ?=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案? 分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列.99362880P =.【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ;(2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ;(2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有2 4P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个).(法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数?分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成35P =5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用35P 来计算,分步考虑,用乘法原理可得:5×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +?+?=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有44P =24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P =6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列.【例6】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有33P =6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+l=19种.组合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1) (1)!m mn n n n m C m ?-??-+=个数这就是组合数公式.【例7】以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下!计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ?==?,45543254321C ==,15551C == ;(2)3776535321C ??==?? ,57765432154321C == ,57765432154321C ==注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ?=?=(种).【例8】有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:27C =21(场),第二组要赛:26C =15(场),决赛阶段要赛:24C =6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择.由加法原理,不同的摸法有:5+100+5=110种.【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C =20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问: (1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题. (1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C =161700(种). (2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C 种;第二步:从98件合格品中抽出2件合格品的抽法有298C 种.再用分步计数原理求出总的抽法数,122989506C C ?=.(3)可以从反面考虑,从抽法总数3100C 中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C -=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:35 81014112C C ?=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010842753C C C C --?=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +?+?=34749.【例12】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有55P=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C=20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C=6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3 5C=10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C=4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C=4种选择.由乘法原理,有4×4=16种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个?分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成44P =24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P =72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法.5.在一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ?? =756000(种).。
【精品】六年级下册数学总复习试题-数学竞赛之排列组合专项练(通用版 含答案)
数学竞赛之排列组合一、单选题1.小明、小英、小华一起照相,他们的位置有()种不同的排列方法.A. 6B. 10C. 32.12个点,一共可以连成()条线段.A. 12B. 32C. 663.六年级6个班级进行篮球比赛,如果每两个班之间进行一场比赛,一共要比赛()A. 9场 B. 10场 C. 15场 D. 21场4.有16支球队采用单循环赛制,一共要赛()A. 16场B. 240场C. 120场D. 136场5.一片钥匙只能开一把锁,现有8片钥匙和8把锁,最多要试验()次能使全部的锁匹配.A. 36B. 18C. 28D. 76.今年高考的科目有语文、数学、外语、物理、化学、生物、历史、地理、政治.其中语文、数学、外语三科必考,其余6科中只要选考两科.一位学生今年参加高考,他将有()种不同的选择.A. 5B. 6C. 15D. 367.三个人并排站成一个横排照相,他们有几种站法?()A. 6B. 8C. 3D. 18.从1、2、3、…、7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法()种.A. 6B. 7C. 8D. 99.学校乒乓球比赛中,女子乙组6名选手毎两名赛一场,一共要赛()场.A. 6B. 12C. 15D. 2010.某县的电话号码是一个七位数,已知前三位数是固定数610,那么该县最多可安装电话()部.A. 610部B. 9999部C. 10000部D. 1000部二、填空题11.1,4,7,10,________,________,19。
12.小文进行篮球投篮练习,连续投篮4次,把每次命中与否按顺序记录下来,可能有________种不同的顺序。
13.书架上有3本故事书,2本科技书和4本英语书,每本书的内容不同,从中取出故事书,科技书,英语各一本;共有________种不同的取法.14.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案。
(全国通用)六年级下册数学试题-数学竞赛部分-数字串问题(含答案)
小学数学六年级(全国通用)-数学竞赛部分-数字串问题(含答案)一、填空题1.将自然数从小到大无间隔的排列起来,得到一串数码:123456789101112131415…,这串数中从左到右数第1000个数码是________ .2.,,,,,________ .3.有一串数1、7、13、19、25、…这列数的第1000个数是________ .4.有一串数,,,,,,,,,…这串数从左开始数,第________ 个数是.5.找规律填数:1,2,4,7,11,16,22,29,________ ,46.6.已知一串有规律的数:1,,,,….那么,在这串数中,从左往右数,第10个数是________ .7.有数组{1,2,3,4},{2,4,6,8},{3,6,9,12},…,那么第100个数组的四个数的和是________ .8.有一串分数,,,,,,,,,,,,…,这串分数从左往右数,第一个在第________ 个,第二个在第________ 个.9.根据前面几个数的规律,在横线里填上适当的数,,,,________ .10.有一串数1,1,2,3,5,8,…,从第三个数起,每个数都是前两个数之和,在这串数的前1997个数中,有________ 个是5的倍数.11.如有一串分数,,,,,,…第100个数是________ ,第2006个数是________ .二、计算题12.有两个数串1,3,5,7…1991,1993,1995,1997,1999,和,1,4,7,10,…1990,1993,1996,1999,同时出现在这两个数串中的数共有多少个?13.有一串分数,,,,,,,,,,,,,…请问是第几个分数?第400个分数是几分之几?14.紧接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数,那么这串数字从1开始往右数第1999个数字是几?这1999个数字的和是多少?15.有一串分数:,,,,,,,,,,,,,,…,这串数的第400个数是几分之几?16.11至18这8个连续自然数的和再加上1992等于另外8个连续数的和.