两角和与差的三角函数、二倍角公式

两角和与差的三角函数、二倍角公式
两角和与差的三角函数、二倍角公式

第20讲 两角和与差的三角函数、二倍角公式

考试要求 1.两角和与差的正弦、余弦、正切公式的推导及联系(C 级要求);二倍角的正弦、余弦、正切公式(B 级要求);2.运用两角和与差的正弦、余弦、正切公式进行简单的三角恒等变换(C 级要求).

诊 断 自 测

1.思考辨析(在括号内打“√”或“×”)

(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=

tan α+tan β

1-tan αtan β

可以变形为tan α+tan β

=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( )

解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π

2+k π,k ∈Z . 答案 (1)√ (2)√ (3)× (4)√

2.(2017·山东卷改编)已知cos x =3

4,则cos 2x =________. 解析 由cos x =34得cos 2x =2cos 2

x -1=2×? ????342-1=18.

答案 18

3.(2017·江苏卷)若tan(α-π4)=1

6,则tan α=________. 解析 tan α=tan ????????? ????α-π4+π4 =tan ?

????

α-π4+tan π4

1-tan ? ??

??

α-π4tan π4

=1

6+11-16=75.

答案7 5

4.(2018·苏、锡、常、镇调研)已知α是第二象限角,且sin α=3

10

,tan(α+β)

=-2,则tan β=________.

解析由α是第二象限角,且sin α=3

10

得cos α=-1

10

,tan α=-3,

所以tan β=tan(α+β-α)=tan(α+β)-tan α

1+tan(α+β)tan α

-2+3

1+6

1

7.

答案1 7

5.(必修4P109习题4改编)sin 347°cos 148°+sin 77°·cos 58°=________. 解析sin 347°cos 148°+sin 77°cos 58°

=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°

=(-cos 77°)·(-sin 58°)+sin 77°cos 58°

=sin 58°cos 77°+cos 58°sin 77°

=sin(58°+77°)=sin 135°=

2 2.

答案

2

2

知识梳理

1.两角和与差的三角函数公式

sin(α±β)=sin__αcos__β±cos__αsin__β. cos(α?β)=cos__αcos__β±sin__αsin__β.

tan(α±β)=tan α±tan β1?tan αtan β

.

2.二倍角公式

sin 2α=2sin__αcos__α.

cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α

1-tan α

.

注意:①在二倍角的正切公式中,角α是有限制条件的,即α≠k π+π2,且α≠k π

2+π

4(k ∈Z ).

②“倍角”的意义是相对的,如4α是2α的二倍角,α是α

2的二倍角. 3.有关公式的逆用、变形等

(1)tan α±tan β=tan(α±β)(1?tan__αtan__β). (2)cos 2α=

1+cos 2α2,sin 2

α=1-cos 2α2

. (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ?

?

???α±π4.

4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)? ????其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)? ?

?

??其中tan φ=a b .

考点一 公式的正向、逆向使用

【例1】 (1)(一题多解)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________.

(2)(2016·四川卷)cos 2π8-sin 2π8=________. 解析 (1)法一 ∵tan α=-2,

∴tan(α+β)=tan α+tan β

1-tan αtan β=-2+tan β1+2tan β=17,

解得tan β=3.

法二 tan β=tan[(α+β)-α]

=tan (α+β)-tan α1+tan (α+β)tan α=1

7-(-2)1+17×(-2)=1+147-2=3.

(2)由二倍角公式得cos 2

π8-sin 2

π8=cos π4=22.

答案 (1)3 (2)2

2

规律方法 两角和与差的三角函数公式、二倍角公式的正向使用(从左往右使用)、逆向使用(从右往左使用)是本节的基础,要从角度联系、结构特征发现问题中隐含的公式特征,选择使用公式解决问题;特别要注意“尽量用已知角表示未知角”的思想方法的应用.

【训练1】 (1)(2017·课标全国Ⅰ卷)已知α∈? ????0,π2,tan α=2,则cos ? ???

?α-π4=________.

(2)(2015·全国Ⅰ卷改编)sin 20°cos 10°-cos 160°sin 10°=________. 解析 (1)因为α∈? ????

0,π2,且tan α=sin αcos α=2,所以sin α=2cos α,又

sin 2

α+cos 2

α=1,所以sin α=255,cos α=55,则cos ?

????

α-π4=

cos αcos π4+sin αsin π4=55×22+255×22=310

10. (2)sin 20°cos 10°-cos 160°sin 10°= sin 20°cos 10°+cos 20°sin 10°=sin 30°=1

2. 答案 (1)31010 (2)1

2

考点二 公式的变形、灵活使用

【例2】 (1)(2017·广州调研)已知sin α+cos α=13,则sin 2? ??

??

π4-α=________.