求另外8个连续自然数中最小数是多少.17.有一列数:1、2、3、2、1、2、3、4、3、2、3、4、5、4、3、4、5、6、5、4、5、…这列数中前240个数的和是多少?18.有一串数,,,,,,,,,,,,,,,,,…这串数从左往右,第个数是,在这串数中的什么位置.三、综合题19.找规律填数.(1)1,4,9,16,________ ,36…(2)2,3,5,8,________ ,21 …四、应用题20.将12个小球分别标上自然数1,2,3,…,12,然后放在布袋中.甲乙丙三人各从袋中取出4个球.已知他们取出的球上标记的数的总和相等,甲取出的球中有两个球标着5和12,乙取出的球中有两个球标着6和8,丙取出的球中有一个球标着1.问甲乙丙三人取出的其余的球上标记的数分别是多少?答案解析部分一、填空题1.【答案】3【考点】数字串问题【解析】【解答】解:三位数的数码有:1000﹣(9+2×90)=811(个)三位数有811÷3=270个…1,所以第1000个数码是370的百位上的数码3.故答案为:3.【分析】本题可根据自然数的排列顺序及数位知识进行分析:1~9个位数9个,10~99两位数90个,100~999三位数900个,1~99共有9+90×2=189个数字,1000﹣189=811个,811÷3=270…1,所以第1000个数码是370的百位上的数码3.问题得以解决.2.【答案】【考点】数字串问题【解析】【解答】解:题目中前一个分数的分子与分母相加的和是后一个分数的分子,前一个分数的分母与后一个分数的分子相加减的和是后一个分数的分母.所以,最后一个分数的分子为:55+89=144,分母为:89+144=233.即此分数为:.故答案为:.【分析】通过观察发现,1+2=3,3+2=5;3+5=8,5+8=13.即前一个分数的分子与分母相加的和是后一个分数的分子,前一个分数的分母与后一个分数的分子相加减的和是后一个分数的分母.据此即能得出最后个数分数是多少.3.【答案】5995【考点】数字串问题【解析】【解答】解:这个数列是首项是1,公差是6的等差数列,第1000项是:1+(1000﹣1)×6,=1+999×6,=1+5994,=5995.故答案为:5995.【分析】7﹣1=6,13﹣7=6,19﹣13=6,25﹣19=6;这个数列可以看成是首项是1,公差是6的等差数列;根据等差数列的通项公式:a n=a1+(n﹣1)d,.4.【答案】111【考点】数字串问题【解析】【解答】解:前共有数字:1+3+5+7+9+11+13+15+17+19,=(1+19)×10÷2,=20×10÷2,=100(个);100+11=111(个);是第111个数.故答案为:111.【分析】观察发现,分母是1的分数有1个,分子是1;分母是2的分数有3个,分子分别是1,2,1;分母是3的分数有5个,分子分别是1,2,3,2,1;分母是4的分数有7个,分子分别是1,2,3,4,3,2,1.分数的个数是连续增加的奇数;是分母是11的第11个分数,只要求出从分母是1的分数到分母是10的分数一共有多少个,然后再加上11即可.5.【答案】37【考点】数字串问题【解析】【解答】解:通过观察发现:数列中相邻两个数的差构成一个公差为1等差数列.所以,第一个空的数为:11+(11﹣7+1)=11+5,=16;第二个空应填:29+(29﹣22+1)=29+8,=37.故答案为:16,37.【分析】通过观察发现:2﹣1=1,4﹣2=2,7﹣4=3,11﹣7=4.由此可得,数列中相邻两个数的差构成一个公差为1等差数列.据此规律即能求得横线上的数是多少.6.【答案】【考点】数字串问题【解析】【解答】解:有原题得出规律从第三个数开始,分子是前一个分数的分子与分母的和,分母是本身的分子与前一个分数的分母的和.所以后面的分数依次为:第10个数为.第10个数为.故答案为.【分析】由1,,,,…得出规律:从第三个数开始,分子是前一个分数的分子与分母的和,分母是本身的分子与前一个分数的分母的和.所以后面的分数依次为:第10个数为.7.【答案】1000【考点】数字串问题【解析】【解答】解:方法一:这串数组,各组数的和是10,20,30,40.因此,第100个数中的四个数的和是100×10=1000.方法二:通过观察可以发现,每一组数括号中四个数的关系是:第一个数表示组数,第二个数是第一个数的2倍,第三个数是第一个的3倍,第四个数是第一个数的4倍.因此,第100个数组内的四个数分别是:(100,200,300,400).所以,第100个数组的四个数的和是:100+200+300+400=1000.故答案为:1000.【分析】要求“第100个数组的四个数的和”有两种可能:或者知道这四个数分别是多少;或者通过积来解答.(1)通过观察知道这串数组,各组数的和是10,20,30,40,…所以第100个数中的四个数的和是100×10=1000.(2)或者通过观察可以发现,每一组数括号中四个数的关系是:第一个数表示组数,第二个数是第一个数的2倍,第三个数是第一个的3倍,第四个数是第一个数的4倍.因此,第100个数组内的四个数分别是:(100,200,300,400).8.【答案】69;77【考点】数字串问题【解析】【解答】解:分母是8的分数一共有;2×8﹣1=15(个);从分母是1的分数到分母是8的分数一共:1+3+5+7+ (15)=(1+15)×8÷2,=16×8÷2,=64(个);第一个是第65个数,第一个就是第64+5=69个数;第二个就是第64+9+4=77个数.故答案为:69,77.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是8的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;因此在这个数列中应该有2个,分别求出即可.9.【答案】【考点】数字串问题【解析】【解答】解:所填的分数的分子应为27×3=81,分母应为16×2=32,因此这个分数为:.故答案为:.【分析】通过观察,从第二个分数开始,分子都是前一个分数分子的3倍,分母都是前一个分数的分母的2倍,所填的分数的分子应为27×3=81,分母应为16×2=32,因此这个分数为.10.【答案】399【考点】数字串问题【解析】【解答】解:分析题干推出此数列除以5的余数数列为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3…观察余数数列发现,每5个余数为一周期,这5个数的最后一个能被5整除,又因为1997÷5=399…2,也就是1997个数中,有399个5的倍数(余下的2个数,不是5的倍数).故答案为:399.【分析】观察题干发现:“从第三个数起,每个数都是前两个数之和”说明从第三个数起,每个数除以5的余数都是前两个数除以5的余数之和,所以我们只需排出每个数除以5的余数,然后找出余数的规律就行了:1÷5=0余1,所以第三个数除以5的余数就是1+1=2;2÷5=0余2,所以第四个数除以5的余数是1+2=3;3÷5=0余3,所以第五个数除以5的余数是(2+3)÷5=1余0;0÷5=0余0,所以第六个数除以5的余数是3+0=3;…以此类推,余数排列如下:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3…发现规律:每5个余数为一周期,每一个周期的第5个数除以5的余数为0,即是5的倍数,所以1997÷5=399个周期 (2)即这串数的前1997个数中有399个是5的倍数.11.【答案】;【考点】数字串问题【解析】【解答】解:第100个数的分子是:1+(100﹣1)×2=1+99×2=1+198=199分母是:3+(100﹣1)×3=3+99×3=3×(1+99)=3×100=300这个分数就是.第2006个数的分子是:1+(2006﹣1)×2=1+2005×2=1+4010=4011分母是:3+(2006﹣1)×3=3+2005×3=3×(1+2005)=6018这个分数就是=.故答案为:,【分析】=;=,这个数列就是:,,,,,…,分子:1、3、5、7、9、11…后一个比前一个大2,可以看成公差是2的等差数列,由此求出第100个数的分子和第2006个数的分子;分母:3,6,9,12,15,18,…后一个比前一个大3,看成公差是3的等差数列,由此求出第100个数的分母;进而求出第100个数的分母和第2006个数的分母.二、计算题12.【答案】解:根据题意,可得第一个数字串表示1到1999的所有奇数,第二个数字串字可表示为:3n﹣2,由1999=3n﹣2,可得n=(1999+2)÷3=2001÷3=667所以第二个数字串中奇数的个数有:(667+1)÷2=668÷2=334(个)所以同时出现在这两个数串中的数共有334个.答:同时出现在这两个数串中的数共有334个.【考点】数字串问题【解析】【分析】首先根据题意,可得第一个数字串表示1到1999的所有奇数,然后根据第二个数字串的数字可表示为:3n﹣2,并求出一共有667个数字,而且按照奇数、偶数、奇数、偶数、…、奇数的规律排列,求出第二串数字中有多少个奇数,即可判断出同时出现在这两个数串中的数共有多少个.13.【答案】解:(1)分母是7的分数一共有;2×7﹣1=13(个);从分母是1的分数到分母是10的分数一共:1+3+5+7+9+11+13+15+17+19=(1+19)×10÷2=200÷2=100(个);那么从第100个分数开始依次是:,,,,,,;所以第一个是第107个分数.答:第一次出现的是第107个分数.(2)分母是3的分数有4个,分子是1,2,3,1;分母是4的分数有5个;分子是1,2,3,4,1;…分母是n的分数有n+1个(n>1).共有1+3+4+5+…+(n+1)=(n+1)×(n+2)÷2﹣2,因为(26+1)×(26+2)÷2﹣2=376,(27+1)×(27+2)﹣2=404,第404个分数是,向前推为第403个分数是,第402个分数是,第401个分数是,第400个分数是.所以这串数的第400个数是.【考点】数字串问题【解析】【分析】(1)分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是10的分数一共有多少个;分子是自然数,先从1增加,到分母相同时再减少到1;因此在这个数列中应该有2个,求出第一个是第几个即可;(2)分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有4个,分子是1,2,3,1;分母是4的分数有5个;分子是1,2,3,4,1;…分母是n的分数有n+1个(n>1),由此规律进一步探究答案即可14.