(2)(2017·江苏四校联考)已知tan(α+β)=2,tan(α-β)=3,则sin 2α

cos 2β

的值为

________.

(3)(2017·如东中学调研)已知α为锐角,若sin ? ????α+π6=35,则cos ? ?

???2α-π6=

________.

解析 (1)由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-8

9,所以sin 2? ????π4-α=1-cos ? ????π2-2α2=1-sin 2α2=1+892=1718. (2)sin 2αcos 2β

sin[(α+β)+(α-β)]

cos[(α+β)-(α-β)]

=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)cos (α+β)cos (α-β)+sin (α+β)sin (α-β) =tan (α+β)+tan (α-β)1+tan (α+β)tan (α-β)

.

将tan(α+β)=2,tan(α-β)=3代入,得原式=2+31+2×3

=5

7.

(3)由sin ? ????α+π6=35,可得cos ?

????α+π6=±

45, 当cos ? ????α+π6=-45时,cos α=cos ????????? ????α+π6-π6=3-4310<0,与α是锐角矛盾,

所以cos ?

????α+π6=4

5,

从而cos ? ????2α-π6=cos ????????2? ????α+π6-π2 =2sin ? ????α+π6·cos ?

????

α+π6=2×35×45=2425.

答案 (1)1718 (2)57 (3)24

25

规律方法 两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:

(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;

(2)善于拆角、拼角,如α=(α+β)-β,2α=(α+β)+(α-β),2α+β=(α+β)+α等;

(3)注意倍角的相对性,如α=2×α

2等; (4)要时时注意角的范围;

(5)熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等. 【训练2】 (1)(1+tan 17°)(1+tan 28°)的值是________.

(2)(2018·四川泸州四诊)已知sin ? ????π3-α=14,则cos ? ????

π3+2α=________.

解析 (1)原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.

(2)由题意:sin ? ????π3-α=sin ????????π2-? ????π6+α=cos ? ????π6+α=14,

则cos ? ????π3+2α=cos2? ????π6+α=2cos 2? ????π6+α-1=-7

8.

答案 (1)2 (2)-78

考点三 三角函数式的化简与求值(多维探究) 命题角度1 三角函数式的化简

【例3-1】 化简:(1+sin α+cos α)·

?

????cos α

2-sin α22+2cos α

(0<α<π)=________.

解析 原式=

? ????2cos 2α2+2sin α2cos α2·? ???

?cos α2

-sin α24cos 2

α

2

=cos α2?

?

???

cos 2

α

2-sin 2

α2??????cos α2=cos α

2cos α

????

??cos α2.

因为0<α<π,所以0<α2<π2,所以cos α

2>0,所以原式=cos α. 答案 cos α 命题角度2 给值求值

【例3-2】 (一题多解)(2017·苏州一模)若2tan α=3tan π8,则 tan ? ?

???α-π8=

________.

解析 法一 tan ? ????

α-π8=tan α-tan π

81+tan αtan π8=1

2tan π81+32tan 2π8=sin π8cos π8

2cos 2π8+3sin 2

π8

=1

2sin π4

1+cos π4+32? ???

?

1-cos π4=1+52

49.

法二 由tan π4=1,解得tan π

8=2-1,

所以tan ? ????

α-π8=1

2tan π8

1+32tan 2π8=1

2×(2-1)1+32×(3-22)

=1+5249.

答案

1+52

49

命题角度3 给角求值

【例3-3】 [2sin 50°+sin 10°(1+3tan 10°)]·2sin 280=________. 解析 原式=? ??

???2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°· 2sin 80°=(2sin 50°+2sin 10°·12cos 10°+3

2sin 10°

cos 10°

2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×3

2

= 6. 答案

6

命题角度4 给值求角

【例3-4】 (2018·常州一模)满足等式cos 2x -1=3cos x (x ∈[0,π])的x 的值为________.

解析 将方程化为2cos 2x -3cos x -2=0,解得cos x =-1

2或cos x =2(舍去).因为x ∈[0,π],所以x =2π

3. 答案

2π3

规律方法 1.三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等. 2.三角函数求值有三种类型:

(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.

(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两

种思路;①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.

(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.

【训练3】 (1)化简:2cos 4

α-2cos 2

α+1

2

2tan ? ????π4-αsin 2? ??

?

?π4+α=________.

(2)(2016·课标Ⅲ卷改编)若tan α=3

4,则cos 2α+2sin 2α=________.

(3)已知cos α=17,cos(α-β)=13

14(0<β<α<π2),则tan 2α=________,β=________.

解析 (1)原式=12

(4cos 4α-4cos 2α+1)2×sin ? ????π4-αcos ? ????π4-α·cos 2? ???

?π4-α=(2cos 2α-1)24sin ? ????π4-αcos ? ???