【答案】解:根据8×9=72,可得1989后面的第一个数字是2;根据9×2=18,可得1989后面的第二个数字是8;…,所以这串数字是19892868842868842…,所以这串数字从第六位开始循环,循环数字是868842;因为(1999﹣5)÷6=1994÷6=332 (2)所以这串数字从1开始往右数第1999个数字是6,这1999个数字的和是:(1+9+8+9+2)+(8+6+8+8+4+2)×332+(8+6)=29+11952+14=11995答:这串数字从1开始往右数第1999个数字是6,这1999个数字的和是11995.【考点】数字串问题【解析】【分析】首先根据8×9=72,可得1989后面的第一个数字是2;9×2=18,可得1989后面的第二个数字是8;…,所以这串数字是19892868842868842…,观察,可得这串数字从第六位开始循环,循环数字是868842,据此用1999减去5,再除以6,根据余数的情况判断出这串数字从1开始往右数第1999个数字是几;最后把各个数位上的数字求和,求出这1999个数字的和是多少即可.15.【答案】解:分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有4个,分子是1,2,3,1;分母是4的分数有5个;分子是1,2,3,4,1;…分母是n的分数有n+1个(n>1).共有1+3+4+5+…+(n+1)=﹣2,因为﹣2=376,﹣2=404,第404个分数是,向前推为第403个分数是、第402个分数是、第401个分数是、第400个分数是.所以这串数的第400个数是.【考点】数字串问题【解析】【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有4个,分子是1,2,3,1;分母是4的分数有5个;分子是1,2,3,4,1;…分母是n的分数有n+1个(n>1),由此规律进一步探究答案即可.16.【答案】解:[(11+18)×8÷2+1992]÷4,=(116+1992)÷4,=527.设中间的两个数为a4和a5,所以a4+a5=527=263+264,从而可知a4=263,那么第一个数就为263﹣3=260.答:另外8个连续自然数中最小数是260【考点】数字串问题【解析】【分析】由题意,首先求出11至18这8个连续自然数的和为(11+18)×8÷2=116,然后把116加上1992,得到另外8个连续自然数的和为116+1992=2108.假设另外的8个连续自然数从小到大依次为a1、a2、a3、a4、a5、a6、a7、a8,则这8个连续自然数大小搭配可分成四组,每组和都相等即a1+a8=a2+a7=a3+a6=a4+a5=2108÷4=527.又因为a4和a5是两个相邻的自然数,所以a4+a5=527=263+264,从而可知a4=263,a1=263﹣3=260,也即另外的8个连续自然数中最小的数是260.17.【答案】解:把这列数每5个数一组,分为48组.每一组都比前一组的和多5.又第一组和是9.这个等差数列的第48个数是9+47×5=244.数列和=(9+244)×48÷2=6072.答:这列数中前240个数的和是6072.【考点】数字串问题【解析】【分析】5个数一组,第二组比第一组每个数多1,共多5;第三组比第二组每个数多1,一共多5,第一组和是9,也就是说,前240个数是48组,和是9、14、19…等差数列的和,这个等差数列的第48个数是9+47×5=244;数列和=(9+244)×48÷2=6072.18.【答案】解:(1)前共有数字:1+3+5+7+9+11+13+15=6464+9=73(个);是第73个数.(2)1+3+5+7+9+…+25==169169+5=174.答:在这串数中的第174.故答案为:73.【考点】数字串问题【解析】【分析】(1)观察发现,分母是1的分数有1个,分子是1;分母是2的分数有3个,分子分别是1,2,1;分母是3的分数有5个,分子分别是1,2,3,2,1;分母是4的分数有7个,分子分别是1,2,3,4,3,2,1.分数的个数是连续增加的奇数;是分母是9的第9个分数,只要求出从分母是1的分数到分母是8的分数一共有多少个,然后再加上9即可.(2)的分母是14,所以只要求出从分母是1的分数到分母是13的分数一共有多少个,然后再加上5即可.三、综合题19.【答案】(1)25(2)13【考点】数字串问题【解析】【解答】解:(1)由于括号前的数是16,又后一个数比前一个数大9,所以16+9=25.(2)从第三个数开始后面的数是前两个数的和,所以5+8=13.故答案为:25,13.【分析】(1)由1,4,9,16,(),36…得出:后一个数比前一个数大3、5、7…(2)由2,3,5,8,(),21…得出:从第三个数开始后面的数是前两个数的和.四、应用题20.【答案】解:(1+12)×12÷2=78,78÷3=26,即他们每人取出的四个球的和为26.从甲开始,5和12和为17,那么只有1种:2、5、7、12.再来看乙,和为6+8=14,那么出现的只有1种,就是6、8、3、9.丙就是:1、4、10、11.答:甲乙丙三人取出的其余的球上标记的数分别是2和7;3和9;4、10 和11.【考点】数字串问题【解析】【分析】从甲开始,每人拿的和都是26.5和12和为17,那么只有1种:2、5、7、12.再来看乙,和为6+8=14,那么出现的只有1种,就是6、8、3、9.丙就是:1、4、10、11.。
2019年小学六年级数学下册试题 小升初数学专题 排列组合(含答案解析)
小升初数学思维拓展 排列组合一、知识地图1) 加法原理2) 乘法原理3) 排列a) 信号问题b) 数字问题c) 坐法问题d) 照相问题e) 排队问题4) 组合a) 几何计数问题b) 加乘算式问题c) 比赛问题d) 选法问题二、基础知识(一)加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有m 1种不同做法,第二类方法中有m 2种不同做法,…,第k 类方法中有m k 种不同的做法,则完成这件事共有 N=k m m m +++ 21种不同的方法。
这就是加法原理。
例如:某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津。
那么他在一天中去天津能有多少种不同的走法?解答:分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,并且每种走法都可以直接到达目的地,一步就可以完成任务,可以用加法原理。
如果乘火车,有5种走法,如果乘长途汽车,有4种走法。
上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法。
像这样一步可以完成任务,就用加法原理。
(二)乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,…,做第n 步有m n 种不同的方法,那么,完成这件事一共有N=n m m m ⨯⨯⨯ 21种不同的方法。
这就是乘法原理。
例如:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
问:从两个口袋内各取一个小球,有多少种不同的取法?解答:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,要用乘法原理。
共有3×8=24(种)不同的取法。
1.加法原理和乘法原理有什么区别?1) 加法原理:先把方法分类,每一类的方法都能完成这件事。
最后把这些方法相加。
2) 乘法原理:先把方法分步,每一步都不能独立完成这件事,但是完成这件事,这些步骤缺一不可。
小学六年级下册数学《排列组合》习题及答案
排列组合(一)1、用0、1、2、3、4五个数字,一共可以组成多少个没有重复数字的三位数?答:可以组成48个,用排列组合的方法计算即可:百位数不能为0,所以可以选择的数字只有4位,即C4取1=4十位数除了不能用百位数出现的数字以外都可以,即C4取1=4个位数除了十位数和百位数出现的数字以外都可以,即C3取1=3可以实现的组合有:4*4*3=482、幼儿园里的6个小朋友去坐3个不同的椅子,有多少种坐法?6×5×4=120(种)答:有120种坐法.答:一共120种坐法,先从6名同学中抽出3个不排序,是20种然后吧选出来来得3人进行排列,是6种两个步骤方法数相乘就是120种3、某信号兵用红、黄、蓝三种颜色的小旗各一面,用它们挂在旗杆上作信号(顺序不同时表示的信号也不同),总共可以作出多少种不同的信号?答:3×2×1=6,一共6种信号。
最上面位置可以从3种颜色中选1种,中间位置可以从剩余2种颜色中选1种,下面位置只能从剩余1种颜色种选1种,就是3×2×1=6种。
4、有4个同学去拍照,照相时,必须有一名同学为其他3人拍照,一共有多少种拍照形式?(照相时3人站成一排)根据分析可知:4×3×2×1=24(种),答:共有24种拍照情况.故答案为:24.5、北京到天津的铁路线有10个车站,需要准备多少种不同的车票?方法一:车站1到2,3,4,5,6,7,8,9,10有9种,车站2到3,4,5,6,7,8,9,10有8种,一次类推,车站9到10 有1种。
一共有1+2+3+4+5+6+7+8+9=45,如果有反程有45*2=90种,方法二:9╳10,10为10个站,9为每个站可以有9个目的地。
6、一次乒乓球比赛,最后有6名选手进入决赛,如果赛前写出冠亚军名单,一共可以写出多少种?冠亚军名单一共有30种可能。
设6名选手分别为A、B、C、D、E、F。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
六年级数学的排列组合练习题
六年级数学的排列组合练习题一、填空题1. 用0、1、2、3这4个数字能组成多少个不重复的三位数?答:(4 × 3 × 2) = 24个2. 从6个人中挑选3个人,用多少种不同的方法可以选出这3个人?答:C(6, 3)3. 一本书有8个章节,要求从第1章、第3章、第6章和第7章中选择出3个连续的章节作为一篇导读文章,有多少种不同的选法?答:C(4, 1)4. 有3个红球、4个蓝球和5个绿球,从中任意选取3个球,问有多少种不同的选法?答:C(12, 3)二、选择题1. 将字母A、B、C、D、E五个字母排成一个五位数,问一共有多少种不同的排列方式?A) 5B) 10C) 60D) 120答:D) 1202. 甲、乙、丙、丁4个人参加一次比赛,问这4个人的成绩能有多少种不同的排列方式?A) 12B) 24C) 48D) 120答:B) 243. 有6门课程,一共有30名学生选修,请问不同的选课方案有多少种?A) 36B) 120C) 720D) 15625答:D) 15625三、计算题1. 从1、2、3、4、5、6六个数字中任意选取3个数字,问一共有多少种不同的选法?