?π4-α

=

cos 22α

2sin ? ???

?π2-2α=cos 22α

2cos 2α=1

2cos 2α.

(2)由tan α=3

4,得?????sin α=35,cos α=45或?????sin α=-3

5,cos α=-4

5,

所以cos 2α+2sin 2α=cos 2α+4sin αcos α=1625+4×1225=64

25. (3)∵cos α=1

7,0<α<π2, ∴sin α=43

7,tan α=43,

∴tan 2α=2tan α

1-tan 2α=2×431-48=-83

47. ∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=33

14,

∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12, ∴β=π3.

答案 (1)12cos 2α (2)6425 (3)-

8347 π

3

一、必做题

1.(2018·苏州暑假测试)已知α∈(0,π),cos α=-45,则tan ? ?

???α+π4=________.

解析 由α∈(0,π),cos α=-45,得tan α=-3

4, 所以tan ? ????α+π4=tan α+1

1-tan α=-3

4+1

1+34=

17. 答案 1

7

2.(2017·扬州一模)已知cos ? ????π3+α=13? ?

???0<α<π2,那么sin(π+α)=________.

解析 由cos ? ????α+π3=13,0<α<π2,知sin ? ????α+π3=22

3,所以sin(π+α)=-sin α

=-sin ? ??

??

π3+α-π3=-223×12+13×32=-22+36.

答案 -22+36

3.(2018·苏州调研)已知α是第二象限角,且tan α=-1

3,则sin 2α=________. 解析 因为α是第二象限角,且tan α=-13,所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×? ????-

31010=-3

5. 答案 -3

5

4.(2018·苏、锡、常、镇四市调研)若tan α=12,tan(α-β)=-1

3,则tan(β-2α)=________.

解析 tan(β-α)=-tan(α-β)=1

3,所以tan(β-2α)=tan[(β-α)-α]=tan (β-α)-tan α1+tan (β-α)tan α=13-1

21+16=-1

7.

答案 -1

7

5.(2018·淮阴中学期中)(1+tan 22°)(1+tan 23°)=________. 解析 由tan(22°+23°)=

tan 22°+tan 23°1-tan 22°tan 23°

=1,得tan 22°+tan 23°+

tan 22°tan 23°=1,所以(1+tan 22°)(1+tan 23°)=1+tan 22°+tan 23°+ tan 22°tan 23°=1+1=2. 答案 2

6.(2017·南京、盐城第二次模拟考试)若sin ? ????α-π6=35,α∈? ????0,π2,则cos α

的值为________.

解析 因为α∈? ????

0,π2,所以α-π6∈? ??

??-π6,π3,

又sin ? ????α-π6=35,

所以cos ?

????α-π6=4

5,

所以cos α=cos ????????? ????α-π6+π6=cos ? ????α-π6cos π6-sin ? ????α-π6sin π6

=45×32-35×12=43-3

10 答案

43-310

7.(2018·盐城中学月考)已知α∈? ????π4,3π4,β∈? ????0,π4,且cos ? ????π4-α=3

5,

sin ? ????

54π+β=-1213,则cos(α+β)=________. 解析 ∵α∈? ????π4,3π4,cos ? ????π4-α=35,

则π4-α∈? ????

-π2,0,

∴sin ? ??

??π4-α=-4

5,

∵sin ? ????

54π+β=-1213,∴sin ? ??

??π4+β=1213,

又∵β∈? ????

0,π4,则π4+β∈? ????π4,π2,∴cos ? ????π4+β=513,

∴cos(α+β)=cos ??????? ????π4+β-? ????π4-α=35×513-45×1213=-33

65.

答案 -33

65

8.(2017·泰州调研)若cos ?

?

???α-π3=13,则sin(2α-π6)的值是________.

解析 sin ? ????2α-π6=sin ????????2? ????α-π3+π2=cos 2? ????α-π3

=2cos 2

?

????

α-π3-1=2×19-1=-79.

答案 -7

9

9.(2017·扬州、泰州、南通、淮安、宿迁、徐州六市二模)已知sin ? ?

???α+π4=210,

α∈? ??

??

π2,π.

求:(1)(一题多解)cos α的值; (2)sin ?

?

???2α-π4的值.

解 (1)法一 因为α∈? ????

π2,π,所以α+π4∈? ????3π4,5π4,

又sin ? ?

???α+π4=210,

所以cos ?

?

???α+π4=-

1-sin 2?

?

???

α+π4=-

1-? ??

??2102

=-7210. 所以cos α=cos ??????? ?

???α+π4-π4

=cos ? ????α+π4cos π4+sin ? ?

???α+π4sin π4

=-7210×22+210×2

2 =-35.

法二 由sin ? ?

???α+π4=210得sin αcos π4+cos αsin π4

=2

10,

即sin α+cos α=1

5,结合sin 2α+cos 2α=1, 得cos α=-35或cos α=4

5.

因为α∈? ????

π2,π,所以cos α=-35.

(2)因为α∈? ??

??

π

2

,π

,cos α=-35,

所以sin α=1-cos 2

α=

1-? ??

??-352=45. 所以sin 2α=2sin αcos α=2×45×? ????-35=-24

25,

cos 2α=2cos 2

α-1=2×? ??

??-352

-1=-725.

所以sin ?

?

???2α-π4

=sin 2αcos π4-cos 2αsin π

4 =? ????

-2425×22-? ??

??-725×22=-17250. 10.(2018·常州一中期中)已知α,β∈? ????0,π2且sin(α+2β)=13.

(1)若α+β=

3

,求sin β的值; (2)若sin β=4

5,求cos α的值.

解 (1)因为α,β∈? ????0,π2,α+β=2π3,sin(α+2β)=13,所以α+2β∈? ????

2π3,π

,所以cos(α+2β)=-22

3,

所以sin β=sin ???

???(α+2β)-2π3=13×? ????-12-? ????-

223×32=26-16. (2)因为sin β=45且β∈?

?

???0,π2,所以cos β=35,

所以sin 2β=2sin βcos β=2425,cos 2β=2cos 2β-1=-7

25, 所以2β∈? ????π2,π.又因为α,β∈? ?

???0,π2,

且sin(α+2β)=1

3,

所以α+2β∈? ??

??

π2,π,所以cos(α+2β)=-223.

所以cos α=cos(α+2β-2β)=? ????-223×? ????-725+13×2425=24+142

75.

二、选做题

11.(2017·仪征中学检测)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)=________.

解析 由3tan α

2+tan 2

α

2=1,可得tan α=

2tan

α2

1-tan 2

α

2

=2

3,由sin β=3sin(2α+β)得

sin[(α+β)-α]=3sin[α+(α+β)],

展开得sin(α+β)cos α-cos(α+β)sin α=3sin αcos(α+β)+3cos αsin(α+β), 合并得2sin(α+β)cos α=-4sin αcos(α+β), 所以tan(α+β)=-2tan α, 故tan(α+β)=-2×23=-4

3. 答案 -4

3

12.(2018·苏、锡、常、镇四市调研)已知sin α=3sin ? ????α+π6,则tan ? ?

???α+π12=

________.

解析 ∵sin α=3sin(α+π

6),

∴sin ????????? ????α+π12-π12=3sin ????????? ????α+π12+π12, ∴sin ? ????α+π12cos π12-cos ? ????

α+π12sin π12

=3sin ? ????α+π12cos π12+3cos ?

????

α+π12sin π12,

∴-2sin ? ????α+π12cos π12=4cos ? ????

α+π12sin π12,

∵cos ?

????

α+π12≠0,cos π12≠0,

∴tan ? ????α+π

12=sin ? ???

?

α+π12cos ? ???

?α+π12=-2tan π12=-2tan 15°=-2tan(45°-30°)

=-2×tan 45°-tan 30°1+tan 45°tan 30°

=-2×1-3

3

1+33

=-2×1-23 3+13

1-13

=-2(2-3)=23-4.

答案 23-4

两角和与差的三角函数求值 高中数学教案

两角和与差的三角函数求值微课设计 一、教材分析 三角函数的求值主要有两种类型,即给值求值,给值求角. (1)正确地理解、选用公式,把非特殊角的三角函数值化为特殊角的三角函数值; (2)找出已知条件与所求结论之间的联系,一般可以适当变换已知代数式,从而达到解题的目的。 二、教学目标 知识与技能:探究已知与未知的内在联系,加深对公式的理解,培养学生的运算能力及逻辑推理能力。 过程与方法:通过两角和与差的三角函数公式的运用,会进行简单的求值、化简,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题的能力。 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。 三、学情分析 (1)对公式记忆不准确而使公式应用错误; (2)公式不能灵活应用和变形应用; (3)忽略角的范围或者角的范围判断错误.。 四、教学重、难点 教学重点: 两角和与差的三角函数公式的理解; 教学难点: 两角和与差的三角函数公式的运用。 五、教法学法 讲授法。 六、教学过程设计

故知新 通过分析两角和与差的三角函数公式,加深对知识的理解. 创设情境问题情境: 通过对热点考向的分析, 明确本节主要内容与学习方 向。 通过设计一系列典型例 题,让学生进一步体会两角和 与差的三角函数公式的正用、 逆用,以及整体代换思想的融 合,,提高学生的观察分析能 力,培养学生的应用意识。

典 例 分 析 引导学生从多角度思考 问题,意识到解决问题方法的 不唯一性,加深学生对两角和 与差的三角函数公式的理解, 拓展学生思维。 课 堂梳理公式特点分析; 整体代换思想。 课堂梳理,可以把课堂探究生 成的知识尽快转化为学生的 素质,巩固深化这节课的内 容.