答:C(6, 3) = (6 × 5 × 4) / (3 × 2 × 1) = 20种2. 有8个孩子参加一次比赛,其中前三名将获得奖品,问一共有多少种不同的获奖方式?答:P(8, 3) = 8 × 7 × 6 = 336种3. 在一个4×4的方格中,从左上角出发,只能向右或向下移动,到达右下角的格子,问有多少种不同的路径?答:C(8, 4) = (8 × 7 × 6 × 5) / (4 × 3 × 2 × 1) = 70种四、应用题1. 某电视节目有10个奖项要颁发,其中3个奖项是一等奖,问一共有多少种不同的获奖方式?答:C(10, 3) = (10 × 9 × 8) / (3 × 2 × 1) = 120种2. 在一个班级中,有8个男生和6个女生,要从中选出一个男生和一个女生合作完成一个作业,问一共有多少种不同的组合方式?答:C(8, 1) × C(6, 1) = 8 × 6 = 48种3. 一辆汽车上有5个座位,其中司机座位已经固定,旅客有6个人,问一共有多少种不同的乘车方式?答:P(6, 4) = 6 × 5 × 4 × 3 = 360种。
六年级下册数学试题-小升初排列与组合应用题及答案2-人教版
-小升初排列与组合应用题及答案-人教版一、解答题(题型注释)2个人打一场球。
一共要打多少场?2.小小、壮壮、元元和门门4位同学排成一行表演小合唱,元元担任领唱,其他人可以任意换位置,最多有几种站法?3.要配成一套衣服,有多少种不同的穿法。
(每次上装和下装只能各穿一件)4.从甲火车站到乙火车站一共有8个车站(包括甲、乙火车站),现在请你为车站设计车票,甲火车站与乙火车站之间一共要设计多少种车票?5.一种小彩灯,由红、黄、绿三种颜色组成。
用灯的亮灭表示不同的信号。
一共可以表示多少种不同的信号?6.有5名同学进行乒乓球比赛,如果每两人之间都要进行一场比赛,那么一共要比赛多少场?7.每两个人只能握一次手,5个人我握几次手?8.按下面的要求,用0、1、5、7这几个数字写出没有重复数字的小数。
(1)小于1而小数部分是三位的数字。
(2)大于5而小数部分是三位的数字。
9.一枚硬币连续掷三次,试着列出各种可能的结果。
10.用2、3、5、7组成没有重复数字的两位数,能组成多少个个位是单数的两位数?11.用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?12.用0、1、4、5能组成多少个没有重复的三位数?请写出来。
13.小红有一辆变速自行车,车子的前齿轮分别有40、48个齿,后齿轮分别有15、20、24、30个齿.他的前后齿轮共可以调出多少种不同的组合?蹬同样的圈数,哪种组合使自行车走得最远?哪种组合蹬起来最省力?参数答案1.4×3÷2=6(场)答:一共要打6场。
【解析】1.先确定一个人,有四种可能,然后从剩下的三个人中选一个,有三种可能,两者不能重复。
2.6×3=18(种)答:最多有18种站法。
【解析】2.4位同学排成一行表演小合唱,元元担任领唱,其他人可以任意换位置,其他三人排列可以有6种可能,因为元元不能站在最右边一个,元元相对每种情况也有三种可能。
3.2×3=6(种)答:有6种不同的穿法.【解析】3.上衣有两种不同的选择,下衣有3种不同的选择根据乘法原理可以算出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一:排列
两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同。
如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
排列的基本问题是计算排列的总个数。
从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同的元素的排列中取出m个元素的排列数,我们把它记做P n m或A n m。
根据排列的定义,做一个m元素的排列由m个步骤完成:
步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法;
步骤2:从剩下的(n-1)个元素中任取一个元素排在第二位,有(n-1)种方法;
……
步骤m:从剩下的[n-(m-1)]个元素中任取一个元素排在第m个位置,有n-(m-1)=n-m+1种方法;
由乘法原理,从n个不同元素中取出m个元素的排列数是n·(n-1)·(n-1)……(n-m+1),即P n m=n(n-1)(n-1)……(n-m+1),这里,m≤n,且等号右边从n开始,后面每个因数比前一个因数小1,共有m个因数相乘。
板块二:组合
一般地,从n个不同元素中取出m个(m≤n)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合。
从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关。
如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合。
从n个不同元素中取出m个元素(m≤n)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数。
记作C n m或
m
n
⎛⎫
⎪
⎝⎭。
接下来研究如何求组合数。
举个例子,从3个不同元素a,b,c的当中取出2个元素的组合数是多少?