二倍角公式的应用,推导万能公式

课题十:二倍角公式的应用,推导万能公式 教学第一环节:衔接阶段 回收上次课的教案,检查学生的作业,做判定。 了解家长的反馈意见 通过交流,了解学生思想动态,稳定学生的学习情绪 了解学生上次学习的情况,查漏补缺,为后面的备课方向提供依据 教学第二个环节:教学内容 一、解答本章开头的问题: 令AOB = , 则AB = a cos OA = a sin ∴S 矩形ABCD = a cos ×2a sin = a 2sin2 ≤a 2 当且仅当 sin2 = 1, 即2 = 90, = 45时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式:在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1在 α-=α2sin 212cos 中,以代2,2 α代 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2在 1cos 22cos 2-α=α 中,以代2,2 α代 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3以上结果相除得:α +α-=αcos 1cos 12tan 2 注意:1左边是平方形式,只要知道2 α角终边所在象限,就可以开平方。 2公式的“本质”是用角的余弦表示2 α角的正弦、余弦、正切 3上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 4 还有一个有用的公式:α α-=α+α=αsin cos 1cos 1sin 2tan (课后自己证) 三、万能公式 B C a A O D

《二倍角的三角函数》教案(1)(1)

二倍角的三角函数 一.教学目标: 1.知识与技能 (1)能够由和角公式而导出倍角公式; (2)能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力; (3)能推导和理解半角公式; 4)揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力. 2.过程与方法 让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 3.情感态度价值观 通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 二.教学重、难点 重点:倍角公式的应用. 难点:公式的推导. 三.学法与教法 教法与学法:(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 四.教学过程 (一)探究新知 1、复习两角和与差的正弦、余弦、正切公式: 2、提出问题:公式中如果β=α,公式会变得如何? 3、让学生板演得下述二倍角公式:

α-=-α=α-α=ααα=α2222sin 211cos 2sin cos 2cos cos sin 22sin ααα2tan 1tan 22tan -= [展示投影]这组公式有何特点?应注意些什么? 注意:1.每个公式的特点,嘱记:尤其是“倍角”的意义是相对的,如:4α是8α的倍角. 2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次) 3.特别注意公式的三角表达形式,且要善于变形: 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用. (二)[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充) 例1.(公式巩固性练习)求值: ①.sin22?30’cos22?30’=4 245sin 21=ο ②.=-π18 cos 22224cos =π ③.=π-π8cos 8sin 22 224cos -=π- ④.=ππππ12cos 24cos 48cos 48sin 8216sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ 例2.化简 ①.=π-ππ+π)12 5cos 125)(sin 125cos 125(sin 2365cos 125cos 125sin 22 =π-=π-π ②.=α-α2sin 2cos 44α=α-αα+αcos )2 sin 2)(cos 2sin 2(cos 2222 ③.=α+-α-tan 11tan 11α=α -α2tan tan 1tan 22 ④.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+ 例3、已知),2 (,135sin ππ∈α= α,求sin2α,cos2α,tan2α的值。 解:∵),2(,135sin ππ∈α=α ∴1312sin 1cos 2-=α--=α

两角和差的三角函数(教案)

两角和与差的正弦、余弦、和正切公式教案(一) 教学目标 ? 知识与技能:理解利用向量推导两角和差的三角函数公式的过程,进一步体会向量方法的作用,能运用公式进行简单的恒等变换; ? 过程与方法:通过适当强度的课前学生自学,课堂上学生讲解与教师辅助点拨相结合,逐步培养学生自学,敢于展示、认真聆听、积极交流的能力; ? 情感态度与价值观:自主展示实现自我价值,合作学习培养团队合作。 一.课前自学 1.问题提出: 利用熟悉的角的三角函数值验证cos()αβ-是否等于cos cos αβ-,其他三个 , , 的情况又如何? 设计意图:通过对简单的易于进入的问题的探讨,在学生心中生成问题,激发求知欲,为课程的展开提供主观动力。 2. 公式推导: 如图1,在以坐标原点为圆心的单位圆O 中,已知角 与角的终边为与单位圆的交点分别为A,B, 则____________ 根据三角函数的定义:若点A 的坐标为,点B 的坐标为 则 ; 则点A 的坐标可以用的三角函数表示为( , ) 点B 的坐标可以用的三角函数表示为( , ) 则 的坐标(_________________) , 的坐标(_________________) _________________________________OA OB ?= 向量夹角 , 的夹角为 cos()cos ,OA OB αβ-==( ) ( ) =______________________________________ ____________________________________________(提示: OA 与OB 的模为?) =_________________________________ 提醒学生思考:如果角α β、改变结果是否会发生改变,进行推到过程的严谨性探究。

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

三角函数的二倍角公式.docx

三角函数的二倍角公式 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生〃知其然〃而且要使学生〃知其所以然"。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的"创设问题情境——提出数学问题——尝试解决问题——验证解决方法"为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化, 使教学目标体现的更加完美。 二、教材分析 三角函数的二倍角公式是普通高中课程标准实验教科书(人教A版)数学必修四,第三章第一节的内容,其主要内容是三角函数二倍角公式。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求为此本节内容在三角函数中占有非常重要的地位。 三、学情分析 本节课的授课对象是本校高一八班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。 四、教学目标 1、基础知识目标:理解公式的发现过程,掌握正弦、余弦、正切的二倍角公式; 2、能力训练目标:能正确运用公式; 3、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、

数形结合的数学思想,提高学生分析问题、解决问题的能力; 4、个性品质目标:通过公式的学习和应用,感受事物之间的普通联系规律,运用化 归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。 五、教学重点和难点 1、教学重点:理解并掌握公式; 2、教学难点:正确运用公式,求三角函数值,化简三角函数式。 六、教法学法以及预期效果分析 "授人以鱼不如授之以鱼",作为一名老师,我们不仅要传授给学生数学知识,更重要 的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究. 下面我从教法、学法、预期效果等三个方面做如下分析。 (一)、教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生"时间"、 "空间",由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦 (二)、学法 〃现代的文盲不是不识字的人,而是没有掌握学习方法的人",很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情

二倍角公式教案

二倍角公式教案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二 倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学方法: 讨论式教学+练习 五、教学过程 1 复习引入 前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。 2 公式推导 在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。(让学生做5分钟) (1)提问: sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式? 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

高一数学三角函数二倍公式

黄冈中学高一数学三角函数二倍角公式 1、二倍角的正弦、余弦、正切 在和角公式S(α+β)、C(α+β)、T(α+β)中,令α=β就可以得出对应的二倍角的三角函数公式. 点拨:(1)倍角公式是和角公式的特例.(2)因为sin2α+cos2α=1所以公式C2α还可变形为:cos2α=2cos2α-1或 cos2α=1-2sin2α. (3)公式成立的条件:C2α中α∈R;S2α中α∈R;T2α中α≠(k∈Z)时,显然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式,即: . (4)理解二倍角的含义:二倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于 诸于将4α作为2α的2倍,将α作为的2倍;将作为的2倍;将3α作为的2倍;将 的2倍等等情况. (5)注意公式的逆用:例如: 2、半角的正弦、余弦、正切:在倍角公式cos2α=1-2sin2α、cos2α=2cos2α-1中以α代替2α, 以代替α,即得:cosα=1-2sin2,cosα=2cos2-1,所以有 即得: 称之为半角公式

点拨:(1)半角公式中正、负号的选取由所在象限确定. (2)称公式为降幂公式. (3)可看做的半角;可看做3α的半角;可看做α的半角;2α可看做4α的半角等等. (4)公式成立的条件为:α≠2kπ+π(k∈Z). (5)k∈Z. 说明:半角公式不要求记忆. 3、积化和差与和差化积公式:将公式S(α+β)加上S(α-β)即可得: ,另外将公式S(α+β)减去S(α-β)、C(α+β)加上C(α-β)、C(α+β)减去C(α-β)可得出另三个公式,即得积化和差公式如下: 在上述公式中令α+β=θ,α-β=φ可得以下和差化积公式: 点拨:(1)积化和差公式的推导,用了“解方程组”的思想,和差化积公式的推导用了“换元”的