由于从3个不同元素中取出2个的排列数可以求得,我们可以考察一下组合数与排列数的关系,从3个不同元素a,b,c中取出2个元素的组合与排列的关系如下:
a,b a,b;b,a
b,c b,c;c,b
a,c a,c;c,a
从上面可以看出,每一个组合对应着2个排列。
因此,求从3个不同的元素中取出2个元素的排列数,可以分为以下两步:
第一步:考虑从3个不同元素中取出2个元素的组合,由组合数公式,有C32种取法;
排列组合综合应用
第二步:对每一个组合中的2个不同元素作全排列,有P 22种排法。
根据乘法原理,P 32=C 32×P 22。
因此,组合数C 32=P 32÷P 22=(3×2)÷2=3。
在数学中可以把a ÷b (b ≠0)记作a b ,其中a 叫做分子,b 叫做分母,所以22
3322P C P =
一般地,求从n 个不同元素中取出的m 个元素的排列数P n m 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有C n m 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有P n m 种排法。
根据乘法原理,得到P n m =C n m ·P m m 。
因此,组合数 (1)(2)(1)(1)(2)321
m m
n n
m m nP n n n n m C P m m m ⋅-⋅--+==⋅-⋅-⋅⋅…………
这个公式就是组合数公式。
用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?
一共有赤、橙、黄、绿、青、蓝、紫七种颜色的灯各一盏,按照下列条件把灯串成一串,有多少种不同的串法?
⑴把7盏灯都串起来,其中紫灯不排在第一位,也不排在第七位。
⑵串起其中4盏灯,紫灯不排在第一位,也不排在第四位。
(2007年台湾第十一届小学数学世界邀请赛)将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生B 与C 必须相邻。
请问共有多少种不同的排列方法?
从4名男生,3名女生中选出3名代表。
⑴不同的选法共有多少种?
⑵“至少有一名女生”的不同选法共有多少种?
⑶“代表中男、女生都要有”的不同选法共有多少种?
小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?
测试题
1.某小组有12个同学,其中男少先队员有3人,女少先队员有4人,全组同学站成一排,要求女少先队员都排一起,而男少先队员不排在一起,这样的排法有多少种?
2.用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?
3.丁丁和爸爸、妈妈、奶奶、姐姐一起照“全家福”,5人并排站成一排,奶奶要站在正中间,有多少种不同的站法?
4.学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭
其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?
5.在一次考试的选做题部分,要求在第一题的4个小题中选做3个小题,在第二题的3个小题中选做2个小题,在第三题的2个小题中选做1个小题,有多少种不同的选法?
答案
1.解析:
把4个女少先队员看成一个整体,将这个整体与不是少先队员的5名同学一块儿进行排列,
有6
6654321720
P=⨯⨯⨯⨯⨯=种排法。
然后在七个空档中排列3个男少先队员,有3
7765210
P=⨯⨯=种排法,
最后4个女少先队员内部进行排列,有4
4432124
P=⨯⨯⨯=种排法。
由乘法原理,这样的排法一共有720210243628800
⨯⨯=种。
2.解析:
由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;
十位上的数可以从剩下的5张中选一张,有5种选法;
百位上的数再从剩下的4张中选一张,有4种选法。
由乘法原理,一共可以组成35460
⨯⨯=个不同的偶数。
3.解析:
由于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,
是一个全排列问题,且4
n=。
由全排列公式,共有4
4432124
P=⨯⨯⨯=种不同的站法。
4.解析:
要熄灭的是除两端以外的2盏灯,但不相邻。
可以看成有10盏灯,共有9个空位,
在这9个空位中找2个空位的方法数就是熄灭2盏灯的方法数,
那么熄灯的方法数有2
998
36 21
C
⨯
==
⨯
种。
5.【解析】
由于选做的题目只与选取的题目有关,而与题目的顺序无关,所以在三道题中选题都是组合问题。
第一题中,4个小题中选做3个,有3
4432
4 321
C
⨯⨯
==
⨯⨯
种选法;
第二题中,3个小题中选做2个,有2
332
3 21
C
⨯
==
⨯
种选法;
第三题中,2个小题中选做1个,有1
22
2 1
C==种选法;根据乘法原理,一共有43224
⨯⨯=种不同的选法。