两角和与差的三角函数练习含答案

一、选择题(共9小题,每小题4分,满分36分) 1.(4分)(2009?陕西)若3sinα+cosα=0,则的值为() A.B.C.D.﹣2 2.(4分)已知,则=() A.B.C.D. 3.(4分)如果α∈(,π),且sinα=,那么sin(α+)+cos(α+)=() A.B.﹣C.D.﹣ 7.(4分)(2008?海南)=() A.B.C.2D. 8.(4分)已知sinθ=﹣,θ∈(﹣,),则sin(θ﹣5π)sin(π﹣θ)的值是() A.B.﹣C.﹣D. 9.(4分)(2007?海南)若,则cosα+sinα的值为() A.B.C.D. 10.(4分)设α,β都是锐角,那么下列各式中成立的是() A.s in(α+β)>sinα+sinβB.c os(α+β)>cosαcosβ C.s in(α+β)>sin(α﹣β)D.c os(α+β)>cos(α﹣β) 11.(4分)(2009?杭州二模)在直角坐标系xOy中,直线y=2x﹣与圆x2+y2=1交于A,B两点,记∠xOA=α(0<α<),∠xOB=β(π<β<),则sin(α+β)的值为() A.B.C.﹣D.﹣ 12.(4分)(2008?山东)已知,则的值是() A.B.C.D. 二、填空题(共5小题,每小题5分,满分25分) 4.(5分)(2008?宁波模拟)已知cos(α+)=sin(α﹣),则tanα=_________ . 5.(5分)已知sin(30°+α)=,60°<α<150°,则c osα的值为 _________ . 13.(5分)?的值为_________ . 14.(5分)(2012?桂林一模)若点P(cosα,sinα)在直线y=﹣2x上,则sin2α+2cos2α=_________ .15.(5分)的值为 _________ . 三、解答题(共4小题,满分0分) 6.化简: (1); (2)﹣. 16.(2006?上海)已知α是第一象限的角,且,求的值. 17.求值:(1);

三角函数公式大全2

三角函数公式大全 一谜槢痌激乼2014-11-28 优质解答 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切

两角和与差的三角函数练习题及答案

两角和与差的三角函数练习题及答案 一、选择题 1. sin 45°·cos 15°+cos 225°·sin 15°的值为 ( C ) A .- 32 B .-12 2.已知sin(45°+α)=5 5 ,则sin 2α等于 ( B ) A .-4 5 B .-35 3.已知cos ? ????π6-α=33,则sin 2? ????α-π6-cos ? ????5π6+α的值是 ( A ) B .-2+3 3 4.已知向量a =? ????sin ? ????α+π6,1,b =(4,4cos α-3),若a⊥b ,则sin ? ????α+4π3等于 ( B ) A .- 3 4 B .-14 5.已知sin ? ????π6-α=13,则cos ? ?? ??2π3+2α的值是 ( A ) A .-7 9 B .-13 6.在△ABC 中,角C =120°,tan A +tan B =2 33,则tan A tan B 的值为( B ) 二、填空题 7.若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)= 8. 3-sin 70°2-cos 2 10°=________. 2 9.已知α,β∈? ????3π4,π,sin(α+β)=-35, sin ? ????β-π4=1213,则cos ? ?? ??α+π4= ________. -56 65 三、解答题

(1)2sin ? ????π4-x +6cos ? ?? ??π4-x ; (2)2cos 2 α-1 2tan ? ????π4-αsin 2? ?? ? ?π 4+α. 解 (1)原式=22??????1 2sin ? ????π4 -x +32·co s ? ????π4-x =22??????sin π6sin ? ????π4-x +cos π6cos ? ????π4-x =22cos ? ????π6-π4+x =22cos ? ????x -π12. (2)原式=cos 2α1-tan α1+tan α??????1-cos ? ????π2+2α =cos 2α cos 2α1+sin 2α (1+sin 2α)=1. 11.已知函数f (x )=2sin 2? ?? ??π 4+x -3cos 2x . (1)求f (x )的周期和单调递增区间; (2)若关于x 的方程f (x )-m =2在x ∈??????π4,π2上有解,求实数m 的取值范围. 解 (1)f (x )=2sin 2? ????π 4+x -3cos 2x =1-cos ? ?? ??π2+2x -3cos 2x =1+sin 2x -3cos 2x =2sin ? ????2x -π3+1, 周期T =π;令2k π-π2≤2x -π3≤2k π+π 2, 解得单调递增区间为??????k π-π12,k π+5π12(k ∈Z ). (2)x ∈?? ????π4,π2,所以2x -π3∈??????π6,2π3, sin ? ????2x -π3∈???? ??12,1, 所以f (x )的值域为[2,3]. 而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1]. 12.已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈? ?? ? ?3π2,2π, 且a⊥b . (1)求tan α的值; (2)求cos ? ?? ??α2+π3的值. 解 (1)∵a⊥b ,∴a·b =0. 而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α), 故a·b =6sin 2 α+5sin αcos α-4cos 2 α=0. 由于cos α≠0,∴6tan 2 α+5tan

运用二倍角公式解题的六技巧

运用二倍角公式解题的五技巧 二倍角公式变化多姿,在求值以及恒等变换中应用很广。若熟练掌握二倍角公式以及变通公式并能灵活运用,则往往能出奇制胜,获得新颖别致的解法。 一、二倍角公式的直接运用 例1 若1 sin cos 3 αα+=,0απ<<,求sin 2cos 2αα+的值。 分析:由条件式两边平方,可求得sin 2α的值。注意到22 cos 2cos sin ααα=- (cos sin )(cos sin )αααα=+-,还需求c o s s i n α α-的值,于是先求22(cos sin )(sin cos )4sin cos αααααα-=+-的值, 然后开方,从而要进一步界定α的范围。 解:由1 sin cos 3 αα+= 两边平方得112sin cos 9αα+=,所以4sin cos 9αα=-。又 0απ<<,所以sin 0α>,cos 0α<,所以α为钝角。所以8 sin 22sin cos 9 ααα==-, cos sin αα-= 3 ==- ,所以22cos 2cos sin ααα=-(cos sin )(cos sin )αααα=+ -1(3=?=,从 而sin 2cos 2αα+=。 点评:挖掘隐含得到α 为钝角是解题的一个重要环节。注意导出公式 21sin 2(sin cos )ααα±=±。 二、二倍角公式的逆用 例2 求tan cot 8 8 π π -的值。 解:tan cot 8 8 π π -sin cos 88cos sin 8 8 πππ π =-2 2sin cos 8 8cos sin 88 π π ππ -= cos 41sin 24 π π-= 2cot 24π=-=-。 点评:本题通分后逆用正弦与余弦的二倍角公式,从而转化为特殊角函数的求值问题。 三、二倍角公式的连用 例3 求cos12cos 24cos 48cos96 的值. 分析:242 12=? ,48224=? ,96248=? ,联想二倍角的正弦公式αααcos sin 22sin =,若逐步逆用将是一条通途. 解:cos12cos 24cos 48cos96 sin12cos12cos 24cos 48cos96sin12 = sin19216sin12= sin12116sin1216 -==- 。 点评:对形如αααα1 2cos 4cos 2cos cos -n 的求值问题可考虑此法.若逆用诱导公式ααπcos )2sin(=±可知74cos 72cos 7cos πππ14 5sin 143sin 14sin π ππ-=,即对于正弦之 积或正弦余弦混合积的求值问题先利用诱导公式转化为余弦之积的形式利用此法求解. 四、整体配对使用二倍角公式 例4.求值: 78sin 66sin 42sin 6sin 分析:本题可按例2的点评部分所说的方法处理,这里介绍整体构造法.

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数的和差公式

1 / 2 第四~五课时 三角函数的和角公式、差角公式 [教学目标] 1、通过两角差的正弦公式的推导和证明,继而导出三角函数的和角公式、差角公 式,学生进一步理解与运用函数的思想,进一步渗透基本量的数学思想方法(基本量思想就是一种函数的思想)。 2、使学生掌握三角函数的和角公式、差角公式,并会应用这组公式解决一些有关三 角函数的求值问题。 3、在公式的推导过程中,使学生注意并学习严密而准确的数学思维方法及其数学表 达方式。 [教学重点与难点] 本节课的重点是使学生掌握三角函数的和角公式、差角公式。 难点是应用三角函数的和角公式、差角公式求三角函数值。 [教学过程设计] 一、三角函数的和角公式的推导与证明。 1、推导两角和的正弦公式。(参阅课本第75~76页)。 2、给出两角和的余弦公式。 3、利用同角三角函数恒等式,对正切函数可得两角和的正切公式。 (板书) 三角函数的和角公式 sin(α+β)=sin αcos β+ cos αsin β cos(α+β)= cos αcos β-sin αsin β tan(α+β)=β αβαtan tan -1tan tan + 二、三角函数的差角公式的推导。 直接用和角公式结合负角公式,导出三角函数的差角公式:(参阅课本第76页) (板书) 三角函数的差角公式 sin(α-β)=sin αcos β- cos αsin β cos(α-β)= cos αcos β+sin αsin β tan(α-β)=β αβαtan tan 1tan tan +- 三、和角、差角三角函数公式在计算三角函数式值中的应用。 1、求三角函数的值 例4:不使用计算器,求下列各式的值:(略——参阅课本第76页) 练习4:课本第76页,课内练习4) 2、已知角α、β的(部分)三角函数值,求和角、差角的三角函数值。 )tan(),cos(),sin(),23,(,43cos ),,2(,32sin 5βαβαβαππββππαα+++∈-=∈= 求已知例: (解略——参阅课本第78页) 练习5:课本第79页,课内练习5~1、2、3

三角函数和差及倍角公式讲义.docx

教育学科教师辅导讲义 教学内容 一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练: Mite 一、两角和与差的正弦、余弦、正切公式及倍角公式: sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空?》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p — cos2a = cos?(7-sin 2 a -2cos 2 a-\ = l-2sin 2 a 7 1+COS 2Q n cos 「a= ---------- 2 .9 l — cos2o sirr a= ---------- 2 r 2 tan a tan 2a = ------- - l-tarr a 二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。基本的技巧有: (1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如 G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2?呼,呼十号俘") ⑵三角函数名互化(切割化弦), ⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。 1 I y zy I / cos 等),

(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式: 2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。

相关文档
最新文档